Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = onshore wind energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 9817 KiB  
Article
Simulation Analysis of Onshore and Offshore Wind Farms’ Generation Potential for Polish Climatic Conditions
by Martyna Kubiak, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4087; https://doi.org/10.3390/en18154087 - 1 Aug 2025
Viewed by 152
Abstract
Currently, Poland is witnessing a dynamic development of the offshore wind energy sector, which will be a key component of the national energy mix. While many international studies have addressed wind energy deployment, there is a lack of research that compares the energy [...] Read more.
Currently, Poland is witnessing a dynamic development of the offshore wind energy sector, which will be a key component of the national energy mix. While many international studies have addressed wind energy deployment, there is a lack of research that compares the energy and economic performance of both onshore and offshore wind farms under Polish climatic and spatial conditions, especially in relation to turbine spacing optimization. This study addresses that gap by performing a computer-based simulation analysis of three onshore spacing variants (3D, 4D, 5D) and four offshore variants (5D, 6D, 7D, 9D), located in central Poland (Stęszew, Okonek, Gostyń) and the Baltic Sea, respectively. The efficiency of wind farms was assessed in both energy and economic terms, using WAsP Bundle software and standard profitability evaluation metrics (NPV, MNPV, IRR). The results show that the highest NPV and MNPV values among onshore configurations were obtained for the 3D spacing variant, where the energy yield leads to nearly double the annual revenue compared to the 5D variant. IRR values indicate project profitability, averaging 14.5% for onshore and 11.9% for offshore wind farms. Offshore turbines demonstrated higher capacity factors (36–53%) compared to onshore (28–39%), with 4–7 times higher annual energy output. The study provides new insight into wind farm layout optimization under Polish conditions and supports spatial planning and investment decision making in line with national energy policy goals. Full article
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 737
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

17 pages, 228 KiB  
Article
Why Are Cultural Rights over Sea Country Less Recognised than Terrestrial Ones?
by Rhetti Hoskins, Gareth Ogilvie, Matthew Storey and Alexandra Hill
Heritage 2025, 8(7), 283; https://doi.org/10.3390/heritage8070283 - 16 Jul 2025
Viewed by 458
Abstract
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed [...] Read more.
This article identifies the nature of Traditional Owners’ interests in Sea Country and addresses issues associated with all offshore energy projects—gas and wind. Exploring the impacts of offshore development on First Nations’ cultural heritage, the article proposes integration of free, prior and informed consent (FPIC) and the United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP), into the regulatory and legislative offshore environment. In the Australian context, this particularly regards administrative and regulatory reforms to overcome uncertainty arising from recent decisions in the Federal Court. The international focus on new energy has fast-tracked many processes that sideline First Nations’ rights, hitherto understood within the onshore minerals extraction regimes. The reforms proposed in this article recognise an international commitment to enact the principles contained in the UNDRIP and other relevant international law. Full article
27 pages, 6102 KiB  
Article
The Impact of Wind Speed on Electricity Prices in the Polish Day-Ahead Market Since 2016, and Its Applicability to Machine-Learning-Powered Price Prediction
by Rafał Sowiński and Aleksandra Komorowska
Energies 2025, 18(14), 3749; https://doi.org/10.3390/en18143749 - 15 Jul 2025
Viewed by 271
Abstract
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the [...] Read more.
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the aftermath of the restrictive legal changes introduced in 2016, which halted numerous onshore wind investments. Studying this relationship remains necessary to understand the broader market effects of wind speed on electricity prices, especially considering evolving policies and growing interest in renewable energy integration. In this context, this paper analyses wind speed, wind generation, and other relevant datasets in relation to electricity prices using multiple statistical methods, including correlation analysis, regression modelling, and artificial neural networks. The results show that wind speed is a significant factor in setting electricity prices (with a correlation coefficient reaching up to −0.7). The findings indicate that not only is it important to include wind speed as an electricity price indicator, but it is also worth investing in wind generation, since higher wind output can be translated into lower electricity prices. This study contributes to a better understanding of how natural variability in renewable resources translates into electricity market outcomes under policy-constrained conditions. Its innovative aspect lies in combining statistical and machine learning techniques to quantify the influence of wind speed on electricity prices, using updated data from a period of regulatory stagnation. Full article
Show Figures

Figure 1

24 pages, 10449 KiB  
Article
Quantifying the System Benefits of Ocean Energy in the Context of Variability: A UK Example
by Donald R. Noble, Shona Pennock, Daniel Coles, Timur Delahaye and Henry Jeffrey
Energies 2025, 18(14), 3717; https://doi.org/10.3390/en18143717 - 14 Jul 2025
Viewed by 197
Abstract
Recent studies have shown benefits of using tidal stream and wave energy in the electricity generation mix to improve supply–demand balancing on annual/subannual timeframes. This paper investigates this further by considering the variability of solar photovoltaic, onshore and offshore wind, wave, and tidal [...] Read more.
Recent studies have shown benefits of using tidal stream and wave energy in the electricity generation mix to improve supply–demand balancing on annual/subannual timeframes. This paper investigates this further by considering the variability of solar photovoltaic, onshore and offshore wind, wave, and tidal stream over multiple years. It also considers their ability to match with electricity demand when combined. Variability of demand and generation can have a significant impact on results. Over the sample of five years considered (2015–2019), demand varied by around 3%, and the availability of each renewable technology differed by up to 9%. This highlights the importance of considering multiple years of input data when assessing power system impacts, instead of relying on an ‘average’ year. It is also key that weather related correlations between renewable resources and with demand can be maintained in the data. Results from an economic dispatch model of Great Britain’s power system in 2030 are even more sensitive to the input data year, with costs and carbon emissions varying by up to 21% and 45%, respectively. Using wave or tidal stream as part of the future energy mix was seen to have a positive impact in all cases considered; 1 GW of wave and tidal (0.57% of total capacity) reduces annual dispatch cost by 0.2–1.3% and annual carbon emissions by 2.3–3.5%. These results lead to recommended best practises for modelling high renewable power systems, and will be of interest to modellers and policy makers. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

31 pages, 5327 KiB  
Article
Wind Estimation Methods for Nearshore Wind Resource Assessment Using High-Resolution WRF and Coastal Onshore Measurements
by Taro Maruo and Teruo Ohsawa
Wind 2025, 5(3), 17; https://doi.org/10.3390/wind5030017 - 7 Jul 2025
Viewed by 334
Abstract
Accurate wind resource assessment is essential for offshore wind energy development, particularly in nearshore sites where atmospheric stability and internal boundary layers significantly influence the horizontal wind distribution. In this study, we investigated wind estimation methods using a high-resolution, 100 m grid Weather [...] Read more.
Accurate wind resource assessment is essential for offshore wind energy development, particularly in nearshore sites where atmospheric stability and internal boundary layers significantly influence the horizontal wind distribution. In this study, we investigated wind estimation methods using a high-resolution, 100 m grid Weather Research and Forecasting (WRF) model and coastal onshore wind measurement data. Five estimation methods were evaluated, including a control WRF simulation without on-site measurement data (CTRL), observation nudging (NDG), two offline methods—temporal correction (TC) and the directional extrapolation method (DE)—and direct application of onshore measurement data (DA). Wind speed and direction data from four nearshore sites in Japan were used for validation. The results indicated that TC provided the most accurate wind speed estimate results with minimal bias and relatively high reproducibility of temporal variations. NDG exhibited a smaller standard deviation of bias and a slightly higher correlation with the measured time series than CTRL. DE could not reproduce temporal variations in the horizontal wind speed differences between points. These findings suggest that TC is the most effective method for assessing nearshore wind resources and is thus recommended for practical use. Full article
Show Figures

Figure 1

27 pages, 5923 KiB  
Article
Assessment of Climate Change Impacts on Renewable Energy Resources in Western North America
by Hsiang-He Lee, Robert S. Arthur, Jean-Christophe Golaz, Thomas A. Edmunds, Jessica L. Wert, Matthew V. Signorotti and Jean-Paul Watson
Energies 2025, 18(13), 3467; https://doi.org/10.3390/en18133467 - 1 Jul 2025
Viewed by 398
Abstract
We examine a 25 km resolution climate model dataset to evaluate how regional climate change impacts solar and wind energy under a high-emission scenario. Our study considers the Western Electricity Coordinating Council (WECC) region, which covers the western United States and southwestern Canada, [...] Read more.
We examine a 25 km resolution climate model dataset to evaluate how regional climate change impacts solar and wind energy under a high-emission scenario. Our study considers the Western Electricity Coordinating Council (WECC) region, which covers the western United States and southwestern Canada, focusing specifically on locations with existing solar and wind infrastructure. First, we conduct a historical model comparison of solar and wind energy capacity factors to highlight model uncertainties across the study area. Using future climate projections, we then assess the seasonal patterns of solar and wind capacity factors for three timeframes: historical, mid-century, and end of century. Additionally, we estimate the frequency of solar and wind resource droughts during these periods for the entire WECC and its five operational subregions, finding that certain subregions are more susceptible to energy droughts due to limited renewable resources. Finally, we present day-ahead capacity factor forecasts to support energy storage planning and provide estimates of offshore wind energy capacity within the WECC. Our results indicate that offshore wind capacity factors are nearly twice as high as onshore values, with less seasonal variation, which suggests that offshore wind could offer a more consistent renewable energy supply in the future. Full article
(This article belongs to the Special Issue The Application of Weather and Climate Research in the Energy Sector)
Show Figures

Figure 1

16 pages, 24903 KiB  
Technical Note
A Shipborne Doppler Lidar Investigation of the Winter Marine Atmospheric Boundary Layer over Southeastern China’s Coastal Waters
by Xiaoquan Song, Wenchao Lian, Fuyou Wang, Ping Jiang and Jie Wang
Remote Sens. 2025, 17(13), 2161; https://doi.org/10.3390/rs17132161 - 24 Jun 2025
Viewed by 379
Abstract
The Marine Atmospheric Boundary Layer (MABL), as a critical component of Earth’s climate system, governs the exchange of matter and energy between the ocean surface and the lower atmosphere. This study presents shipborne Doppler lidar observations conducted during 12 January to 3 February [...] Read more.
The Marine Atmospheric Boundary Layer (MABL), as a critical component of Earth’s climate system, governs the exchange of matter and energy between the ocean surface and the lower atmosphere. This study presents shipborne Doppler lidar observations conducted during 12 January to 3 February 2024, along the southeastern Chinese coast. Employing a Coherent Doppler Wind Lidar (CDWL) system onboard the R/V “Yuezhanyu” research vessel, we investigated the spatiotemporal variability of MABL characteristics through integration with ERA5 reanalysis data. The key findings reveal a significant positive correlation between MABL height and surface sensible heat flux in winter, underscoring the dominant role of sensible heat flux in boundary layer development. Through the Empirical Orthogonal Function (EOF) analysis of the ERA5 regional boundary layer height, sensible heat flux, and sea level pressure, we demonstrate MABL height over the coastal seas typically exceeds the corresponding terrestrial atmospheric boundary layer height and exhibits weak diurnal variation. The CDWL observations highlight complex wind field dynamics influenced by synoptic conditions and maritime zones. Compared to onshore regions, the MABL over offshore areas further away from land has lower wind shear changes and a more uniform wind field. Notably, the terrain of Taiwan, China, induces significant low-level jet formations within the MABL. Low-level jets and low boundary layer height promote the pollution episode observed by CDWL. This research provides new insights into MABL dynamics over East Asian marginal seas, with implications for improving boundary layer parameterization in regional climate models and advancing our understanding of coastal meteorological processes. Full article
Show Figures

Graphical abstract

22 pages, 3562 KiB  
Article
Resilience Under Heatwaves: Croatia’s Power System During the July 2024 Heatwave and the Role of Variable Renewable Energy by 2030
by Paolo Blecich, Igor Bonefačić, Tomislav Senčić and Igor Wolf
Appl. Sci. 2025, 15(12), 6440; https://doi.org/10.3390/app15126440 - 7 Jun 2025
Viewed by 1728
Abstract
This study analyzes the record electricity consumption in Croatia during the July 2024 heatwave and evaluates how the increased deployment of onshore wind and solar photovoltaics (PV) could mitigate a similar event in the future. Electricity demand and generation patterns under current (2024) [...] Read more.
This study analyzes the record electricity consumption in Croatia during the July 2024 heatwave and evaluates how the increased deployment of onshore wind and solar photovoltaics (PV) could mitigate a similar event in the future. Electricity demand and generation patterns under current (2024) and projected (2030) scenarios have been simulated using a sub-hourly power system model. The findings show that during the July 2024 heatwave, Croatia imported 35% of the electricity, with prices exceeding 400 €/MWh during peak hours. By 2030, the expanded wind and solar PV sectors (1.5 GW each) will increase the renewable share from 38.8% in July 2024 to 54.7% in July 2030. On the annual level, renewable energy generation increases from 53.8% in 2024 up to 66.9% in 2030. As result, the carbon intensity of the power sector will reduce from 223 gCO2eq/kWhel in 2024 to 197 gCO2eq/kWhel in 2030. The share of fossil fuel generation will increase slightly, from 19.7% in 2024 to 22% in 2030, but more significantly in the summer to meet the heatwave-induced electricity demand. Besides that, short-term energy storage of 2 GWh (400 MW discharge over 5 h) could effectively manage evening peak demands after solar PV ceases production. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

43 pages, 15235 KiB  
Review
The Present and Future of Production of Green Hydrogen, Green Ammonia, and Green E-Fuels for the Decarbonization of the Planet from the Magallanes Region, Chile
by Carlos Cacciuttolo, Ariana Huertas, Bryan Montoya and Deyvis Cano
Appl. Sci. 2025, 15(11), 6228; https://doi.org/10.3390/app15116228 - 1 Jun 2025
Viewed by 1336
Abstract
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these [...] Read more.
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these energy vectors in the context of global decarbonization, highlighting the key role of the Magallanes region in the energy transition. Green hydrogen production, through wind-powered electrolysis, takes advantage of the region’s constant, high-speed winds, enabling competitive, low-emission generation. In turn, green ammonia, derived from GH2, emerges as a sustainable alternative for the agricultural industry and maritime transport, while synthetic fuels (e-fuels) offer a solution for sectors that are difficult to electrify, such as aviation. The sustainability approach addresses not only emissions reduction but also the responsible use of water resources, the protection of biodiversity, and integration with local communities. The article presents the following structure: (i) introduction, (ii) wind resource potential, (iii) water resource potential, (iv) different forms of hydrogen and its derivatives production (green hydrogen, green ammonia, and synthetic fuels), (v) pilot-scale demonstration plant for Haru Oni GH2 production, (vi) future industrial-scale GH2 production projects, (vii) discussion, and (viii) conclusions. In addition, the article discusses public policies, economic incentives, and international collaborations that promote these projects, positioning Magallanes as a clean energy export hub. Finally, the article concludes that the region can lead the production of green fuels, contributing to global energy security and the fulfillment of the Sustainable Development Goals (SDGs). However, advances in infrastructure, regulation, and social acceptance are required to guarantee a balanced development between technological innovation and environmental conservation. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

29 pages, 2440 KiB  
Article
The Cost-Effectiveness of Renewable Energy Sources in the European Union’s Ecological Economic Framework
by Rafał Wyszomierski, Piotr Bórawski, Aneta Bełdycka-Bórawska, Agnieszka Brelik, Marcin Wysokiński and Magdalena Wiluk
Sustainability 2025, 17(10), 4715; https://doi.org/10.3390/su17104715 - 20 May 2025
Viewed by 1526
Abstract
Evaluating the competitiveness of electricity is the most important issue. The main aim of this study was to determine the cost-effectiveness of renewable energy production in the European Union (EU) using the levelized cost competitiveness of renewable energy sources. The weighted average cost [...] Read more.
Evaluating the competitiveness of electricity is the most important issue. The main aim of this study was to determine the cost-effectiveness of renewable energy production in the European Union (EU) using the levelized cost competitiveness of renewable energy sources. The weighted average cost of capital (WACC) for onshore wind was calculated for European (EU) countries. The levelized cost of electricity (LCOE) approach was used to evaluate the energy costs of renewable energy sources. Energy production costs were compared across different technologies. The capital expenditures associated with solar PV are expected to decrease from USD 810/kW in 2021 to USD 360/kW in 2050. The power factor will remain stable at 14% during the analyzed period. Fuel, CO2, and operation and maintenance (O&M) costs will be maintained at USD 10/MWh at all three time points of the analysis (2021, 2030, and 2050), whereas the LCOE will decrease from USD 50/MWh in 2021 to USD 25/MWh in 2050. The capital expenditures associated with onshore wind energy will decrease from USD 1590/kW in 2021 to USD 1410/kW in 2050. The power factor will increase from 29% to 30%, and fuel, CO2, and O&M costs will reach USD 15/MWh in all three years. The LCOE will decrease from USD 55/MWh in 2021 to USD 45/MWh in 2050. In offshore wind projects, capital expenditures are expected to decrease considerably from USD 3040/kW in 2021 to USD 1320/kW in 2050. Full article
Show Figures

Figure 1

40 pages, 8382 KiB  
Article
A Techno-Economic Analysis of Power Generation in Wind Power Plants Through Deep Learning: A Case Study of Türkiye
by Ziya Demirkol, Faruk Dayi, Aylin Erdoğdu, Ahmet Yanik and Ayhan Benek
Energies 2025, 18(10), 2632; https://doi.org/10.3390/en18102632 - 20 May 2025
Viewed by 590
Abstract
In recent years, the utilization of renewable energy sources has significantly increased due to their environmentally friendly nature and sustainability. Among these sources, wind energy plays a critical role, and accurately forecasting wind power with minimal error is essential for optimizing the efficiency [...] Read more.
In recent years, the utilization of renewable energy sources has significantly increased due to their environmentally friendly nature and sustainability. Among these sources, wind energy plays a critical role, and accurately forecasting wind power with minimal error is essential for optimizing the efficiency and profitability of wind power plants. This study analyzes hourly wind speed data from 23 meteorological stations located in Türkiye’s Western Black Sea Region for the years 2020–2024, using the Weibull distribution to estimate annual energy production. Additionally, the same data were forecasted using the Long Short-Term Memory (LSTM) model. The predicted data were also assessed through Weibull distribution analysis to evaluate the energy potential of each station. A comparative analysis was then conducted between the Weibull distribution results of the measured and forecast datasets. Based on the annual energy production estimates derived from both datasets, the revenues, costs, and profits of 10 MW wind farms at each location were examined. The findings indicate that the highest revenues and unit electricity profits were observed at the Zonguldak South, Sinop İnceburun, and Bartın South stations. According to the LSTM-based forecasts for 2025, investment in wind energy projects is considered feasible at the Sinop İnceburun, Bartın South, Zonguldak South, İnebolu, Cide North, Gebze Köşkburnu, and Amasra stations. Full article
Show Figures

Figure 1

34 pages, 10897 KiB  
Review
Advances, Progress, and Future Directions of Renewable Wind Energy in Brazil (2000–2025–2050)
by Carlos Cacciuttolo, Martin Navarrete and Deyvis Cano
Appl. Sci. 2025, 15(10), 5646; https://doi.org/10.3390/app15105646 - 19 May 2025
Viewed by 1381
Abstract
Brazil has emerged as one of the global leaders in adopting renewable energy, standing out in the implementation of onshore wind energy and, more recently, in the development of future offshore wind energy projects. Onshore wind energy has experienced exponential growth in the [...] Read more.
Brazil has emerged as one of the global leaders in adopting renewable energy, standing out in the implementation of onshore wind energy and, more recently, in the development of future offshore wind energy projects. Onshore wind energy has experienced exponential growth in the last decade, positioning Brazil as one of the countries with the largest installed capacity in the world by 2023, with 30 GW. Wind farms are mainly concentrated in the northeast region, where winds are constant and powerful, enabling efficient and cost-competitive generation. Although in its early stages, offshore wind energy presents significant potential of 1228 GW due to Brazil’s extensive coastline, which exceeds 7000 km. Offshore wind projects promise greater generating capacity and stability, as offshore winds are more constant than onshore winds. However, their development faces challenges such as high initial costs, environmental impacts on marine ecosystems, and the need for specialized infrastructure. From a sustainability perspective, this article discusses that both types of wind energy are key to Brazil’s energy transition. They reduce dependence on fossil fuels, generate green jobs, and foster technological innovation. However, it is crucial to implement policies that foster synergy with green hydrogen production and minimize socio-environmental impacts, such as impacts on local communities and biodiversity. Finally, the article concludes that by 2050, Brazil is expected to consolidate its leadership in renewable energy by integrating advanced technologies, such as larger, more efficient turbines, energy storage systems, and green hydrogen production. The combination of onshore and offshore wind energy and other renewable sources could position the country as a global model for a clean, sustainable, and resilient energy mix. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

16 pages, 714 KiB  
Article
Entropy-Based Uncertainty in Onshore and Offshore Wind Power: Implications for Economic Reliability
by Fernando M. Camilo, Paulo J. Santos and Armando J. Pires
Energies 2025, 18(10), 2445; https://doi.org/10.3390/en18102445 - 10 May 2025
Viewed by 406
Abstract
The increasing penetration of wind power—driven by the expansion of offshore projects and the repowering of existing onshore installations—poses novel challenges for power system operators. While wind energy is currently integrated without curtailment and considered fully dispatchable, its inherent variability introduces growing concerns [...] Read more.
The increasing penetration of wind power—driven by the expansion of offshore projects and the repowering of existing onshore installations—poses novel challenges for power system operators. While wind energy is currently integrated without curtailment and considered fully dispatchable, its inherent variability introduces growing concerns due to its rising share in installed capacity relative to conventional sources. In Portugal, wind energy already accounts for approximately 30% of the total installed capacity, with projections reaching 38% by 2030, making it the country’s second largest energy source. In the context of the 2050 carbon neutrality targets, quantifying and managing wind power uncertainty has become increasingly important. This study proposes an integrated methodology to analyze and compare the uncertainty of onshore and offshore wind generation using real-world high-resolution data (15 min intervals over a three-year period) from three onshore and one offshore wind turbine. The framework combines statistical characterization, probabilistic modeling with zero-inflated distributions, entropy-based uncertainty quantification (using Shannon, Rényi, Tsallis, and permutation entropy), and an uncertainty-adjusted Levelized Cost of Energy (LCOE). The results show that although offshore wind energy involves higher initial investment, its lower temporal variability and entropy levels contribute to superior economic reliability. These findings highlight the relevance of incorporating uncertainty into economic assessments, particularly in electricity markets where producers are exposed to penalties for deviations from scheduled generation. The proposed approach supports more informed planning, investment, and market strategies in the transition to a renewable-based energy system. Full article
Show Figures

Figure 1

36 pages, 6390 KiB  
Article
Control Strategies for Multi-Terminal DC Offshore–Onshore Grids Under Disturbance and Steady State Using Flexible Universal Branch Model
by Baseem Nasir Al_Sinayyid and Nihat Öztürk
Energies 2025, 18(7), 1711; https://doi.org/10.3390/en18071711 - 29 Mar 2025
Cited by 1 | Viewed by 637
Abstract
As the transition to clean energy accelerates, wind energy plays a crucial role in power generation, particularly in remote onshore and offshore locations. The integration of hybrid AC/DC networks with multi-terminal high-voltage direct current (MTHVDC) systems enhances power transfer capability and reliability. However, [...] Read more.
As the transition to clean energy accelerates, wind energy plays a crucial role in power generation, particularly in remote onshore and offshore locations. The integration of hybrid AC/DC networks with multi-terminal high-voltage direct current (MTHVDC) systems enhances power transfer capability and reliability. However, maintaining stable operation under both normal and disturbed conditions remains challenging. This paper applies the Flexible Universal Branch Model (FUBM) to hybrid AC/DC networks incorporating MTHVDC, providing a unified framework for power flow analysis. Unlike conventional methods that separately analyze AC and DC systems, the FUBM enables simultaneous modeling of both, improving computational efficiency and accuracy. Additionally, the paper introduces advanced control strategies to regulate active power transfer from offshore wind farms to onshore grids while maintaining voltage stability. The proposed approach is validated under steady-state and disturbance scenarios, including converter outages, within the CIGRE B4 system, which is a complex multi-terminal network interconnected with numerous converters. The results demonstrate the effectiveness of the FUBM in ensuring stable operation, offering new insights into unified power flow modeling. This study lays the groundwork for future advancements in AC/DC power systems with MTHVDC integration. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop