Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = optical frequency comb (OFC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1081 KB  
Article
Optical Frequency Comb-Based Continuous-Variable Quantum Secret Sharing Scheme
by Runsheng Peng, Yijun Wang, Hang Zhang, Yun Mao and Ying Guo
Mathematics 2025, 13(15), 2455; https://doi.org/10.3390/math13152455 - 30 Jul 2025
Viewed by 573
Abstract
Quantum secret sharing (QSS) faces inherent limitations in scaling to multi-user networks due to excess noise introduced by highly asymmetric beam splitters (HABSs) in chain-structured topologies. To overcome this challenge, we propose an optical frequency comb-based continuous-variable QSS (OFC CV-QSS) scheme that establishes [...] Read more.
Quantum secret sharing (QSS) faces inherent limitations in scaling to multi-user networks due to excess noise introduced by highly asymmetric beam splitters (HABSs) in chain-structured topologies. To overcome this challenge, we propose an optical frequency comb-based continuous-variable QSS (OFC CV-QSS) scheme that establishes parallel frequency channels between users and the dealer via OFC-generated multi-wavelength carriers. By replacing the chain-structured links with dedicated frequency channels and integrating the Chinese remainder theorem (CRT) with a decentralized architecture, our design eliminates excess noise from all users using HABS while providing mathematical- and physical-layer security. Simulation results demonstrate that the scheme achieves a more than 50% improvement in maximum transmission distance compared to chain-based QSS, with significantly slower performance degradation as users scale to 20. Numerical simulations confirm the feasibility of this theoretical framework for multi-user quantum networks, offering dual-layer confidentiality without compromising key rates. Full article
Show Figures

Figure 1

12 pages, 2335 KB  
Article
Theoretical and Experimental Analysis of Optical Frequency Combs Synchronized to a Microwave Reference Achieving 10−19-Level Additional Stability
by Xin Chen, Mingkun Li, Bingjie Rao, Xiguang Yang, Zhenyuan Hu, Ruifang Dong, Shougang Zhang and Pan Zhang
Photonics 2025, 12(3), 195; https://doi.org/10.3390/photonics12030195 - 25 Feb 2025
Cited by 1 | Viewed by 801
Abstract
This paper presents a combined theoretical and experimental method for noise suppression in the repetition frequency (fr) locking of erbium-doped fiber optical frequency combs (OFCs). This study proposed a novel mathematical model to bridge the noise relationship of fr [...] Read more.
This paper presents a combined theoretical and experimental method for noise suppression in the repetition frequency (fr) locking of erbium-doped fiber optical frequency combs (OFCs). This study proposed a novel mathematical model to bridge the noise relationship of fr between the free-running and locked modes, and analyzed this relationship from two perspectives: the additional phase noise and the frequency stability. In addition, to integrate theoretical modeling with experimental validation, this study designed fr locking strategy that uses a phase-locked loop (PLL) with PFD + PIID (a phase frequency detector and a proportional, first-order integer, second-order integer, first-order differential controller). Under synchronization of the fr with a microwave reference (REF), this study achieved OFC additional frequency stabilities of 2.81 × 10−15@1 s and 8.08 × 10−19@10,000 s at 200 MHz fundamental frequency locking and 4.25 × 10−16@1 s and 1.91 × 10−19@10,000 s at 1200 MHz harmonic locking. The simulated and experimental results are in good agreement, confirming the consistency of the theoretical model and experiment. This work provides a reliable theoretical model that can be used to predict stability for OFC locking and significantly improves the additional frequency stability of OFCs. Full article
(This article belongs to the Special Issue Advances in Dual-Comb Spectroscopy)
Show Figures

Figure 1

16 pages, 4586 KB  
Article
Optically Referenced Microwave Generator with Attosecond-Level Timing Noise
by Lulu Yan, Jun Ruan, Pan Zhang, Bingjie Rao, Mingkun Li, Zhijing Du and Shougang Zhang
Photonics 2025, 12(2), 153; https://doi.org/10.3390/photonics12020153 - 13 Feb 2025
Viewed by 1030
Abstract
Microwave sources based on ultrastable lasers and optical frequency combs (OFCs) exhibit ultralow phase noise and ultrahigh-frequency stability, which are important for many applications. Herein, we present a microwave source that is phase-locked to an ultrastable continuous-wave laser, with a relative frequency instability [...] Read more.
Microwave sources based on ultrastable lasers and optical frequency combs (OFCs) exhibit ultralow phase noise and ultrahigh-frequency stability, which are important for many applications. Herein, we present a microwave source that is phase-locked to an ultrastable continuous-wave laser, with a relative frequency instability of 7 × 1016 at 1 s. An Er:fiber-based OFC and an optic-to-electronic converter with low residual noise are employed to confer optical frequency stability on the 9.6 GHz microwave signal. Instead of using the normal cascaded Mach–Zehnder interferometer method, we developed a microwave regeneration method for converting optical pulses into microwave signals to further suppress the additional noise in the optic-to-electronic conversion process. The microwave regeneration method employs an optical-to-microwave phase detector based on a fiber-based Sagnac loop to produce the error signal between a 9.6 GHz dielectric resonator oscillator (DRO) and the OFC. The 9.6 GHz microwave (48th harmonic of the comb’s repetition rate) signal with the frequency stability of the ultrastable laser was achieved using a DRO that was phase-locked to the optical comb. Preliminary evaluations showed that the frequency instability of the frequency synthesizer from the optical to the 9.6 GHz microwave signal was approximately 2 × 1015 at 1 s, the phase noise was 106 dBc Hz−1 at 1 Hz, and the timing noise was approximately 9 as Hz−1/2 (phase noise approx. 125 dBc Hz−1). The 9.6 GHz signal from the photonic microwave source exhibited a short-term relative frequency instability of 2.1 × 1015 at 1 s, which is 1.5 times better than the previous results. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

15 pages, 6575 KB  
Article
Tunable Characteristics of Optical Frequency Combs from InGaAs/GaAs Two-Section Mode-Locked Lasers
by Dengqun Weng, Yanbo Liang, Zhongliang Qiao, Xiang Li, Jia Xu Brian Sia, Zaijin Li, Lin Li, Hao Chen, Zhibin Zhao, Yi Qu, Guojun Liu, Chongyang Liu and Hong Wang
Sensors 2024, 24(24), 7905; https://doi.org/10.3390/s24247905 - 11 Dec 2024
Viewed by 1289
Abstract
We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 [...] Read more.
We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region. Under different operating conditions, the laser exhibits the characteristics of OFCs. And the pulse interval in the timing and the peak interval in the frequency domain show a periodic alternating change trend with the increase in the gain current. This tunable characteristic is reported for the first time. The study demonstrates the feasibility of generating tunable optical combs using a monolithic integrated two-section mode-locked semiconductor laser (MI-TS-MLL). This has important reference value for the application of OFCs generated from MI-TS-MLLs or integrated optical chips. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

29 pages, 25007 KB  
Review
Advancing Molecular Spectroscopy Efficiency with Extensive Parallelism
by Jiaqi Li, Rodrigo Fernandez, Bernardo Gutierrez, Jan Pedersen and Yan Zhou
Metrology 2024, 4(4), 736-764; https://doi.org/10.3390/metrology4040043 - 5 Dec 2024
Viewed by 2699
Abstract
Molecular spectroscopy, with a legacy spanning over a century, has profoundly enriched our understanding of the microscopic world, driving major advancements across science and engineering. Over time, this field has steadily advanced, incorporating innovations such as lasers and digital computers to reach new [...] Read more.
Molecular spectroscopy, with a legacy spanning over a century, has profoundly enriched our understanding of the microscopic world, driving major advancements across science and engineering. Over time, this field has steadily advanced, incorporating innovations such as lasers and digital computers to reach new levels of precision and sensitivity. Over the past decade, the integration of high-speed embedded electronic systems and advanced light sources has ushered molecular spectroscopy into a new era, characterized by extensive parallelism and enhanced sensitivity. This review delves into two pioneering technologies that embody recent advancements in molecular spectroscopy: Chirped-Pulse Fourier Transform Microwave (CP-FTMW) spectroscopy and optical frequency comb (OFC) spectroscopy. We provide an overview of the fundamental principles behind these methods, examine their most impactful applications across diverse fields, and discuss their potential to drive future developments in molecular spectroscopy. By highlighting these technologies, we aim to underscore the transformative impact of integrating high-speed digital electronics and advanced light sources with molecular spectroscopy, enabling extensive parallelism and paving the way for groundbreaking discoveries and innovations in this rapidly evolving field. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

13 pages, 3704 KB  
Article
Spectrum Allocation Using Integer Linear Programming and Kerr Optical Frequency Combs
by Sergio Muñoz-Tapasco, Andrés F. Calvo-Salcedo and Jose A. Jaramillo-Villegas
Photonics 2024, 11(12), 1114; https://doi.org/10.3390/photonics11121114 - 25 Nov 2024
Viewed by 1125
Abstract
The rapid increase in Internet usage has led to a growing demand for bandwidth. Optical microring resonators (MRRs) are emerging as a promising solution to meet this need. MRRs generate optical frequency combs (OFCs) that provide multiple wavelengths with high phase coherence, enabling [...] Read more.
The rapid increase in Internet usage has led to a growing demand for bandwidth. Optical microring resonators (MRRs) are emerging as a promising solution to meet this need. MRRs generate optical frequency combs (OFCs) that provide multiple wavelengths with high phase coherence, enabling communication via wavelength division multiplexing (WDM). Spectrum allocation methods, such as the Routing, Modulation Level, and Spectrum Assignment (RMLSA) approach, play a crucial role in executing this strategy efficiently. While current algorithms have improved allocation efficiency, further development is necessary to optimize network performance. This paper presents an integer linear programming (ILP)-based method for network resource allocation, aiming to maximize the number request and the bandwidth assigned to each. The proposed approach offers a flexible cost function that prioritizes system constraints such as transmission distance and bandwidth requirements, resulting in significant improvements to the bandwidth blocking rate (BBR). By integrating multilevel modulation and using wavelengths generated by MRRs, this method efficiently handles up to 1075 requests, achieving a BBR of zero. This dynamic and adaptable allocation strategy ensures optimal resource utilization, enhancing overall network performance. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits, Sensors, and Instrumentation)
Show Figures

Figure 1

10 pages, 2649 KB  
Article
Multiple-Access Time and Frequency Transfer over Fiber and Free-Space Link Based on Optical Frequency Comb
by Wantao Huang, Peng Zhang and Dong Hou
Appl. Sci. 2024, 14(20), 9477; https://doi.org/10.3390/app14209477 - 17 Oct 2024
Viewed by 1412
Abstract
We have demonstrated a multiple-access transfer of time and frequency signal over a fiber and free-space link based on an optical frequency comb (OFC). With this transfer technique, two time–frequency signals were disseminated separately from a master site to two slave sites over [...] Read more.
We have demonstrated a multiple-access transfer of time and frequency signal over a fiber and free-space link based on an optical frequency comb (OFC). With this transfer technique, two time–frequency signals were disseminated separately from a master site to two slave sites over a 3.9 km fiber and 100 m free-space link for 10,000 s. The timing fluctuations and instabilities of the time and frequency transfer were measured, estimated, and discussed. The experimental results show that the total root-mean-square (RMS) timing fluctuation of the transfer from site A to B is about 119 ps, with a fractional frequency instability on the order of 3.3 × 10−11 at 1 s and 2.8 × 10−14 at 2000 s. The RMS timing fluctuation of the transfer from site A to C is about 59.5 ps, with a fractional frequency instability on the order of 3.0 × 10−11 at 1 s and 2.6 × 10−14 at 2000 s. These results indicate that the multiple-access transfer technique proposed in this paper can provide important support for the application of a large-scale time–frequency synchronization network. Full article
Show Figures

Figure 1

11 pages, 1848 KB  
Communication
Broadband Optical Frequency Comb Generation Utilizing a Gain-Switched Weak-Resonant-Cavity Fabry–Perot Laser Diode under Multi-Wavelength Optical Injection
by Yuhong Tao, Qiupin Wang, Pu Ou, Guangqiong Xia and Zhengmao Wu
Photonics 2024, 11(10), 912; https://doi.org/10.3390/photonics11100912 - 27 Sep 2024
Viewed by 1627
Abstract
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD [...] Read more.
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD is about 0.28 nm (35.0 GHz), and its relaxation oscillation frequency is about 2.0 GHz at 1.15 times the threshold current. Under current modulation with a power of 20.00 dBm and a frequency of 2.0 GHz, the WRC-FPLD is driven into the gain-switched state. By further introducing multi-wavelength injection light (MWIL) containing four power equalization comb lines with an interval of 0.56 nm, a wideband OFC featuring multiple comb lines and wavelength tenability can be obtained. The experimental results demonstrate that by gradually increasing the injection’s optical power, the number of produced OFC lines initially increases and then decreases. By meticulously adjusting the wavelengths of the MWIL and carefully selecting the matched injection power, the broadband OFC can be tuned across an extensive spectral range. Under optimized operation parameters, an OFC with 147 lines, and a bandwidth of approximately 292 GHz within a 10 dB amplitude, variation is achieved. In this case, the measured single-sideband phase noise at the fundamental frequency is about −115 dBc/Hz @ 10 kHz, indicating that the comb lines possess good stability and strong coherence. Full article
Show Figures

Figure 1

10 pages, 2581 KB  
Article
Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs
by Runmin Li, Haochen Tian, Junkai Shi, Rongyi Ji, Dengfeng Dong and Weihu Zhou
Sensors 2024, 24(11), 3497; https://doi.org/10.3390/s24113497 - 29 May 2024
Viewed by 1278
Abstract
Absolute distance measurements based on optical frequency combs (OFCs) have greatly promoted advances in both science and technology, owing to the high precision, large non-ambiguity range (NAR), and a high update rate. However, cyclic error, which is extremely difficult to eliminate, reduces the [...] Read more.
Absolute distance measurements based on optical frequency combs (OFCs) have greatly promoted advances in both science and technology, owing to the high precision, large non-ambiguity range (NAR), and a high update rate. However, cyclic error, which is extremely difficult to eliminate, reduces the linearity of measurement results. In this study, we quantitatively investigated the impact of cyclic error on absolute distance measurement using OFCs based on two types of interferometry: synthetic wavelength interferometry and single-wavelength interferometry. The numerical calculations indicate that selecting a suitable reference path length can minimize the impact of cyclic error when combining the two types of interferometry. Recommendations for selecting an appropriate synthetic wavelength to address the tradeoff between achieving a large NAR and minimizing the risk of failure when combining the two methods are provided. The results of this study are applicable not only in absolute distance measurements but also in other applications based on OFCs, such as surface profile, vibration analysis, etc. Full article
Show Figures

Figure 1

11 pages, 2518 KB  
Article
Line-Spacing-Multiplied Optical Frequency Comb Generation Using an Electro-Optic Talbot Laser and Cross-Phase Modulation in a Fiber
by Juanjuan Yan, Haiyan Dong and Yu Wang
Photonics 2024, 11(3), 282; https://doi.org/10.3390/photonics11030282 - 21 Mar 2024
Cited by 1 | Viewed by 1870
Abstract
An optical frequency comb (OFC) generator based on an electro-optic Talbot laser and cross-phase modulation (XPM) in a high nonlinear fiber (HNLF) is designed and demonstrated. The Talbot laser is an electro-optic frequency shifting loop that is used to produce repetition rate-multiplied pulses, [...] Read more.
An optical frequency comb (OFC) generator based on an electro-optic Talbot laser and cross-phase modulation (XPM) in a high nonlinear fiber (HNLF) is designed and demonstrated. The Talbot laser is an electro-optic frequency shifting loop that is used to produce repetition rate-multiplied pulses, and these pulses work as a pump signal that induces the XPM process in the HNLF to modulate the phase of a probe signal. At the output of the HNLF, OFCs with a multiplied line spacing can be generated. The effects of the pump power and the HNLF length on the performance of the generated OFCs are theoretically analyzed. In the experiments, the line spacing of the generated OFCs is multiplied to be 10 GHz, 15 GHz, and 20 GHz with a factor of 2, 3, and 4, respectively. The center of the OFCs is tuned in a 4 nm range by adjusting the wavelength of the probe signal. Full article
(This article belongs to the Special Issue The Emerging Science and Applications of Microwave Photonics)
Show Figures

Figure 1

11 pages, 11784 KB  
Article
Generation of a Flat Optical Frequency Comb via a Cascaded Dual-Parallel Mach–Zehnder Modulator and Phase Modulator without Using the Fundamental Tone
by Shiyu Zhang, Zixiong Wang, Xunhe Zuo, Chuang Ma, Yang Jiang and Jinlong Yu
Photonics 2023, 10(12), 1340; https://doi.org/10.3390/photonics10121340 - 4 Dec 2023
Cited by 5 | Viewed by 2169
Abstract
Under the conventional scheme to generate an optical frequency comb (OFC) using an electro-optic modulator (EOM), the frequency interval of the OFC is determined via the frequency of the fundamental tone of the radio frequency (RF) driving signals. In this work, we use [...] Read more.
Under the conventional scheme to generate an optical frequency comb (OFC) using an electro-optic modulator (EOM), the frequency interval of the OFC is determined via the frequency of the fundamental tone of the radio frequency (RF) driving signals. In this work, we use two harmonics without the fundamental tone to drive two EOMs, where the frequency interval of the generated flat OFC is the frequency of the fundamental tone. The orders of the two harmonics are coprime. Specifically, one harmonic drives the first branch of the dual-parallel Mach–Zehnder modulator (DPMZM) only, and the other harmonic drives the phase modulator (PM). The flatness of the OFC is achieved by adjusting the amplitude and phase of the RF driving harmonics as well as the bias of the EOM. Both a simulation and an experiment were carried out to verify the effectiveness of the proposed scheme. When the second harmonic drives the DPMZM and the third harmonic drives the PM, an 11-comb line OFC is generated, where the flatness of the OFC was 0.63 dB and 0.65 dB under the simulation and experiment, respectively. When the third harmonic drives the DPMZM and the second harmonic drives the PM, a 13-comb line OFC is generated, where the flatness of the OFC was 0.62 dB and 0.95 dB under the simulation and experiment, respectively. We also investigate the performance of the generated OFC when one harmonic drives two branches of the DPMZM and the other harmonic drives the PM. The comparison of the OFCs’ performance demonstrates the effectiveness of the proposed scheme. Full article
(This article belongs to the Special Issue Microwave Photonics and Applications)
Show Figures

Figure 1

13 pages, 2612 KB  
Article
Tunable Optical Frequency Comb Generated Using Periodic Windows in a Laser and Its Application for Distance Measurement
by Zhuqiu Chen, Can Fang, Yuxi Ruan, Yanguang Yu, Qinghua Guo, Jun Tong and Jiangtao Xi
Sensors 2023, 23(21), 8872; https://doi.org/10.3390/s23218872 - 31 Oct 2023
Viewed by 2733
Abstract
A novel method for the generation of an optical frequency comb (OFC) is presented. The proposed approach uses a laser diode with optical feedback and operating at a specific nonlinear dynamic state named periodic window. In this case, the laser spectrum exhibits a [...] Read more.
A novel method for the generation of an optical frequency comb (OFC) is presented. The proposed approach uses a laser diode with optical feedback and operating at a specific nonlinear dynamic state named periodic window. In this case, the laser spectrum exhibits a feature with a series of discrete, equally spaced frequency components, and the repetition rate can be flexibly adjusted by varying the system parameters (e.g., external cavity length), which can provide many potential applications. As an application example, a dual-OFC system for distance measurement is presented. The results demonstrate the system’s ability to achieve target distance detection, underscoring its potential for real-world applications in this field. Full article
(This article belongs to the Special Issue Radar Remote Sensing and Applications)
Show Figures

Figure 1

13 pages, 3446 KB  
Article
Optical Frequency Comb Generator Employing Two Cascaded Frequency Modulators and Mach–Zehnder Modulator
by Ujjwal and Rajkishor Kumar
Electronics 2023, 12(13), 2762; https://doi.org/10.3390/electronics12132762 - 21 Jun 2023
Cited by 12 | Viewed by 3287
Abstract
Optical frequency combs (OFCs) are extensively used in spectroscopy, range finding, metrology, and optical communications. In this paper, we propose a novel technique to achieve a flat OFC by serially cascading two frequency modulators (FMs) followed by a single-drive Mach–Zehnder modulator (MZM). The [...] Read more.
Optical frequency combs (OFCs) are extensively used in spectroscopy, range finding, metrology, and optical communications. In this paper, we propose a novel technique to achieve a flat OFC by serially cascading two frequency modulators (FMs) followed by a single-drive Mach–Zehnder modulator (MZM). The modulators are driven by a sinusoidal RF signal of frequencies fm, fm2, and 2 fm GHz, respectively. With our proposed approach (fm), an optical spectrum of 71 subcarriers spaced at 4 GHz is realized within a power fluctuation of ∼2 dB. The proposed method is also tested for fm = 16 GHz, showing that this approach can work in all scenarios with lower power fluctuations. In addition, we also studied the impact of the phase of the RF signal on the power variation of the OFC spectrum. A theoretical investigation of the ultra-flat spectrum generated by cascaded FMs and MZM is conducted, and the results of simulations support the findings. The simulation results demonstrate good performance, allowing for the application of our proposed approach in next-generation optical networks. Full article
(This article belongs to the Special Issue Optical Fiber and Optical Communication)
Show Figures

Figure 1

11 pages, 2193 KB  
Communication
Broadband Microwave Photonic Channelizer with 18 Channels Based on Acousto-Optic Frequency Shifter
by Bo Chen, Qunfeng Dong, Biao Cao, Weile Zhai and Yongsheng Gao
Photonics 2023, 10(2), 107; https://doi.org/10.3390/photonics10020107 - 20 Jan 2023
Cited by 2 | Viewed by 2319
Abstract
A microwave photonic channelizer can achieve instantaneous reception of ultra-wideband signals and effectively avoid electronic bottleneck; therefore, it can be perfectly applied to a wideband radar system and electronic warfare. In channelization schemes based on an optical frequency comb (OFC), the number of [...] Read more.
A microwave photonic channelizer can achieve instantaneous reception of ultra-wideband signals and effectively avoid electronic bottleneck; therefore, it can be perfectly applied to a wideband radar system and electronic warfare. In channelization schemes based on an optical frequency comb (OFC), the number of comb lines usually depends on that of the sub-channels. In order to improve the utilization rate of the comb lines of OFC, we propose a scheme to shift the frequency of OFC by using an acousto-optic frequency shifter (AOFS), which can obtain three times the number of sub-channels of the comb lines of an OFC. In order to simplify the experiment, only a three-line OFC is used in the experiment. A three-line local oscillator (LO) OFC is frequency-shifted up and down by two AOFSs, and nine optical LO signals with different frequencies are obtained, thereby realizing the simultaneous reception of eighteen sub-channels. The proposed scheme enjoys a large number of sub-channels and minimal channel crosstalk. Experimental results demonstrate that a 9-GHz bandwidth RF signal covering 10–19 GHz is divided into 18 sub-channels with a sub-bandwidth of 500 MHz. The image rejection ratio of the sub-channels is about 23 dB, and the spurious-free dynamic range (SFDR) of the receiver can reach 98 dB·Hz2/3. Full article
(This article belongs to the Special Issue Microwave Photonic Techniques)
Show Figures

Figure 1

14 pages, 2284 KB  
Article
Photonic Multiple Microwave Frequency Measurement System with Single-Branch Detection Based on Polarization Interference
by Wei Zhu, Jing Li, Miaoxia Yan, Li Pei, Tigang Ning, Jingjing Zheng and Jianshuai Wang
Electronics 2023, 12(2), 455; https://doi.org/10.3390/electronics12020455 - 15 Jan 2023
Cited by 6 | Viewed by 2624
Abstract
A photonic microwave frequency measurement system with single-branch detection based on polarization interference is proposed. In this scheme, a 15-line non-flat optical frequency comb (OFC) based on sawtooth signal modulation via a Mach–Zehnder modulator is generated. The intercepted microwave signal with multiple-frequency components [...] Read more.
A photonic microwave frequency measurement system with single-branch detection based on polarization interference is proposed. In this scheme, a 15-line non-flat optical frequency comb (OFC) based on sawtooth signal modulation via a Mach–Zehnder modulator is generated. The intercepted microwave signal with multiple-frequency components can be measured by frequency down-conversion with this simple structure. This system can measure the multi-tone microwave signals in real time. The single-branch detection makes the system a simple and compact structure and avoids the unbalanced variation, as in a two-branches scheme. The blind area of the system can be solved by adjusting the comb-line spacing of the OFC. A simulation is carried out and related discussion is given. The result reveals that it can measure multi-tone microwave signals with a resolution of less than 2 MHz over 0.1–12 GHz. Full article
(This article belongs to the Special Issue Optical Fiber Communications: Innovations and Challenges)
Show Figures

Figure 1

Back to TopTop