Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = optical absorption edge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2215 KB  
Article
Effect of Mo Layer Thickness on Bandwidth Tunability and Absorption Properties of Planar Ultra-Wideband Optical Absorbers
by Kao-Peng Min, Yu-Ting Gao, Cheng-Fu Yang, Walter Water and Chi-Ting Ho
Photonics 2026, 13(1), 86; https://doi.org/10.3390/photonics13010086 (registering DOI) - 19 Jan 2026
Abstract
This study utilizes COMSOL Multiphysics (version 6.0) to design a planar ultra-broadband optical absorber with a multilayer configuration. The proposed structure consists of seven stacked layers arranged from bottom to top: W (h1, acting as a reflective substrate and transmission blocker), [...] Read more.
This study utilizes COMSOL Multiphysics (version 6.0) to design a planar ultra-broadband optical absorber with a multilayer configuration. The proposed structure consists of seven stacked layers arranged from bottom to top: W (h1, acting as a reflective substrate and transmission blocker), WSe2 (h2), SiO2 (h3), Ni (h4), SiO2 (h5), Mo (h6), and SiO2 (h7). One key finding of this study is that, when all other layer thicknesses are fixed, variations in the Mo layer thickness systematically induce a redshift in both the short- and long-wavelength cutoff edges. Notably, the long-wavelength cutoff exhibits a larger shift than the short-wavelength edge, resulting in an increased absorption bandwidth where absorptivity remains above 0.900. The second contribution is the demonstration that this planar structure can be readily engineered to achieve ultra-broadband absorption, spanning from the near-ultraviolet and visible region (360 nm) to the mid-infrared (6300 nm). An important characteristic of the proposed design is that the thickness of the h7 SiO2 layer influences the cutoff wavelength at the short-wavelength edge, while the thickness of the h6 Mo layer governs the cutoff position at the long-wavelength edge. This dual modulation capability allows the proposed optical absorber to flexibly tune both the spectral range and the bandwidth in which absorptivity exceeds 0.900, thereby enabling the realization of a wavelength- and bandwidth-tunable optical absorber. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
23 pages, 5097 KB  
Article
A Deep Feature Fusion Underwater Image Enhancement Model Based on Perceptual Vision Swin Transformer
by Shasha Tian, Adisorn Sirikham, Jessada Konpang and Chuyang Wang
J. Imaging 2026, 12(1), 44; https://doi.org/10.3390/jimaging12010044 - 14 Jan 2026
Viewed by 149
Abstract
Underwater optical images are the primary carriers of underwater scene information, playing a crucial role in marine resource exploration, underwater environmental monitoring, and engineering inspection. However, wavelength-dependent absorption and scattering severely deteriorate underwater images, leading to reduced contrast, chromatic distortions, and loss of [...] Read more.
Underwater optical images are the primary carriers of underwater scene information, playing a crucial role in marine resource exploration, underwater environmental monitoring, and engineering inspection. However, wavelength-dependent absorption and scattering severely deteriorate underwater images, leading to reduced contrast, chromatic distortions, and loss of structural details. To address these issues, we propose a U-shaped underwater image enhancement framework that integrates Swin-Transformer blocks with lightweight attention and residual modules. A Dual-Window Multi-Head Self-Attention (DWMSA) in the bottleneck models long-range context while preserving fine local structure. A Global-Aware Attention Map (GAMP) adaptively re-weights channels and spatial locations to focus on severely degraded regions. A Feature-Augmentation Residual Network (FARN) stabilizes deep training and emphasizes texture and color fidelity. Trained with a combination of Charbonnier, perceptual, and edge losses, our method achieves state-of-the-art results in PSNR and SSIM, the lowest LPIPS, and improvements in UIQM and UCIQE on the UFO-120 and EUVP datasets, with average metrics of PSNR 29.5 dB, SSIM 0.94, LPIPS 0.17, UIQM 3.62, and UCIQE 0.59. Qualitative results show reduced color cast, restored contrast, and sharper details. Code, weights, and evaluation scripts will be released to support reproducibility. Full article
(This article belongs to the Special Issue Underwater Imaging (2nd Edition))
Show Figures

Figure 1

22 pages, 6056 KB  
Article
Interface-Engineered Copper–Barium Strontium Titanate Composites with Tunable Optical and Dielectric Properties
by Mohammed Tihtih, M. A. Basyooni-M. Kabatas, Redouane En-nadir and István Kocserha
Nanomaterials 2026, 16(2), 96; https://doi.org/10.3390/nano16020096 - 12 Jan 2026
Viewed by 210
Abstract
We report the synthesis and multifunctional characterization of copper-reinforced Ba0.85Sr0.15TiO3 (BST) ceramic composites with Cu contents ranging from 0 to 40 wt%, prepared by a sol–gel route and densified using spark plasma sintering (SPS). X-ray diffraction and FT-IR [...] Read more.
We report the synthesis and multifunctional characterization of copper-reinforced Ba0.85Sr0.15TiO3 (BST) ceramic composites with Cu contents ranging from 0 to 40 wt%, prepared by a sol–gel route and densified using spark plasma sintering (SPS). X-ray diffraction and FT-IR analyses confirm the coexistence of cubic and tetragonal BST phases, while Cu remains as a chemically separate metallic phase without detectable interfacial reaction products. Microstructural observations reveal abnormal grain growth induced by localized liquid-phase-assisted sintering and progressive Cu agglomeration at higher loadings. Scanning electron microscopy reveals abnormal grain growth, with the average BST grain size increasing from approximately 3.1 µm in pure BST to about 5.2 µm in BST–Cu40% composites. Optical measurements show a continuous reduction in the effective optical bandgap (apparent absorption edge) from 3.10 eV for pure BST to 2.01 eV for BST–Cu40%, attributed to interfacial electronic states, defect-related absorption, and enhanced scattering rather than Cu lattice substitution. Electrical characterization reveals a percolation threshold at approximately 30 wt% Cu, where AC conductivity and dielectric permittivity reach their maximum values. Impedance spectroscopy and equivalent-circuit analysis demonstrate strong Maxwell–Wagner interfacial polarization, yielding a maximum permittivity of ~1.2 × 105 at 1 kHz for BST–Cu30%. At higher Cu contents, conductivity and permittivity decrease due to disrupted Cu connectivity and increased porosity. These findings establish BST–Cu composites as tunable ceramic–metal systems with enhanced dielectric and optical responses, demonstrating potential for specialized high-capacitance decoupling applications where giant permittivity is prioritized over low dielectric loss. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

18 pages, 1464 KB  
Article
Effects of 147 MeV Kr Ions on the Structural, Optical and Luminescent Properties of Gd3Ga5O12
by Zhakyp T. Karipbayev, Gulnara M. Aralbayeva, Kuat K. Kumarbekov, Askhat B. Kakimov, Amangeldy M. Zhunusbekov, Abdirash Akilbekov, Mikhail G. Brik, Marina Konuhova, Sergii Ubizskii, Yevheniia Smortsova, Yana Suchikova, Snežana Djurković, Sergei Piskunov and Anatoli I. Popov
Crystals 2026, 16(1), 40; https://doi.org/10.3390/cryst16010040 - 3 Jan 2026
Viewed by 293
Abstract
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise [...] Read more.
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise redshift of the fundamental edge and the progressive development of a broad sub-band-gap tail between 4.4 and 5.3 eV, indicating the accumulation of F- and F+-type oxygen-vacancy centers and increasing structural disorder. Raman spectroscopy shows that, despite substantial track overlap at fluences up to 1014 ions/cm2, the crystal preserves its phonon frequencies and linewidths, while peak intensities decrease due to a growing disordered volume fraction. Low-temperature (13 K) photoluminescence demonstrates the persistence of a dominant broad band near 2.4 eV and the emergence of an additional irradiation-induced band at ~2.75 eV whose width increases with fluence, reflecting the formation of vacancy-related defect complexes. Excitation spectra transform from band-edge-dominated behavior in the pristine crystal to defect-tail-mediated excitation in heavily irradiated samples. These results provide a consistent spectroscopic picture of ion-track-induced disorder in GGG and identify the defect states governing its luminescence under extreme irradiation conditions. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

14 pages, 2535 KB  
Article
Lanthanide-Induced Local Structural and Optical Modulation in Low-Temperature Ag2Se
by Sathish Panneer Selvam and Sungbo Cho
Crystals 2026, 16(1), 4; https://doi.org/10.3390/cryst16010004 - 22 Dec 2025
Viewed by 304
Abstract
Low-temperature Ag2Se is a narrow-band semiconductor, with its transport and optical properties significantly influenced by the local coordination environment. This study investigates the effects of La and Gd incorporation using DFT+U calculations and Ag-K edge EXAFS analysis. Analysis of electron localization [...] Read more.
Low-temperature Ag2Se is a narrow-band semiconductor, with its transport and optical properties significantly influenced by the local coordination environment. This study investigates the effects of La and Gd incorporation using DFT+U calculations and Ag-K edge EXAFS analysis. Analysis of electron localization function (ELF) and charge density differences reveals increased electron localization at dopant sites. Additionally, k3χ(k) and wavelet transforms demonstrate that the first M-Se shell shifts from approximately 1.346 Å in Ag-Se to around 1.386 Å and 1.291 Å for La-Se and Gd-Se, respectively (phase-uncorrected), thereby confirming dopant-specific lattice distortions while maintaining the orthorhombic framework. The observed changes are associated with an increase in dielectric strength, with ε2 increasing from approximately 30–40 in pristine Ag2Se to around 50–60 for La and 70–80 for Gd at low photon energies, alongside enhanced absorption nearing 1.32–1.34 × 105 cm−1. The characteristic plasmon resonance in the range of 15–20 eV is maintained. Rare-earth substitution effectively adjusts local bonding and low-energy optical response in Ag2Se, with Gd demonstrating the most significant impact among the examined dopants. Full article
(This article belongs to the Special Issue Properties and Synthesis of Luminescent Materials)
Show Figures

Figure 1

14 pages, 2116 KB  
Article
Effect of Mesoporosity on Structural, Textural, and Optical Characteristics of Fe(III) Ion-Exchanged ZSM-5 Zeolites
by Irina A. Zvereva, Azamat Samadov, Sergey A. Kurnosenko, Sergey O. Kirichenko, Marina G. Shelyapina and Vitalii Petranovskii
Molecules 2026, 31(1), 23; https://doi.org/10.3390/molecules31010023 - 22 Dec 2025
Cited by 1 | Viewed by 331
Abstract
This study investigates the influence of mesoporosity, pre-created by alkali etching in ZSM-5 zeolite, on the characteristics of Fe3+ ion-exchange and subsequent changes in its textural and optical properties. It is shown that the formed hierarchical porosity facilitates the penetration of hydrated [...] Read more.
This study investigates the influence of mesoporosity, pre-created by alkali etching in ZSM-5 zeolite, on the characteristics of Fe3+ ion-exchange and subsequent changes in its textural and optical properties. It is shown that the formed hierarchical porosity facilitates the penetration of hydrated iron complexes into the internal channels. This not only increases the degree of exchange, but also leads to the formation of multinuclear FexOy clusters and, possibly, to the partial isomorphic replacement of Al3+ with Fe3+ in the framework. Comprehensive characterization of mesoporous samples (XRD, SEM, N2 adsorption, UV-Vis) confirms the preservation of the microporous crystal structure of MFI on the one hand, and demonstrates a significant change in the distribution of iron-containing species in mesoporous matrices on the other. The introduction of Fe ions significantly reduces the bandgap energy, shifting the absorption edge into the visible range. The results obtained demonstrate that preliminary mesostructuring is an effective approach for creating hierarchically porous Fe zeolites with great potential for photocatalytic applications. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Figure 1

20 pages, 6044 KB  
Article
Photocatalytic Decomposition of Carmoisine and Crystal Violet by Ho-Doped TiO2 Sol-Gel Powders
by Nina Kaneva, Stefani Petrova and Albena Bachvarova-Nedelcheva
Materials 2026, 19(1), 17; https://doi.org/10.3390/ma19010017 - 20 Dec 2025
Viewed by 383
Abstract
This study explores the sol–gel synthesis, structural characterization, and photocatalytic performance of Ho3+-doped TiO2 nanopowders at two dopant levels (0.5 and 2 mol%). Transparent, homogeneous gels were prepared using titanium (IV) butoxide and holmium (III) nitrate pentahydrate in ethanol, followed [...] Read more.
This study explores the sol–gel synthesis, structural characterization, and photocatalytic performance of Ho3+-doped TiO2 nanopowders at two dopant levels (0.5 and 2 mol%). Transparent, homogeneous gels were prepared using titanium (IV) butoxide and holmium (III) nitrate pentahydrate in ethanol, followed by drying and optional annealing at 500 °C. X-ray diffraction confirmed anatase TiO2 as the dominant crystalline phase, with Ho incorporation suppressing crystal growth and yielding smaller crystallite sizes than undoped TiO2. FT-IR and UV-Vis spectroscopy verified complete hydrolysis–condensation during gel formation, while diffuse reflectance spectra revealed a red-shifted absorption edge, indicating reduced band gaps. SEM analysis showed nanoscale particles with agglomeration, which intensified after annealing. Photocatalytic activity was tested under UV irradiation using Crystal Violet (anionic dye) and Carmoisine (cationic dye). Annealed Ho-doped powders exhibited markedly higher degradation rates, with the 2 mol% sample achieving the greatest efficiency, particularly against Crystal Violet. These findings demonstrate that Ho3+ doping enhances TiO2’s UV-driven photocatalytic activity by tailoring its structural and optical properties. Full article
Show Figures

Figure 1

29 pages, 5077 KB  
Article
TiO2-Engineered Lead-Free Borate Glasses: A Dual-Functional Platform for Photonic and Radiation Shielding Technologies
by Gurinder Pal Singh, Joga Singh, Abayomi Yusuf and Kulwinder Kaur
Ceramics 2025, 8(4), 152; https://doi.org/10.3390/ceramics8040152 - 11 Dec 2025
Viewed by 499
Abstract
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3 [...] Read more.
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3-(60-x) B2O3, where 0 ≤ x ≤ 15 mol%, were produced via the melt-quenching technique. The increase in TiO2 content results in a decrease in molar volume and a corresponding increase in density, indicating the formation of a compact, rigid, and mechanically hard glass network. Elastic constant measurements further confirmed this behavior. FTIR analysis confirms the transformation of BO3 to BO4 units, signifying improved network polymerization and structural stability. The prepared glasses exhibit an optical absorption edge in the visible region, demonstrating their strong ultraviolet light blocking capability. Incorporation of TiO2 leads to an increase in refractive index, optical basicity, and polarizability, and a decrease in the optical band gap and metallization number; all of these suggest enhanced electron density and polarizability of the glass matrix. Radiation shielding properties were evaluated using Phy-X/PSD software. The outcomes illustrate that the Mass Attenuation Coefficient (MAC), Effective Atomic Number (Zeff), Linear Attenuation Coefficient (LAC) increase, while Mean Free Path (MFP) and Half Value Layer (HVL) decrease with increasing TiO2 at the expense of B2O3, confirming superior gamma-ray attenuation capability. Additionally, both TiO2-doped and undoped samples show higher fast neutron removal cross sections (FNRCS) compared to several commercial glasses and concrete materials. Overall, the incorporation of TiO2 significantly enhances the optical performance and radiation-shielding efficiency of the environmentally friendly glass system, making these potential candidates for advanced photonic devices and radiation-shielding applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

31 pages, 8797 KB  
Article
Influence of the Nd3+ Dopant Content in Bi3TeBO9 Powders on Their Optical Nonlinearity
by Maciej Chrunik, Alexej Bubnov, Roman Minikayev, Anastasiia Lysak, Damian Włodarczyk, Marek Nowicki, Adrian Chlanda, Marta Michalska-Domańska, Barbara Szczęśniak and Mateusz Gratzke
Materials 2025, 18(24), 5545; https://doi.org/10.3390/ma18245545 - 10 Dec 2025
Viewed by 329
Abstract
Second harmonic generation measurements for neodymium-doped bismuth–tellurium borate (Bi3TeBO9:Nd3+) powders are shown for the first time. Using undoped and low-content Nd3+-doped samples associated with the strongest nonlinear optical response, studies of temperature-dependent second-harmonic generation near [...] Read more.
Second harmonic generation measurements for neodymium-doped bismuth–tellurium borate (Bi3TeBO9:Nd3+) powders are shown for the first time. Using undoped and low-content Nd3+-doped samples associated with the strongest nonlinear optical response, studies of temperature-dependent second-harmonic generation near the absorption edge were conducted. Spectroscopic measurements of the investigated powders revealed characteristic Nd3+ absorption bands and helped to estimate the corresponding energy band gaps for the chosen samples. The influence of low Nd3+-content on the absorption edge shift, as well as on the enhancement of second-harmonic generation and its temperature attenuation, is discussed. Temperature-dependent X-ray diffraction measurements enabled researchers to calculate the thermal expansion coefficients for undoped and Nd3+-doped Bi3TeBO9 and to assess the impact of this phenomenon on its acentricity. Thermogravimetric studies demonstrated the absence of phase transitions for the chosen samples up to their incongruent melting points. Energy Dispersive X-ray Spectroscopy measurements verified the uniformity of Nd3+ distribution in doped Bi3TeBO9 powders. The suitability of polycrystalline Bi3TeBO9:Nd3+ as media for the self-frequency doubling devices for potential optoelectronic and biomedical applications was assessed. The finest fractions of deagglomerated and suspended powders were extracted and demonstrated near-nanostructural morphology of separated particles, as revealed by means of atomic force microscopy. Full article
(This article belongs to the Special Issue Physico-Chemical Modification of Materials for Biomedical Application)
Show Figures

Graphical abstract

15 pages, 1976 KB  
Article
Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids
by Yumeng Zhang, Chao Gu, Hong Li and Dechuan Li
Coatings 2025, 15(12), 1439; https://doi.org/10.3390/coatings15121439 - 7 Dec 2025
Viewed by 549
Abstract
Au–ZnO heterogeneous nanoparticles (NPs) were successfully synthesized, and the intrinsic correlation between their spectral evolution and interfacial growth mechanism was systematically elucidated. With increasing Au content, the SPR absorption peak of Au exhibits a pronounced red shift, while the defect-related emission of ZnO [...] Read more.
Au–ZnO heterogeneous nanoparticles (NPs) were successfully synthesized, and the intrinsic correlation between their spectral evolution and interfacial growth mechanism was systematically elucidated. With increasing Au content, the SPR absorption peak of Au exhibits a pronounced red shift, while the defect-related emission of ZnO is suppressed and the band-edge emission becomes broadened. These spectral variations are closely coupled with the interfacial growth process. Interfacial electron transfer and the formation of a Schottky barrier induce charge redistribution within ZnO and reduce oxygen vacancies, enabling ZnO to preferentially nucleate on the Au surface and subsequently evolve into a pyramidal structure. The resulting morphological transformation further enhances electron depletion and plasmonic coupling, lowering the effective plasmonic energy of Au and deepening the SPR red shift. Quantitative analysis based on Mie theory shows that approximately 12% of the free electrons in Au participate in interfacial transfer, confirming the cooperative role of strong electronic coupling in governing both growth dynamics and optical responses. This study provides deeper insight into the photophysical mechanisms of Au–ZnO heteronanocrystals and offers guidance for designing noble metal–semiconductor composites with tunable optoelectronic properties. Full article
Show Figures

Graphical abstract

20 pages, 3746 KB  
Article
Ultrasonic Dispersion of Pyrolytic Carbon: Synthesis, Characterization, and Photoluminescence Properties of Stable Colloidal Solutions
by Katarzyna Wojtasik, Katarzyna Suchanek, Michał Wojtasik, Piotr Dulian, Krzysztof Matus and Marzena Mitura-Nowak
Appl. Sci. 2025, 15(23), 12655; https://doi.org/10.3390/app152312655 - 28 Nov 2025
Viewed by 311
Abstract
Contemporary science is seeking simple and scalable methods of producing stable colloidal solutions of carbon nanomaterials that have favorable optical properties. Pyrolytic carbon (PyC), a by-product of methane pyrolysis, is a promising sustainable material. This study developed a method of obtaining stable PyC [...] Read more.
Contemporary science is seeking simple and scalable methods of producing stable colloidal solutions of carbon nanomaterials that have favorable optical properties. Pyrolytic carbon (PyC), a by-product of methane pyrolysis, is a promising sustainable material. This study developed a method of obtaining stable PyC colloids using ultrasonic homogenization and investigated the effects of solvent polarity on dispersion, stability, and photoluminescence. Mechanically fragmented PyC was ultrasonically treated in ethanol, acetonitrile, and cyclohexane. Characterization using dynamic light scattering, UV-Vis spectroscopy, photoluminescence, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and electron microscopy revealed that solvent polarity significantly influenced fragmentation and colloid stability. Polar solvents, especially ethanol, promoted better dispersion of aggregates, whereas nonpolar cyclohexane produced smaller, yet unstable aggregates. Raman and FT-IR analyses confirmed graphitic domains and oxygen-containing surface groups, which are critical to colloidal stability. UV-Vis spectra displayed solvent-dependent shifts in absorption edges, while photoluminescence spectra showed blue emission centered at ~490 nm, which is linked to surface states. Electron microscopy verified the presence of spherical nanoparticles with a diameter of ~20 nm and high carbon purity after sedimentation. These results demonstrate that ultrasonic treatment combined with solvent selection provides a straightforward route to photoluminescent PyC colloids with potential applications in sensors, bioimaging, and optoelectronics. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

26 pages, 2334 KB  
Article
Nonlinear Optical Characteristics of Copper Oxide Thin Films Interpreted Through Soliton Solutions of the Convective–Diffusive Cahn–Hilliard Equation
by Nan Xing, Umair Asghar, Khaleel Ahmad and Luminita-Ioana Cotirla
Mathematics 2025, 13(23), 3799; https://doi.org/10.3390/math13233799 - 26 Nov 2025
Viewed by 268
Abstract
This study investigates the convective–diffusive Cahn–Hilliard equation, a nonlinear model which is used in real-world applications to phase separation and material pattern formation. Using the modified Sardar sub-problem technique, which is an extension of the Sardar sub-equation approach, we derive multiple classes of [...] Read more.
This study investigates the convective–diffusive Cahn–Hilliard equation, a nonlinear model which is used in real-world applications to phase separation and material pattern formation. Using the modified Sardar sub-problem technique, which is an extension of the Sardar sub-equation approach, we derive multiple classes of exact soliton solutions, including bright, dark, kink, and periodic forms. The parametric behaviors of these solutions are examined and visualized through analytical plots generated in Mathematica and Maple. Furthermore, UV–Vis spectrophotometry is employed to examine the optical response of copper oxide (CuO) thin films. The films exhibited a sharp absorption edge around 380–410 nm and an optical band gap of approximately 2.3 eV, confirming their semiconducting nature. The experimentally observed periodic transmission characteristics are linked with the theoretical soliton profiles predicted by the model. Overall, the proposed analytical and experimental framework establishes a clear connection between nonlinear wave theory and thin-film optical characterization, providing new insights into soliton transformation phenomena in complex material systems. Full article
Show Figures

Figure 1

14 pages, 2714 KB  
Article
Nitric Acid-Assisted Sol–Gel Synthesis of Defect-Rich TiO2 Nanoparticles: Structural Evolution and Visible-Light Photocatalytic Performance
by Y. J. Acosta-Silva, S. Gallardo-Hernández, H. Aguirre-Becerra, J. F. García-Trejo, Y. Matsumoto and A. Méndez-López
Inorganics 2025, 13(12), 382; https://doi.org/10.3390/inorganics13120382 - 24 Nov 2025
Viewed by 637
Abstract
TiO2 nanoparticles were synthesized by a nitric acid-assisted sol–gel route using three different amounts of nitric acid (NA) (0, 0.05, and 0.10 mL HNO3) to investigate how controlled acid addition influences their structural, optical, and photocatalytic behavior under visible-light irradiation. [...] Read more.
TiO2 nanoparticles were synthesized by a nitric acid-assisted sol–gel route using three different amounts of nitric acid (NA) (0, 0.05, and 0.10 mL HNO3) to investigate how controlled acid addition influences their structural, optical, and photocatalytic behavior under visible-light irradiation. X-ray diffraction and Raman spectroscopy confirmed the formation of phase-pure anatase TiO2, with slightly increased crystallinity and crystallite size upon NA incorporation. UV–Vis absorption and Tauc analysis revealed a systematic blue shift in the absorption edge accompanied by band-gap widening, attributed to electron–hole confinement and defect-state modification. Photoluminescence spectra showed enhanced visible emission with increasing acid content, indicating a higher density of oxygen vacancies and Ti3+ centers. SEM–EDX analysis verified homogeneous morphology, Ti–O stoichiometry, and the absence of extrinsic impurities. Although the TiO2 sample prepared with 0.10 mL of HNO3 (FNA) showed a wider band gap and slightly larger crystallite size, it still delivered the highest photocatalytic performance in methylene blue degradation, reaching about 74.8% removal after 240 min of visible-light exposure. This unexpected behavior can be explained by a defect-related mechanism in which NA promotes the formation of surface oxygen vacancies and Ti3+ sites. Because of these defects, new electronic states appear between the valence and conduction bands, allowing the material to absorb lower-energy light and improving how electrons interact with the dye. Full article
(This article belongs to the Special Issue Novel Photo(electro)catalytic Degradation)
Show Figures

Figure 1

9 pages, 1029 KB  
Proceeding Paper
Synthesis and Characterization of ZnSnO3/PVP Electrospun Composite Nanofibers
by R. Indhumathi and A. Sathiya Priya
Mater. Proc. 2025, 25(1), 5; https://doi.org/10.3390/materproc2025025005 - 21 Nov 2025
Viewed by 369
Abstract
Zinc stannate (ZnSnO3), a lead-free perovskite oxide, possesses a wide band gap along with ferroelectric and piezoelectric characteristics, but its practical use is limited by nanoparticle agglomeration and poor mechanical stability. In this study, ZnSnO3 nanoparticles were synthesized via a [...] Read more.
Zinc stannate (ZnSnO3), a lead-free perovskite oxide, possesses a wide band gap along with ferroelectric and piezoelectric characteristics, but its practical use is limited by nanoparticle agglomeration and poor mechanical stability. In this study, ZnSnO3 nanoparticles were synthesized via a chemical precipitation method and incorporated into electrospun polyvinylpyrrolidone (PVP) nanofibers to overcome these drawbacks. XRD confirmed the formation of orthorhombic perovskite ZnSnO3, while FTIR verified successful embedding into the PVP matrix without chemical degradation. UV–Vis analysis revealed a slight blue shift in the absorption edge, with the optical band gap widening from 3.61 eV (ZnSnO3) to 3.73 eV (ZnSnO3/PVP), accompanied by enhanced visible light absorption. SEM images showed that agglomerated ZnSnO3 nanoparticles were transformed into smooth, bead-free nanofibers with diameters ranging from 0.22 to 1.80 μm. The synergy between ZnSnO3 crystallinity and PVP flexibility imparts structural integrity, tunable optical behavior, and mechanical robustness, making the hybrid nanofibers promising candidates for photocatalysis, flexible optoelectronics, and energy-harvesting applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

26 pages, 10896 KB  
Article
UAV Multisensor Observation of Floating Plastic Debris: Experimental Results from Lake Calore
by Nicola Angelo Famiglietti, Anna Verlanti, Ludovica Di Renzo, Ferdinando Nunziata, Antonino Memmolo, Robert Migliazza, Andrea Buono, Maurizio Migliaccio and Annamaria Vicari
Drones 2025, 9(11), 799; https://doi.org/10.3390/drones9110799 - 17 Nov 2025
Viewed by 1066
Abstract
This study addresses the observation of floating plastic debris in freshwater environments using an Unmanned Aerial Vehicle (UAV) multi-sensor strategy. An experimental campaign is described where an heterogeneous plastic assemblage, namely a plastic target, and a naturally occurring leaf-litter mat are observed by [...] Read more.
This study addresses the observation of floating plastic debris in freshwater environments using an Unmanned Aerial Vehicle (UAV) multi-sensor strategy. An experimental campaign is described where an heterogeneous plastic assemblage, namely a plastic target, and a naturally occurring leaf-litter mat are observed by a UAV platform in the Lake Calore (Avellino, Southern Italy) within the framework of the “multi-layEr approaCh to detect and analyze cOastal aggregation of MAcRo-plastic littEr” (ECOMARE) Italian Ministry of Research (MUR)-funded project. Three UAV platforms, equipped with optical, multispectral, and thermal sensors, are adopted, which overpass the two targets with the objective of analyzing the sensitivity of optical radiation to plastic and the possibility of discriminating the plastic target from the natural one. Georeferenced orthomosaics are generated across the visible, multispectral (Green, Red, Red Edge, Near-Infrared—NIR), and thermal bands. Two novel indices, the Plastic Detection Index (PDI) and the Heterogeneity Plastic Index (HPI), are proposed to discriminate between the detection of plastic litter and natural targets. The experimental results highlight that plastics exhibit heterogeneous spectral and thermal responses, whereas natural debris showed more homogeneous signatures. Green and Red bands outperform NIR for plastic detection under freshwater conditions, while thermal imagery reveals distinct emissivity variations among plastic items. This outcome is mainly explained by the strong NIR absorption of water, the wetting of plastic surfaces, and the lower sensitivity of the Mavic 3′s NIR sensor under high-irradiance conditions. The integration of optical, multispectral, and thermal data demonstrate the robustness of UAV-based approaches for distinguishing anthropogenic litter from natural materials. Overall, the findings underscore the potential of UAV-mounted remote sensing as a cost-effective and scalable tool for the high-resolution monitoring of plastic pollution over inland waters. Full article
(This article belongs to the Special Issue Unmanned Aerial Systems for Geophysical Mapping and Monitoring)
Show Figures

Figure 1

Back to TopTop