Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Morphology and Composition
3.2. Photoluminescence Properties
3.3. Luminescence and Growth Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volokh, M.; Mokari, T. Metal/semiconductor interfaces in nanoscale objects: Synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Adv. 2020, 2, 930–961. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, S.; Li, X.; Zhang, J. Interfacial regulation of aqueous synthesized metal-semiconductor hetero-nanocrystals. Front. Mater. 2022, 9, 1054877. [Google Scholar] [CrossRef]
- Ben-Shahar, Y.; Stone, D.; Banin, U. Rich landscape of colloidal semiconductor-metal hybrid nanostructures: Synthesis, synergetic characteristics, and emerging applications. Chem. Rev. 2023, 123, 3790–3851. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Gascón Nicolás, A.; Edvinsson, T.; Meng, J.; Zheng, K.; Abdellah, M.; Sa, J. Molecular linking selectivity on self-assembled metal-semiconductor nano-hybrid systems. Nanomaterials 2020, 10, 1378. [Google Scholar] [CrossRef]
- Sedky, A.; Afify, N.; Almohammedi, A.; Ibrahim, E.M.M.; Ali, A.M. Structural, optical, photoluminescence and magnetic investigation of doped and co-doped ZnO nanoparticles. Opt. Quantum Electron. 2023, 55, 456. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, N.; Bahajjaj, A.A.A.; Shahid, A.; Ahmad, Q.S.; Jabeen, M.; Khesro, A. Optoelectronic properties of Mg and Cu co-doped ZnO nanostructure. Dig. J. Nanomater. Biostruct. 2024, 19. [Google Scholar] [CrossRef]
- Mohan Kumar, T.; Bandi, S.; Neeraja Rani, G.; Bhupatiraju, S.R.; Bhoomandla, S.; Anoop Reddy, B.S. Structural, optical and electrical properties of La and Cd co-doped ZnO nanostructures with efficient photocatalytic performance. J. Inorg. Organomet. Polym. Mater. 2025, 1–20. [Google Scholar] [CrossRef]
- Aldosari, E.; Abdelrazek, E.M.; Farea, M.O.; Nur, O.; Farea, M.A.; Rajeh, A. Novel PEVA/PMMA-based nanocomposites containing ZnO–Co nanoparticles: Investigation of optical, dielectric and electrical properties for energy storage and organic optoelectronic devices. Opt. Quantum Electron. 2025, 57, 1–21. [Google Scholar] [CrossRef]
- Alqarni, L.S.; Alghamdi, A.M.; Elamin, N.Y.; Rajeh, A. Enhancing the optical, electrical, dielectric properties and antimicrobial activity of chitosan/gelatin incorporated with Co-doped ZnO nanoparticles: Nanocomposites for use in energy storage and food packaging. J. Mol. Struct. 2024, 1297, 137011. [Google Scholar] [CrossRef]
- Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X. Recent progress on metal-enhanced photocatalysis: A review on the mechanism. Research 2021, 2021, 9791324. [Google Scholar] [CrossRef]
- Chen, J.; Hao, D.; Chen, W.; Liu, Y.; Yin, Z.; Hsu, H.Y.; Jia, G. Engineering colloidal metal-semiconductor nanorods hybrid nanostructures for photocatalysis. Chin. J. Chem. 2023, 41, 3050–3062. [Google Scholar] [CrossRef]
- Khanam, S.; Rout, S.K. A photocatalytic hydrolysis and degradation of toxic dyes by using plasmonic metal-semiconductor heterostructures: A review. Chemistry 2022, 4, 454–479. [Google Scholar] [CrossRef]
- Mascaretti, L.; Chen, Y.; Henrotte, O.; Yesilyurt, O.; Shalaev, V.M.; Naldoni, A.; Boltasseva, A. Designing metasurfaces for efficient solar energy conversion. ACS Photonics 2023, 10, 4079–4103. [Google Scholar] [CrossRef]
- Yang, B.; Cang, J.; Li, Z.; Chen, J. Nanocrystals as performance-boosting materials for solar cells. Nanoscale Adv. 2024, 6, 1331–1360. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhu, X.; Jiang, Z. Recent advances of constructing metal/semiconductor catalysts designing for photocatalytic CO2 hydrogenation. Molecules 2023, 28, 5693. [Google Scholar] [CrossRef]
- Chou Chau, Y.F. Nanophotonic materials and devices: Recent advances and emerging applications. Micromachines 2025, 16, 933. [Google Scholar] [CrossRef]
- Abd-Elsamie, A.M.; Abd-Elnabi, S. Optical susceptibility of hybrid semiconductor quantum dot-metallic nano ellipsoid system under the effect of the exciton-plasmon coupling field interaction. Plasmonics 2024, 19, 3309–3321. [Google Scholar] [CrossRef]
- Kong, T.; Liao, A.; Xu, Y.; Qiao, X.; Zhang, H.; Zhang, L.; Zhang, C. Recent advances and mechanism of plasmonic metal-semiconductor photocatalysis. RSC Adv. 2024, 14, 17041–17050. [Google Scholar] [CrossRef] [PubMed]
- Khurgin, J.; Bykov, A.Y.; Zayats, A.V. Hot-electron dynamics in plasmonic nanostructures: Fundamentals, applications and overlooked aspects. Elight 2024, 4, 15. [Google Scholar] [CrossRef]
- Wang, S.J.; Su, D.; Zhang, X.Y.; Zhou, H.L.; Zhang, T. Steered electrical pathways of plasmonic metal-semiconductor heterostructures via crystal-phase-dependent selective deposition. Compos. Commun. 2023, 39, 101558. [Google Scholar] [CrossRef]
- Lee, S.W. Hot electron-driven chemical reactions: A review. Appl. Surf. Sci. Adv. 2023, 16, 100428. [Google Scholar] [CrossRef]
- Ibrahem, M.A.; Verrelli, E.; Adawi, A.M.; Bouillard, J.S.G.; O’Neill, M. Plasmons enhancing sub-bandgap photoconductivity in TiO2 nanoparticles film. ACS Omega 2024, 9, 10169–10176. [Google Scholar] [CrossRef]
- Kanoun, M.B.; Ahmed, F.; Awada, C.; Jonin, C.; Brevet, P.F. Band gap engineering of Au doping and Au–N codoping into anatase TiO2 for enhancing the visible light photocatalytic performance. Int. J. Hydrogen Energy 2024, 51, 907–913. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Sakellis, E.; Tsipas, P.; Gardelis, S.; Psycharis, V.; Kostakis, M.G.; Likodimos, V. Visible-light-responsive Ag (Au)/MoS2–TiO2 inverse opals: Synergistic plasmonic, photonic, and charge transfer effects for photoelectrocatalytic water remediation. Nanomaterials 2025, 15, 1076. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Du, Y.; Xie, B.; Xu, Q.; Li, C. Multifield coupling of local surface plasmon resonance-assisted Au–TiO2 photocatalysis considering bimodal resonance and superposition effect. Phys. Status Solidi B 2023, 260, 2200312. [Google Scholar] [CrossRef]
- Ganesh, K.M.; Bhaskar, S.; Cheerala, V.S.K.; Battampara, P.; Reddy, R.; Neelakantan, S.C.; Ramamurthy, S.S. Review of gold nanoparticles in surface plasmon-coupled emission technology: Effect of shape, hollow nanostructures, nano-assembly, metal-dielectric and heterometallic nanohybrids. Nanomaterials 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Abdulredha, S.T.; Abdulrahman, N.A. Cu–ZnO nanostructures synthesis and characterization. Iraqi J. Sci. 2021, 62, 708–717. [Google Scholar] [CrossRef]
- Khan, M.; Nowsherwan, G.A.; Ali, R.; Ahmed, M.; Anwar, N.; Riaz, S.; Choi, J.R. Investigation of photoluminescence and optoelectronic properties of transition metal-doped ZnO thin films. Molecules 2023, 28, 7963. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of zinc oxide piezoelectric nanogenerators: Piezoelectric properties, composite structures and power output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, J.K.; Kumara, M. Growth of ZnO nanostructures: Cones, rods and hollow-rods by microwave-assisted wet chemical growth and their characterization. Ceram. Int. 2021, 47, 5300–5310. [Google Scholar] [CrossRef]
- Bakry, M.; Ismail, W.; Abdelfatah, M.; El-Shaer, A. Low-cost fabrication methods of ZnO nanorods and their physical and photoelectrochemical properties for optoelectronic applications. Sci. Rep. 2024, 14, 23788. [Google Scholar] [CrossRef]
- Abubakar, S.; Tan, S.T.; Liew, J.Y.C.; Talib, Z.A.; Sivasubramanian, R.; Vaithilingam, C.A.; Paiman, S. Controlled growth of semiconducting ZnO nanorods for piezoelectric energy harvesting-based nanogenerators. Nanomaterials 2023, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.S.; Singh, S.; Batool, M.; Fahmy, H.M.; Seku, K.; Shalan, A.E.; Zafar, M.N. A review on 2D-ZnO nanostructure-based biosensors: From materials to devices. Mater. Adv. 2023, 4, 320–354. [Google Scholar] [CrossRef]
- Gulab, H.; Fatima, N.; Tariq, U.; Gohar, O.; Irshad, M.; Khan, M.Z.; Hanif, M.B. Advancements in zinc oxide nanomaterials: Synthesis, properties, and diverse applications. Nano-Struct. Nano-Objects 2024, 39, 101271. [Google Scholar] [CrossRef]
- Chang, J.S.; Saint, C.P.; Chow, C.W.; Bahnemann, D.W.; Chong, M.N. Recent innovations in engineering zinc oxide (ZnO) nanostructures for water and wastewater treatment: Pushing the boundaries of multifunctional photocatalytic and advanced biotechnological applications. Int. Mater. Rev. 2024, 69, 337–379. [Google Scholar] [CrossRef]
- Maafa, I.M. Potential of zinc oxide nanostructures in biosensor application. Biosensors 2025, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, Q.; Xu, L.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Interface engineering in 1D ZnO-based heterostructures for photoelectrical devices. Adv. Funct. Mater. 2022, 32, 2106887. [Google Scholar] [CrossRef]
- Garratt, E.; Prete, P.; Lovergine, N.; Nikoobakht, B. Observation and impact of a “surface skin effect” on lateral growth of nanocrystals. J. Phys. Chem. C 2017, 121, 14845–14853. [Google Scholar] [CrossRef]
- Mishra, S.M.; Satpati, B. Morphology of ZnO nanorods and Au–ZnO heterostructures on different seed layers and their influence on the optical behavior. J. Lumin. 2022, 246, 118813. [Google Scholar] [CrossRef]
- Stefan, M.; Popa, A.; Toloman, D.; Leostean, C.; Barbu-Tudoran, L.; Falamas, A. Enhanced plasmonic photocatalysis of Au-decorated ZnO nanocomposites. Inorganics 2023, 11, 157. [Google Scholar] [CrossRef]
- Naz, G.; Khursheed, H.; Hussain, A.; Sharif, H.M.A.; Arshad, M.; Butt, F.K.; Awad, M.A. Silver nanogranules-decorated ZnO hybrid nanostructures with enhanced UV photoresponses. Mater. Today Commun. 2024, 40, 110106. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Yan, Y.; Yang, L.; Li, X.; Lu, Z.; Huo, P. Two hybrid Au–ZnO heterostructures with different hierarchical structures: Towards highly efficient photocatalysts. Sci. Rep. 2019, 9, 16863. [Google Scholar] [CrossRef]
- Xu, H.; Wei, Z.; Verpoort, F.; Hu, J.; Zhuiykov, S. Nanoscale Au–ZnO heterostructure developed by atomic layer deposition towards amperometric H2O2 detection. Nanoscale Res. Lett. 2020, 15, 41. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Shirazi, A.A.; Najmoddin, N.; Attaran, N. Optimizing ZnO nanorods synthesis and decoration with Au nanoparticles for enhanced photo-related applications. Mater. Chem. 2024, 3, 1058. [Google Scholar]
- Demille, T.B.; Hughes, R.A.; Preston, A.S.; Adelung, R.; Mishra, Y.K.; Neretina, S. Light-mediated growth of noble metal nanostructures (Au, Ag, Cu, Pt, Pd, Ru, Ir, Rh) from micro- and nanoscale ZnO tetrapodal backbones. Front. Chem. 2018, 6, 411. [Google Scholar] [CrossRef]
- Nobile, C.; Cozzoli, P.D. Synthetic approaches to colloidal nanocrystal heterostructures based on metal and metal-oxide materials. Nanomaterials 2022, 12, 1729. [Google Scholar] [CrossRef]
- He, M.Q.; Ai, Y.; Hu, W.; Guan, L.; Ding, M.; Liang, Q. Recent advances of seed-mediated growth of metal nanoparticles: From growth to applications. Adv. Mater. 2023, 35, 2211915. [Google Scholar] [CrossRef] [PubMed]
- Aziz, J.; Nasir, N.; Elahi, E.; Ali, A.; Mehmood, S.; Kim, H.; Bhatti, A.S. Au-decorated ZnO nanostructures for enhanced visible emission and memory applications. J. Alloys Compd. 2023, 965, 171368. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Ou, L.X.; Mao, L.W.; Wu, X.Y.; Liu, Y.P.; Lu, H.L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, S.; Ganesan, M.K.; Sivakumar, M.; Pandiaraj, S.; Muthuramamoorthy, M.; Basavarajappa, S.; Grace, A.N. Au integrated 2D ZnO heterostructures as robust visible light photocatalysts. Chemosphere 2021, 280, 130594. [Google Scholar] [CrossRef]
- Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. Au–ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663. [Google Scholar] [CrossRef]
- Yoo, Y.; Kim, M.; Kim, B. Epitaxially integrated hierarchical ZnO/Au/SrTiO3 and ZnO/Ag/Al2O3 heterostructures: Three-dimensional plasmo-photonic nanoarchitecturing. Nanomaterials 2021, 11, 3262. [Google Scholar] [CrossRef]
- Tang, S.J.; Lee, C.Y.; Huang, C.C.; Chang, T.R.; Cheng, C.M.; Tsuei, K.D.; Chiang, T.C. Electronic versus lattice match for metal-semiconductor epitaxial growth: Pb on Ge(111). Phys. Rev. Lett. 2011, 107, 066802. [Google Scholar] [CrossRef]
- Fiedler, S.; Lee Cheong Lem, L.O.; Ton-That, C.; Hoffmann, A.; Phillips, M.R. Enhancement of the UV emission from gold/ZnO nanorods exhibiting no green luminescence. Opt. Mater. Express 2020, 10, 1476–1487. [Google Scholar] [CrossRef]
- Abou Zeid, S.; Perez, A.; Bastide, S.; Rossano, S.; Leprince-Wang, Y. Time-dependent growth of ZnO nanowires: Unveiling antibacterial and photocatalytic properties. Langmuir 2025, 41, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, C.; Sygletou, M.; Bricchi, B.R.; Bisio, F.; Li Bassi, A. Tunable optical and plasmonic response of Au nanoparticles embedded in Ta-doped TiO2 transparent conducting films. Phys. Rev. Mater. 2022, 6, 025201. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Khrennikov, D.E.; Gerasimov, V.S.; Ershov, A.E.; Polyutov, S.P.; Karpov, S.V.; Ågren, H. Nature of the anomalous size dependence of resonance red shifts in ultrafine plasmonic nanoparticles. J. Phys. Chem. C 2022, 126, 16804–16814. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Tuz, V.R. Electromagnetic scattering by arbitrary-shaped magnetic particles and multipole decomposition: Analytical and numerical approaches. Phys. Rev. B 2023, 107, 155425. [Google Scholar] [CrossRef]
- Zheng, K.O.; Rosli, N.; Rashid, M.M.M.; Halim, M.M. Influence of copper contact thickness on Cu/ZnO nanorods-enhanced Schottky diode. Phys. B Condens. Matter 2023, 648, 414425. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Cai, S.; Zhang, W.; Zhang, X.; Wu, T.; Yang, R. Plasmon-enhanced photocatalytic properties of Au/ZnO nanowires. Appl. Surf. Sci. 2022, 583, 152539. [Google Scholar] [CrossRef]
- Wang, V.; Ma, D.; Jia, W.; Ji, W. Structural and Electronic Properties of Hexagonal ZnO: A Hybrid Functional Study. Solid State Commun. 2012, 152, 2045–2048. [Google Scholar] [CrossRef]
- Güler, A.C.; Antoš, J.; Masař, M.; Urbánek, M.; Machovský, M.; Kuřitka, I. Boosting the photoelectrochemical performance of Au/ZnO nanorods by co-occurring gradient doping and surface plasmon modification. Int. J. Mol. Sci. 2022, 24, 443. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 2008; pp. 86–88. [Google Scholar]




| Au Amount (mL) | λSPR (nm) | Δλ (nm) | FWHM (nm) | Peak Intensity |
|---|---|---|---|---|
| 0.25 | 526 | – | 109 | 0.34 |
| 0.50 | 534 | +8 | 91 | 0.62 |
| 1.00 | 551 | +25 | 88 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gu, C.; Li, H.; Li, D. Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids. Coatings 2025, 15, 1439. https://doi.org/10.3390/coatings15121439
Zhang Y, Gu C, Li H, Li D. Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids. Coatings. 2025; 15(12):1439. https://doi.org/10.3390/coatings15121439
Chicago/Turabian StyleZhang, Yumeng, Chao Gu, Hong Li, and Dechuan Li. 2025. "Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids" Coatings 15, no. 12: 1439. https://doi.org/10.3390/coatings15121439
APA StyleZhang, Y., Gu, C., Li, H., & Li, D. (2025). Electron-Transfer-Induce Optical Modulation and Growth Mechanism of Au–ZnO Heterogeneous Nanopyramids. Coatings, 15(12), 1439. https://doi.org/10.3390/coatings15121439
