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Abstract: Using a solar radiometer is an effective approach for improving the remote sensing of solar
irradiance distribution and atmospheric composition. Long-term development of a solar scanning
radiometer enables frequent and reliable measurement of atmospheric parameters such as the water
vapor column and aerosol optical properties. However, the discrete wavelength radiometer has
encountered a bottleneck with respect to its insufficient spectral resolution and limited observation
waveband, and it has been unable to satisfy the needs of refined and intelligent on-site experiments.
This study proposes a solar-skylight spectroradiometer for obtaining visible and near-IR fine spectrum
with two types of measurement: direct-sun irradiance and diffuse-sky radiance. The instrument
adopts distributed control architecture composed of the ARM-Linux embedded platform and sensor
networks. The detailed design of the measuring light-path, two-axis turntable, and master control
system will be addressed in this study. To determine all coefficients needed to convert instrument
outputs to physical quantities, integrating sphere and Langley extrapolation methods are introduced
for diffuse-sky and direct-sun calibration, respectively. Finally, the agreement of experimental
results between spectroradiometers and measuring benchmarks (DTF sun-photometer, microwave
radiometer, and Combined Atmospheric Radiative Transfer simulation) verifies the feasibility of
the spectroradiometer system, and the radiation information of feature wavelengths can be used to
retrieve the characteristics of atmospheric optics.

Keywords: spectroradiometer; atmospheric optics; embedded Linux; sensor networks

1. Introduction

Since solar energy is selectively absorbed and scattered by atmospheric molecules in
transmission, the radiation distribution on the ground characterizes many atmospheric
optics properties [1]. In particular, visible and near-IR wavelength shortwave radiation
is of great significance to theoretical meteorology research, atmospheric detection and
validation of satellite aerosol retrievals [2,3]. Hence, it is critically important to understand
and describe solar irradiation information [4]. The accurate measurement of shortwave
radiation has been the prerequisite for assessing its influence on atmospheric circulation
and improving space imaging accuracy in the engineering field [5].

When radiation detection technology is underdeveloped, the ISO9845 can provide
an appropriate standard spectral distribution for the scientific research on direct beam
radiation extinction [6]. However, the prospect of fully understanding radiation can only
be realized with verification and validation by a high-precision solar radiometer. Over the
past few decades, radiometers have undergone long-term research to realize atmospheric
observation, instrument calibration and data processing [7,8]. The polarized CE318-DP
radiometer system used in the China Solar/Sky Radiation Observation Network is a
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typical example that standardizes regional ground-based water vapor and aerosol obser-
vations [9,10]. However, the instruments have to take a few seconds to traverse a filter
wheel sequence while performing measurements, limiting their time resolution. In contrast
to the CE318 radiometer, the multispectral sun-photometer (SSARA) manufactured at
the Meteorological Institute Munich can measure the radiation of all channels simultane-
ously [11]. Owing to the design of their electronics, the channel amplifiers have a high
time constant during scanning. In addition, the instrument has not overcome the restraint
of limited measurement channels. The “Fengyun” meteorological satellites of aerospace
engineering provide support for the development of spectroradiometers with a spectral
range of 400~1050 nm, with the prospect to obtain refined solar radiation distributions
for meteorological modeling and ecological research [12,13]. A spectroradiometer is an
optical precision instrument integrated with electrical and optomechanical technology. Its
implementation requires that the master control system has a series of characteristics such
as real-time communication, embedded algorithms and data processing. With the develop-
ments of microprocessors, system-on-chip and sensor detection, the ARM microprocessor
system presents integrated and intelligent application advantages in atmospheric detection
and marine environment monitoring [14]. Moreover, previous work [15,16] proved the
feasibility of building a radiometer system on the ARM platform to reduce energy con-
sumption and size. Therefore, an improved spectroradiometer system based on embedded
ARM-Linux is developed in this study, which simultaneously measures the visible and
near-IR spectrum in the whole sky.

The organization structure of this article is as follows: Section 2 introduces the optical
path of the radiometer in detail, and analyzes how to introduce the communication protocol
family into the master control system to realize distributed control of measurement compo-
nents. Brief descriptions of the radiometric calibration method are given in Section 3, and
Section 4 presents how to retrieve continuous spectral transmittance, water vapor column
and other atmospheric parameters according to the radiation information of characteristic
wavelengths.

2. Instrument Characterization
2.1. Overview Design

Wide observation waveband, high spectrum resolution, and flexibility in configura-
tion modes are the basic characteristics of the instrument framework. The solar-skylight
spectroradiometer can observe the wideband solar spectrum range of 380~1100 nm, with
spectral resolution of 0.1 nm. This instrument integrates two types of sun-photometric
measurement: direct-sun irradiance and diffuse-sky radiance. The coordination of a two-
axis turntable, measuring probe and embedded control system aids the development of
the radiometer. At the same time, peripheral components such as the temperature control
system also contribute to the improvement of instrument measurement accuracy.

A schematic diagram of the spectroradiometer is shown in Figure 1. The two-axis
turntable adopts a symmetrical U-shaped structure to reduce the moment of inertia, and
supports the measuring probe in the inertial operation space. The measuring probe can
rotate in two orthogonal dimensions of horizontal axis and pitch axis to realize steady and
accurate tracking of the target in the whole sky, while observing the solar spectrum from
visible to near-IR. The temperature control technology provides probe cavity with working
environment of rapid thermal homogenization, constant temperature control, and heat
insulation protection. With the ARM microprocessor as the central microprocessor and
Linux OS as the software platform, the embedded system is responsible for task scheduling
and real-time communication with radiometer components. Based on the rational configu-
ration of the communication protocol family, the data from sensor networks are integrated
and merged under the program control. Table 1 below depicts the performance indicators
of the solar-skylight spectroradiometer:
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Figure 1. Schematic diagram of instrument.

Table 1. Main features of spectroradiometer.

Performance Characteristics Specifications

Measurement waveband 380~1100 nm
Spectrum resolution <1 nm

Measuring mode direct-sun irradiance, diffuse-sky radiance
Field of view 0.8◦

Tracking angle resolution <5 arcsec
Positioning accuracy <40 arcsec
Control architecture ARM-Linux architecture

Working temperature −30~55 ◦C

2.2. Light-Path Design

Accurate tracking of the sun is the basis for obtaining direct solar irradiance and sky
radiance, with the sun as the reference point. Therefore, designing the tracking light-path
should satisfy the requirement that the chamber is perpendicular to the solar plane, and
the solar spot completely falls on the photosensitive surface of the quadrant detector, as
shown in Figure 2. The astronomical sun trajectory algorithm built in the microprocessor
calculates the solar position based on time, latitude and longitude, after which the quad-
rant detector ensures the tracking accuracy. The above dual-mode tracking technology
realizes the automatic and precise tracking of the solar center prior to a programmed
measurement sequence.
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Figure 3 sketches the spectrum acquisition light-path used to effectively collect solar
irradiation. The light-path is mainly composed of diaphragm groups, a doublet lens,
neutral density filters of different opacities, optical fibers and Sony silicon CCD-array
detectors. The design of the front-end light-path must satisfy the 32′ solar disc angle,
and take into account the manufacture error and adjustment margin of the field of view
(FOV). After solar irradiation passes through the dustproof quartz glass window, the field
diaphragm is responsible for limiting the luminous flux and FOV. An achromatic doublet
lens and evanescent light baffle can effectively realize straylight rejection. The focal length
of the doublet lens is 69.8 mm, and the corresponding solar spot size is about 0.65 mm, so
the photosensitive surface size of the spectral detector is designed to be more than 1 mm.
Moreover, the aperture diaphragm placed in front of the photosensitive surface limits the
receiving field of view to 0.8◦. The above optical path design can not only allow the solar
spot to fall into the receiving surface, but also have enough space margin for adjusting the
dovetail groove to reduce the parallelism error between measuring the optical axis and
tracking the optical axis [17]. In order to avoid overexposure of the CCD detector when
pointing at the sun, neutral density filters with 0.1% or 0.3% transmittance are arranged
into a rotating wheel, respectively. As the incident sunlight passes through the filters, the
spectrum range of 300~1700 nm is selected and attenuated, after which the optical fibers
and fiber couplers couple the solar radiation to the spectrometer. Then, the spectrometer
converts the physical quantities to electrical signals and analyzes the spectral composition.
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2.3. Radiometer System with Embedded Linux

The high-performance ARM Cortex-A7 microprocessor with an embedded Linux
system is implemented for the coordination of a two-axis turntable, measuring probe
and temperature control module. ARM-Linux architecture can realize minimal energy
consumption and support data processing with the referenced algorithms [18], which is an
important advantage in long-term observations. With the introduction of the communica-
tion protocol family (UART, GPIO, and USB), the embedded system can flexibly regulate
the sensor networks to ensure cooperative work. Under the healthy cycle of the control
algorithm, spectrum data can be regularly copied to the remote server by means of the
TCP/IP network transmission protocol. Figure 4 illustrates the software framework of the
radiometer system:

2.3.1. Two-Axis Turntable

The turntable is the carrier of electrical and optical components in the measuring
probe; Figure 5 shows the turntable control flow. The serial communication protocol is
selected to simplify data transmission and realize reliable communication between the
microprocessor and turntable [19]. According to the programmed protocol format, the
signals sent by the ARM board serial will traverse the built-in command preset in the driver,
after which the driver converts the signals into voltage parameters to adjust the Brushless
Direct Torque motor. Based on the hardware foundation consisting of drivers, encoders
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and gratings, the “position-velocity-torque” force control loop in the software enables the
two-axis turntable to have positive transmission stability and positioning accuracy better
than 40 arcsec [20]. The direct drive technology of the torque motor frees the transmission
device between the motor and turntable load [21], and eliminates the errors caused by the
transmission chain (friction vibration, response lag, and elastic deformation). Through the
stable operation of the program loop, the microprocessor could convert the displacement
deviation into control signals of the turntable, and monitor the state of the turntable in
real time.
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2.3.2. Measuring Probe

The prominent advantages of the spectroradiometer lies in the spectral spectroscopy
and multi-channel array detector technology. While the radiometer scans on the trajectory,
the measuring probe mounted on the two-axis turntable will obtain the visible and near-
IR spectrum. The fiber optics spectrometer manufactured by Ocean Optics Co. Ltd.
(Dunedin, FL, USA) is a precise instrument combined with programmable electronics,
CCD-array detector and high-speed transmission. Therefore, by splicing the spectrum of
the visible and near-IR spectrometers in the program, the radiometer can quickly measure
the spectrum-wide range of 380~1100 nm.

In order to ensure high-speed and large-capacity data transmission, the USB communi-
cation protocol is adopted for the cooperative communication between the microprocessor
and spectrometer. Owing to the facilities of the open-source Libusb-0.1.9, embedded
Linux could operate the USB spectrometer through an efficient driverless method without
considering the compatibility of various kernel versions [22], which leads to software
simplification. In addition, while the spectrometer collects the solar spectrum, the noise
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subtraction program and linearity correction program are triggered to eliminate the dark
noise and minimize the influence of electric noise. Figure 6 shows the three-dimensional
structure of the spectral measuring probe.
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2.3.3. Temperature Control System

The potential uncertainty of the spectrum measurement comes from ineliminable
electric noise and the temperature dependence of spectral response, and it is necessary to
carry out temperature control design of the measuring probe. The temperature control
system is mainly composed of a thermometric sensor, semiconductor TEC and hardware
circuit [23]. The sensor measures the cavity temperature, after which the microprocessor
adjusts the operation of the TEC and air-cooling system based on the built-in PID algorithm.
The temperature control system keeps the temperature in the probe cavity constant with
maximum offset of 0.5 ◦C, which improves the accuracy of the spectral measurement.

2.4. Workflow

The spectroradiometer is designed to perform direct-sun irradiance measurements
and diffuse-sky detection; fixed-point observation is part of the latter:

• During the process of direct-sun measurement, solar tracking and radiation collection
programs circulate in the microprocessor, so that the direct solar irradiance of the
whole day sequence from sunrise to sunset can be obtained. Using the relative flux of
directly transmitted radiance varying with the zenith angle, atmospheric parameters
such as atmospheric transmittance and water vapor column can be calculated by the
inversion model.

• In diffuse-sky measurement, dual-mode tracking technology is executed to accurately
track solar position, after which the spectroradiometer scans the solar principal plane
(SPP) and almucantar (ALM) shown in Figure 7 at non-equal intervals to obtain the
whole sky radiance.

• As for fixed-point observation, the measuring probe aims at a specific direction to ob-
tain continuous fixed-point radiance. The measurement cycle and integration time of
the spectrometer can be dynamically adjusted, but the increase in integration time will
lead to the elevation of dark noise and compression of the signal-to-noise ratio. There-
fore, the adjustment of integration time adopts the principle of 1~320 ms classification.
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3. Calibration

The spectral response of any solar-sky radiometer is subjected to drift, so a regular
instrument calibration is fundamental for a spectroradiometer to obtain quantitative optical
parameters and high-quality measurements. For diffuse-sky radiance measurement, the
instrument is calibrated in the laboratory by using a standard integrating sphere [24].
For direct-sun irradiance measurement, the Langley plot method derived from the Beer–
Lambert law is adopted in the non-absorption band of the spectrum, and the modified
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Langley method will determine accurate calibration coefficients in the molecular absorption
band [25].

3.1. Calibration of Diffuse-Sky Radiance Measurement

The integrating sphere is a standard radiation source, which can output stable and
varying spectral radiance. Therefore, the spectral response of the radiometer to the standard
radiance of the sphere can be expressed as [26]:

RDN = A0(λ) + A1(λ)L1(λ) + A2(λ)L2
2(λ) + A3(λ)L3

3(λ) + . . . + An(λ)Ln
n(λ) (1)

where L1(λ) is the monochromatic radiance at wavelength λ, RDN is the response value of
the spectroradiometer to standard input, A0(λ) is the dark noise, and A1(λ), A2(λ) are the
calibration coefficients to be determined. Equation (1) can be fitted to the linear function
for the case where the high-order coefficients are neglected:

A1(λ) =
RDN − A0(λ)

L1(λ)
(2)

The integral radiance Lλ1,λ2 between [λ1, λ2] is given by:

Lλ1,λ2 =
∫ λ2

λ1

L1(λ)dλ (3)

3.2. Calibration of Direct-Sun Irradiance Measurement

As a calibration technology in passive remote sensing, Langley extrapolation will
achieve high calibration accuracy once the test site satisfies clear and stable atmospheric
conditions [27]. As the radiometer output voltage V(λ, t) is linearly related to direct input
radiant energy F(λ, t), the basic formula (4) of direct solar irradiance that passes through
the Earth’s atmosphere can be fitted to a linear equation (Equation (5)) with slope τ(λ, t):

F(λ, t) = F0(λ, t)×
(

d
d0

)2
exp[−mτ(λ, t)] (4)

ln

[
V(λ, t)/

(
d0

d

)2
]
= ln V0(λ, t)−mτ(λ, t) (5)

• V(λ, t), V0(λ, t) is the output voltage produced by the spectroradiometer at wave-
length λ when points to the sun at the ground and at the atmospheric top, respectively.
d/d0 is the relative Earth–Sun correction factor.

• m is the optical airmass, which describes the increase in the direct optical pathlength
from the sun to the detector.

• τλ is the total atmospheric optical depth at wavelength λ, equal to the sum of aerosol
(τa), ozone (τm) and Rayleigh (τr) optical depth.

During the Langley calibration, τλ can be regarded as a constant once the atmosphere
is clear and stable. In the Langley plot, ln V0(λ, t), determined by extrapolating the linear
curve to the top of the atmosphere (air mass = 0), is the calibration constant used at
different wavelengths. As for the water vapor absorption band, aerosol optical depth
(AOD) at the absorption band can be calculated by linear interpolation from AOD at two
non-absorption bands, after which the modified Langley is performed to calculate the
calibration coefficients of the water vapor band.

Although the spectroradiometer can obtain spectrum calibration coefficients in the
wideband, the DTF sun-photometer acting as the reference is limited to several discrete
wavelengths. The DTF sun-photometers are made up of eight channels (400 nm, 500 nm,
610 nm, 670 nm, 780 nm, 870 nm, 940 nm, 1050 nm). Therefore, only eight bands with
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the same central wavelength as the DTF sun-photometer are listed. The Langley plot at
selected wavelengths for measurements is shown in Figure 9:
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Calibration value InG0, correlation coefficient R, and standard deviation SD of eight
selected bands are shown in Table 2. The correlation coefficient of each waveband is above
0.995, and the standard deviation is lower than 0.003. This indicates that least-squares
fitting of the line through the data points on 29 January 2021 yields ideal results.

Table 2. Calibration value, correlation coefficient and standard deviation of eight bands.

Date Parameter
Selected Eight Wavebands

400 nm 500 nm 610 nm 670 nm 780 nm 870 nm 940 nm 1050 nm

29
January

2021

InG0 11.0146 13.0431 13.5085 13.2467 12.3778 11.52 12.5569 11.236
R −0.9990 −0.9994 −0.9986 −0.9988 −0.9985 −0.9984 −0.9957 −0.9969

SD 0.00237 0.00132 0.00163 0.00132 0.00126 0.0012 0.00261 0.00163

4. Result Analysis
4.1. Verification of Transmittance and Water Vapor

Atmospheric transmittance and total column water vapor (TCWV) are basic param-
eters that reflect the properties of atmospheric radiative transfer. Detailed studies on
water vapor and transmittance are required in remote sensing of the Earth, climate change
research and air quality monitoring. In the non-absorption waveband, the solar radiometer
can calculate the atmospheric transmittance based on the ratio of measured direct irradi-
ance to extraterrestrial solar radiation. In addition, the 940 nm water vapor band can be
used to accurately retrieve TCWV [28].

4.1.1. Whole Atmospheric Transmittance

In order to verify the accuracy of the spectroradiometer in measuring atmospheric
transmittance, we have carried out simultaneous observation experiments between the
spectroradiometer and the DTF sun-photometer in Hefei, China. Because the full band-
width at half maximum of the two instruments is different, it is necessary to integrate the
data of the spectroradiometer at the same center wavelength and bandwidth with DTF.

The atmospheric transmittance of eight typical wavelengths throughout the day is
shown in Figure 10. The relative measurement differences are within 5% and 8% at each
band on 29 January and 4 March, respectively, when compared to the results of the DTF
sun-photometer. In particular, the transmittance in the visible region of the two instruments
is consistent, which reflects the variation of the direct solar irradiance in radiative transfer.
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The experiments show that the performance of spectroradiometer is relatively accurate
and stable.
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Figure 10. Comparison of atmospheric transmittance between spectroradiometer and DTF sun-photometer in the eight
selected bands.

4.1.2. Total Water Vapor

Under clear weather conditions, the solar radiometer calculates the AOD of the water
vapor band based on the Ångström formula or AOD linear interpolation method; then,
the water vapor content can be obtained by the inversion model [29]. The microwave
radiometer (MP-3220A) is a highly sensitive instrument for measuring the atmospheric
water vapor profile using multi-band microwave radiation [30]. The microwave can
penetrate cloud and atmosphere, and cover more than 10 km of the atmosphere. The
measurement results of MP-3220A can approximately represent the total water vapor in
the whole atmosphere.

Although the water vapor results of the spectroradiometer and reference are in good
agreement, there are still relative deviations, as shown in Figure 11. It is important to point
out that the spectroradiometer, the DTF sun-photometer and the microwave radiometer
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use three different detectors. The error source of the measurement may come from the dif-
ference in response characteristics of the detectors, the calibration error of the instruments,
and the influence of the absorption gas.
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Figure 11. Graphs of the water vapor column of the spectroradiometer, DTF sun-photometer and microwave
radiometer, respectively.

4.2. Continuous Spectrum Transmittance

The attenuation process of molecular absorption and scattering of solar radiation in
transmission contains abundant atmospheric molecular information and optical properties.
In order to accurately analyze the atmospheric radiation based on the Earth’s surface
radiation, it is necessary to measure and study the continuous spectrum transmittance
of the featured spectral band, and understand the variation characteristics of the spectral
transmittance under the actual atmospheric model.

Combined Atmospheric Radiative Transfer (CART) can quickly calculate the spectral
transmittance and atmospheric scattering characteristics, with spectral resolution of 1 cm−1

and a spectral range of 1~25,000 cm−1 [31]. Figure 12 illustrates the comparison of spectral
transmittance between the CART and spectroradiometer in the morning, noon, and after-
noon. The transmittance curve of the spectroradiometer can characterize the absorption
position of water vapor, oxygen, ozone and other molecules. Moreover, the variation trend
in 400~1100 nm of the spectroradiometer is in good conformity with that of CART, and
the relative depth of the water vapor absorption valley is approximately the same. The
comparison results verify the accuracy of the instrument in obtaining continuous spec-
trum transmittance. The relative difference is mainly due to the following uncertainties:
In the process of CART simulation, the input parameters are not completely consistent
with the actual atmospheric conditions. In addition, the spectroradiometer does not take
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into account the influence of aerosols, cirrus clouds and other factors when analyzing the
transmittance, which also leads to the relative error.
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Figure 13 shows comparison result of spectral transmittance between winter (January)
and spring (March). Even though the decline of atmospheric altitude in winter leads to a
decrease in molecules absorption, the spectral transmittance in winter is significantly lower
compared to that in spring, especially in the shortwave region. However, in the red region,
such as the water vapor absorption band, the spectral transmittance tends to coincide. Due
to the fact that the experimental site, Hefei, is located north of the equator, the solar zenith
angle in winter is obviously greater than that in spring. With the increase in solar zenith
angle and the Earth–Sun distance, the spectral energy will be absorbed and scattered by
more atmospheric molecules. Therefore, the spectral atmospheric transmittance measured
in winter is lower compared to that observed in spring, especially the shortwave radiation
that is easily scattered by molecules.
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Figure 14. Atmospheric transmittance of five typical wavelengths during the course of a day. 

Figure 13. Comparison of continuous spectrum transmittance in winter and spring.

Figure 14 illustrates the atmospheric vertical transmittance at five wavelengths of
400 nm, 500 nm, 670 nm, 780 nm, and 870 nm during the two observation days on 29
January and 4 March, respectively. With increasing wavelengths, the value of the entire
atmospheric transmittance of four wavelengths increases gradually. The corresponding
continuous spectrum transmittance of wavelengths in Figure 12 also shows an increasing
trend from visible to near-IR, which further verifies the reliability of the measured result.
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Figure 13. Comparison of continuous spectrum transmittance in winter and spring. 

Figure 14 illustrates the atmospheric vertical transmittance at five wavelengths of 400 
nm, 500 nm, 670 nm, 780 nm, and 870 nm during the two observation days on January 29 
and March 4, respectively. With increasing wavelengths, the value of the entire atmos-
pheric transmittance of four wavelengths increases gradually. The corresponding contin-
uous spectrum transmittance of wavelengths in Figure 12 also shows an increasing trend 
from visible to near-IR, which further verifies the reliability of the measured result. 
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Figure 14. Atmospheric transmittance of five typical wavelengths during the course of a day. Figure 14. Atmospheric transmittance of five typical wavelengths during the course of a day.

4.3. Diffuse-Sky Radiance

In the diffuse-sky radiance observation, the spectroradiometer provides a featured
angular sky scanning, and the sky hemisphere is divided into 354 grids. The measuring
probe can rotate in two orthogonal dimensions of pitch and level, so as to obtain the absolute
integrated radiance in the whole sky. Accurate measurement of sky radiation will contribute
toward improving the accuracy of space imaging. Furthermore, the optical thickness and
effective radius of clouds can be determined from solar radiation measurements [32,33].

Figure 15 shows three snapshots of the diffuse-sky radiance information throughout
the day on February 6 and March 25, respectively. The absolute integrated radiance on
March 25 is significantly higher compared to that on February 6 at the same time. This
difference is mainly due to the change in solar zenith angle in the observation area from
winter to summer. Moreover, the diffuse-sky radiance distributions of the two days have
some similarities:
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• The radiance distribution under cloud conditions (Figure 15a) is affected by the
clouds and the solar zenith angle, which presents an ambiguous result and no
obvious regularity.

• On a sunny day, the radiation in the whole sky shows a symmetrical distribution
concerning the line connecting the Sun and the zenith. The solar zenith angle is the
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main factor determining the value of sky radiance. With the increase in solar zenith
angle, the sky radiance decreases accordingly.

Two images of sky radiance at the single wavelength are illustrated in Figure 16. At the
same observation time, the diffuse-sky radiance distributions at different wavelengths have
some similarities, but there are various areas with highlighted regions in the distribution
graph. The single-wavelength background radiance on the absorption band is significantly
smaller than that of its adjacent non-absorption band. For example, the radiance value of
936.14 nm in the water vapor absorption band is an order of magnitude smaller than that
of 876.63 nm.
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Figure 16. Two images of sky radiation distribution at single wavelength.

4.4. Fixed-Point Radiance

For the fixed-point radiance observation, the measuring probe of the spectroradiome-
ter points to a given azimuth (180◦, 30◦) in the sky for fixed-point and equal-period
observations. Figure 17a shows fixed-point radiation under a clear sky on 6 February;
Figure 17b presents the measurement results under partially cloudy on 2 February:
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• Under clear-sky conditions, the radiation curve is relatively smooth with slight fluc-
tuation. With the solar zenith angle becoming lower, the proportion of shortwave
radiation decreases and the long-wave radiation increases correspondingly.

• The existence of clouds will affect the distributions of sky radiation. In a partially
cloudy condition, the radiation distributions in the entire waveband are relatively
uniform, and the curve descent tends to be gentle. The proportion of long-wave
radiation is significantly higher when compared to that in the clear-sky condition.

5. Conclusions

This paper proposes a scheme for developing a solar-skylight spectroradiometer with
wideband observation of 380~1100 nm. Through the deep integration between hardware
and software resources, the embedded Linux integrated with the communication protocol
family can control sensor networks and perform data analysis. (1) In terms of direct solar
irradiance measurement, the whole atmospheric transmittance of the spectroradiometer
shows the maximum relative difference of 8% when compared to the DTF sun-photometer.
The relative error of total water vapor is within 10% compared to that of the microwave
radiometer. (2) The consistency of the continuous spectrum transmittance between the
spectroradiometer and the CART software confirms the effectiveness of the measurement
system. (3) For the diffuse-sky radiance, in contrast to a traditional radiometer which
measures discrete wavebands on a preset orbit, a spectroradiometer can observe the
radiation distributions and spectral information of the whole sky. The implementation of
measurement technology can enrich the methods to obtain atmospheric parameters such as
direct solar irradiance, sky radiance and total solar radiation, and provide refined spectral
distributions information.
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