Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = one-pot multicomponent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3279 KiB  
Article
Facile One-Pot Fischer–Suzuki–Knoevenagel Microwave-Assisted Synthesis of Fluorescent 5-Aryl-2-Styryl-3H-Indoles
by Martynas Rojus Bartkus, Neringa Kleizienė, Aurimas Bieliauskas and Algirdas Šačkus
Molecules 2025, 30(12), 2503; https://doi.org/10.3390/molecules30122503 - 7 Jun 2025
Viewed by 936
Abstract
In this study, novel fluorescent 5-aryl-2-styryl-3H-indole derivatives were efficiently synthesized from 4-bromophenylhydrazine hydrochloride using the microwave-accelerated one-pot technique, which includes Fischer synthesis, Suzuki cross-coupling, and Knoevenagel condensation. The structural assignments of the synthesized compounds were based on 1H, 13C, [...] Read more.
In this study, novel fluorescent 5-aryl-2-styryl-3H-indole derivatives were efficiently synthesized from 4-bromophenylhydrazine hydrochloride using the microwave-accelerated one-pot technique, which includes Fischer synthesis, Suzuki cross-coupling, and Knoevenagel condensation. The structural assignments of the synthesized compounds were based on 1H, 13C, 15N, and 19F NMR; IR spectroscopy; and HRMS spectral data. The optical properties of the newly obtained styryl-indole dyes were studied using UV-vis and fluorescence spectroscopy, which clearly demonstrated that the derivatives substituted with electron-donating or -withdrawing groups exhibited varying emission shifts and quantum yields ranging from negligible to high. Full article
(This article belongs to the Special Issue Novel Heterocyclic Compounds: Synthesis and Applications)
Show Figures

Graphical abstract

24 pages, 3364 KiB  
Article
One-Pot Approach Towards Peptoids Synthesis Using 1,4-Dithiane-2,5-Diol via Multicomponent Approach and DFT-Based Computational Analysis
by Musrat Shaheen and Akbar Ali
Molecules 2025, 30(11), 2340; https://doi.org/10.3390/molecules30112340 - 27 May 2025
Viewed by 1317
Abstract
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, [...] Read more.
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, improved biostability, and superior bioavailability. In this current study, we focused on the Ugi-4CR-based one-pot synthesis of peptoids using 1,4-dithiane-2,5-diol as the carbonyl component together with amine, carboxylic acid, and isocyanides. Four new peptoids—5a, 5b, 5c, and 5d—were designed and efficiently prepared in good chemical yields and were subjected to DFT investigations for their electronic behavior. These compounds have free OH, SH, and terminal triple bonds for further chemistry. In a computational analysis, the spectral data of compounds 5a5d were juxtaposed with calculated spectral values derived from the B3LYP/6-311G(d,p) level. The electronic excitation and orbital contributions of 5a5d were predicted using TD-DFT calculations. A natural bond order (NBO) analysis was utilized to investigate the electronic transition of newly synthesized peptoids, focusing on their charge distribution patterns. Furthermore, MEP and NPA analyses were conducted to predict charge distribution in these compounds. The reactivity and stability of the targeted peptoids were evaluated by global reactivity descriptors, which were determined with frontier molecular orbital analysis. The DFT results revealed that compound 5c displayed marginally higher reactivity compared to 5a, 5b, and 5d, possibly due to its extended conjugation. Full article
Show Figures

Figure 1

12 pages, 1865 KiB  
Article
Efficient Synthesis of Tetrasubstituted Furans via Lipase-Catalyzed One-Pot Sequential Multicomponent Reaction
by Yongqi Zeng, Yong Tang, Minglu Xu, Dantong Wang, Zhi Wang, Yin Gao and Lei Wang
Catalysts 2025, 15(5), 482; https://doi.org/10.3390/catal15050482 - 15 May 2025
Viewed by 847
Abstract
Tetrasubstituted furans and their derivatives represent a versatile class of important heterocyclic frameworks widely distributed in natural products. These scaffolds also demonstrate significant potential in pharmaceutical chemistry, materials science, and organic synthesis methodologies. In this study, we successfully established a synergistic catalytic system [...] Read more.
Tetrasubstituted furans and their derivatives represent a versatile class of important heterocyclic frameworks widely distributed in natural products. These scaffolds also demonstrate significant potential in pharmaceutical chemistry, materials science, and organic synthesis methodologies. In this study, we successfully established a synergistic catalytic system utilizing benzoylacetonitriles, aldehydes, and benzoyl chlorides as substrates, facilitated by tributylphosphine and immobilized lipase (Novozym 435), to achieve efficient synthesis of cyano-containing tetrasubstituted furans. Under optimized conditions, we obtained a series of target products exhibiting exceptional substrate tolerance with good to excellent isolated yields ranging from 80% to 94%. Additionally, we proposed a reasonable reaction mechanism and verified it through controlled experiments. This methodology not only expands the synthetic utility of lipase in non-natural transformations but also establishes a paradigm of green chemistry for the construction of tetrasubstituted furans. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Graphical abstract

17 pages, 2851 KiB  
Article
Synthesis of Imidazolidin-2-ones from trans-(R,R)-Diaminocyclohexane: A Statistical Analysis-Based Pseudo-Multicomponent Protocol
by Catalina Hoyos-Orozco, Lili Dahiana Becerra and Diego Quiroga
Molecules 2025, 30(7), 1415; https://doi.org/10.3390/molecules30071415 - 22 Mar 2025
Cited by 1 | Viewed by 1243 | Correction
Abstract
A pseudo-multicomponent one-pot protocol for the synthesis of 1,3-disubstituted imidazolidin-2-one is described, employing trans-(R,R)-diaminocyclohexane for the in situ formation of the Schiff base, followed by reduction to produce the respective diamine and cyclization with carbonyldiimidazole (CDI). This approach [...] Read more.
A pseudo-multicomponent one-pot protocol for the synthesis of 1,3-disubstituted imidazolidin-2-one is described, employing trans-(R,R)-diaminocyclohexane for the in situ formation of the Schiff base, followed by reduction to produce the respective diamine and cyclization with carbonyldiimidazole (CDI). This approach utilizes statistical analysis to optimize the reaction conditions, allowing a pseudo-multicomponent protocol to be proposed. The developed method demonstrates sustainability, efficiency, and potential applications in green chemistry, achieving yields ranging from 55% to 81%. This represents a significant advance in synthesizing heterocyclic compounds with biological and pharmacological applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

19 pages, 8488 KiB  
Article
DABCO/Amberlyst® 15-Cocatalysed One-Pot Three-Component Aza-Morita–Baylis–Hillman Reaction Under Green Conditions
by Giovanna Bosica, Riccardo De Nittis and Matthew Vella Refalo
Catalysts 2024, 14(12), 873; https://doi.org/10.3390/catal14120873 - 29 Nov 2024
Viewed by 1184
Abstract
The one-pot multicomponent aza-Morita–Baylis–Hillman (MBH) reaction was performed under green conditions using 1,4-diazabicyclo[2.2.2]octane (DABCO) and Amberlyst® 15 as a co-catalyst, at ambient temperature and under negligible amounts of non-hazardous solvent. A number of α-methylene-β-amino acid derivatives were produced in good to excellent [...] Read more.
The one-pot multicomponent aza-Morita–Baylis–Hillman (MBH) reaction was performed under green conditions using 1,4-diazabicyclo[2.2.2]octane (DABCO) and Amberlyst® 15 as a co-catalyst, at ambient temperature and under negligible amounts of non-hazardous solvent. A number of α-methylene-β-amino acid derivatives were produced in good to excellent yields from different arylaldehydes, p-toluenesulfonamide and α,β-unsaturated carbonyl compounds. The environmental benignity of the process is accounted by the low E-factor (0.7) and high atom economy (95%) values obtained. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 2501 KiB  
Article
Evaluation of Quinazolin-2,4-Dione Derivatives as Promising Antibacterial Agents: Synthesis, In Vitro, In Silico ADMET and Molecular Docking Approaches
by Aboubakr H. Abdelmonsef, Mohamed El-Naggar, Amal O. A. Ibrahim, Asmaa S. Abdelgeliel, Ihsan A. Shehadi, Ahmed M. Mosallam and Ahmed Khodairy
Molecules 2024, 29(23), 5529; https://doi.org/10.3390/molecules29235529 - 22 Nov 2024
Viewed by 1292
Abstract
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and [...] Read more.
A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles 2ac, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one 3ad and 4ad. The starting compound 1 was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of 1 with strong electrophiles, namely, o-aminophenol, o-amino thiophenol, and/or o-phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles 2ad. Compounds 3ad and 4ad were synthesized in good-to-excellent yield through a one-pot multi-component reaction (MCR) of 1 with carbon disulfide and/or phenyl isocyanate under mild alkaline conditions, followed by ethyl chloroacetate, ethyl iodide, methyl iodide, and/or concentrated HCl, respectively. The obtained products were physicochemically characterized by melting points, elemental analysis, and spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, and MS. The antibacterial efficacy of the obtained eleven molecules was examined in vitro against two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus haemolyticus). Furthermore, Computer-Aided Drug Design (CADD) was performed on the synthesized derivatives, standard drug (Methotrexate), and reported antibacterial drug with the target enzymes of bacterial strains (S. aureus and S. haemolyticus) to explain their binding mode of actions. Notably, our findings highlight compounds 2b and 2c as showing both the best antibacterial activity and docking scores against the targets. Finally, according to ADMET predictions, compounds 2b and 2c possessed acceptable pharmacokinetics properties and drug-likeness properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

10 pages, 9967 KiB  
Article
Embedment of Molybdenum Disulfide in Electrospun Fibers as an Integrated Cathode for Lithium-Ion Batteries
by Jiaqi Pan, Zhen Liu, Baoyan Zhang, Meili Qi and Yao Feng
Coatings 2024, 14(11), 1465; https://doi.org/10.3390/coatings14111465 - 18 Nov 2024
Cited by 1 | Viewed by 1003
Abstract
As an important component of LIBs, the electrode material plays a crucial role in determining the lithium (Li) storage performance in LIBs. In this study, MoS2 nano-flowers were synthesized using a one-pot hydrothermal method. The resulting MoS2 nano-flower, along with PAN, [...] Read more.
As an important component of LIBs, the electrode material plays a crucial role in determining the lithium (Li) storage performance in LIBs. In this study, MoS2 nano-flowers were synthesized using a one-pot hydrothermal method. The resulting MoS2 nano-flower, along with PAN, were used as raw materials for electrospinning. After annealing treatment, MoS2/(carbon nanofibers) CNFs nano-composites coated with carbon fibers were formed. The CNFs coating exhibited electrical conductivity and enhanced structural stability of the MoS2 due to the stabilizing effect of the carbon fibers. Additionally, electrochemical tests, including CV and GCD, indicated that the optimal capacity and cycling stability were achieved when the MoS2 content was 10%. The results indicated that the charge/discharge capacity of MoS2/CNFs-10% at a current density of 100 mA/g was ~650 mAh/g. After the cycling current returned to 100 mA/g, the current recovery was ~600 mAh/g, thereby indicating outstanding cycling stability. Accordingly, our fabrication technique and new insight could both widen design strategy of multicomponent composite electrode materials and promote the practical applications of the latest emerging transition metal sulfides in next-generation high-performance lithium-ion batteries. Full article
Show Figures

Figure 1

5 pages, 1761 KiB  
Proceeding Paper
Multicomponent One-Pot Synthesis of Imidazo[1,2-a]pyridine Functionalized with Azides
by Diana García-García, Jorge Alejandro Tovar-Rosales, Indhira A. González-Gámez and Rocío Gámez-Montaño
Chem. Proc. 2024, 16(1), 88; https://doi.org/10.3390/ecsoc-28-20140 - 14 Nov 2024
Viewed by 1113
Abstract
Imidazo[1,2-a]pyridines (IMPs) are valuable heterocycles, present in bioactive compounds and drugs. Analogs that incorporate azide moieties are useful intermediates in organic synthesis and can be used as synthetic platforms to access more complex products. Isocyanide-based multicomponent reactions such as Groebke–Blackburn–Bienaymé (GBB-3CR) are versatile [...] Read more.
Imidazo[1,2-a]pyridines (IMPs) are valuable heterocycles, present in bioactive compounds and drugs. Analogs that incorporate azide moieties are useful intermediates in organic synthesis and can be used as synthetic platforms to access more complex products. Isocyanide-based multicomponent reactions such as Groebke–Blackburn–Bienaymé (GBB-3CR) are versatile tools to synthesized IMPs, in which orthogonal reagents are included into components to increase its synthetic potential. Herein we developed a one-pot process to access IMPs functionalized with azides under mild conditions, which are synthetic platforms for further post-transformations. Full article
Show Figures

Figure 1

15 pages, 792 KiB  
Article
β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives
by Sonali Garg, Manvinder Kaur, Pradip K. Bhowmik, Harvinder Singh Sohal, Fohad Mabood Husain and Haesook Han
Molecules 2024, 29(19), 4655; https://doi.org/10.3390/molecules29194655 - 30 Sep 2024
Cited by 1 | Viewed by 1164
Abstract
In the present report, we have described the synthesis of N-aminopolyhydroquinoline (N-PHQ) derivatives using highly efficient β-cyclodextrin (β-CD) as a catalyst by the Hantzsch condensation of substituted aromatic aldehydes, dimedone, and hydrazine hydrate in one pot. The reactions were completed [...] Read more.
In the present report, we have described the synthesis of N-aminopolyhydroquinoline (N-PHQ) derivatives using highly efficient β-cyclodextrin (β-CD) as a catalyst by the Hantzsch condensation of substituted aromatic aldehydes, dimedone, and hydrazine hydrate in one pot. The reactions were completed in a shorter time without the generation of any other byproduct. The synthesized N-PHQs were washed thoroughly with distilled water and recrystallized with ethanol to get highly purified products (as crystals). The structure of the synthesized N-PHQs was established by using advanced spectroscopic techniques like FT-IR, NMR (1H, 13C, DEPT, COSY, and HSQC), ESI-MS, and Elemental Analyzer. The N-PHQs derivatives demonstrated moderate to excellent resistance against the tested strains (both fungal as well as bacterial). The presence of polar groups, which are able to form H-bonds, attached to the phenyl ring like -NO2 (4b and 4c), and -OMe (4i, 4j, and 4k) exhibits excellent activity, which is comparable to standard drugs, amoxicillin and fluconazole. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

26 pages, 8203 KiB  
Article
One-Pot, Multi-Component Green Microwave-Assisted Synthesis of Bridgehead Bicyclo[4.4.0]boron Heterocycles and DNA Affinity Studies
by Polinikis Paisidis, Maroula G. Kokotou, Antigoni Kotali, George Psomas and Konstantina C. Fylaktakidou
Int. J. Mol. Sci. 2024, 25(18), 9842; https://doi.org/10.3390/ijms25189842 - 12 Sep 2024
Cited by 1 | Viewed by 1304
Abstract
Anthranilic acids, salicylaldehydes and arylboronic acids reacted in EtOH/H2O (1/3) at 150 °C under microwave irradiation for 1 h to give, in excellent yields and purity, twenty-three bridgehead bicyclo[4.4.0]boron heterocycles via one-pot, three-component green synthesis. The scope and the limitations of [...] Read more.
Anthranilic acids, salicylaldehydes and arylboronic acids reacted in EtOH/H2O (1/3) at 150 °C under microwave irradiation for 1 h to give, in excellent yields and purity, twenty-three bridgehead bicyclo[4.4.0]boron heterocycles via one-pot, three-component green synthesis. The scope and the limitations of the reactions are discussed in terms of the substitution of ten different anthranilic acids, three salicylaldehydes and three arylboronic acids. The replacement of salicylaldehyde with o-hydroxyacetophenone demanded a lipophilic solvent for the reaction to occur. Eight novel derivatives were isolated following crystallization in a toluene-containing mixture that included molecular sieves. The above one-pot, three-component reactions were completed under microwave irradiation at 180 °C within 1.5 h, thus avoiding the conventional prolonged heating reaction times and the use of a Dean–Stark apparatus. All derivatives were studied for their affinity to calf thymus DNA using proper techniques like viscosity and UV–vis spectroscopy, where DNA-binding constants were found in the range 2.83 × 104–8.41 × 106 M−1. Ethidium bromide replacement studies using fluorescence spectroscopy indicated Stern–Volmer constants between 1.49 × 104 and 5.36 × 104 M−1, whereas the corresponding quenching constants were calculated to be between 6.46 × 1011 and 2.33 × 1012 M−1 s−1. All the above initial experiments show that these compounds may have possible medical applications for DNA-related diseases. Full article
Show Figures

Figure 1

10 pages, 627 KiB  
Article
Anticancer Activity of 4-Aryl-1,4-Dihydropyridines
by Thaís A. S. Oliveira, Jackson B. A. Silva, Tábata R. Esperandim, Nathália O. Acésio, Denise C. Tavares and Antônio E. M. Crotti
Future Pharmacol. 2024, 4(3), 564-573; https://doi.org/10.3390/futurepharmacol4030031 - 27 Aug 2024
Cited by 2 | Viewed by 1943
Abstract
We have synthesized 22 symmetric and asymmetric 4-aryl-1,4-dihydropyridines (1,4-DHPs) by a “green” microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their cytotoxicity to three human cancer cell lines regarding U-251MG (human glioblastoma), HeLa 229 (human cervical adenocarcinoma), and MCF-7 (human breast carcinoma). None of [...] Read more.
We have synthesized 22 symmetric and asymmetric 4-aryl-1,4-dihydropyridines (1,4-DHPs) by a “green” microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their cytotoxicity to three human cancer cell lines regarding U-251MG (human glioblastoma), HeLa 229 (human cervical adenocarcinoma), and MCF-7 (human breast carcinoma). None of the 1,4-DHPs were cytotoxic to U-251MG cells. Most of the 1,4-DHPs did not affect HeLa 229 or MCF-7 cell viability. On the other hand, symmetric 1,4-DHPs 18 (diethyl 4-(4-benzyloxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate), 19 (diethyl 4-(4-bromophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate), and 20 (diethyl 4-(3-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) reduced the HeLa (IC50 = 3.6, 2.3, and 4.1 µM, respectively) and MCF-7 (IC50 = 5.2, 5.7, and 11.9 µM, respectively) cell viability. These 1,4-DHPs were more cytotoxic to the HeLa and MCF-7 cells than to the GM07492 (normal human fibroblast) cells, as evidenced by their selectivity indexes. Therefore,1,4-DHPs 18, 19, and 20 may serve as novel lead compounds to discover other 1,4-DHP derivatives with improved anticancer potency and selectivity. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Four-Component Statistical Copolymers by RAFT Polymerization
by Dimitrios Vagenas and Stergios Pispas
Polymers 2024, 16(10), 1321; https://doi.org/10.3390/polym16101321 - 8 May 2024
Cited by 6 | Viewed by 2338
Abstract
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA [...] Read more.
This manuscript serves as the starting point for in-depth research of multicomponent, statistical, methacrylate-based copolymers that potentially mimic the behavior of proteins in aqueous solutions. These synthetic macromolecules are composed of specially chosen comonomers: methacrylic acid (MAA), oligoethylene glycol methyl ether methacrylate (OEGMA475), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and benzyl methacrylate (BzMA). Monomer choice was based on factors such as the chemical nature of pendant functional groups, the polyelectrolyte/polyampholyte and amphiphilic character and the overall hydrophobic–hydrophilic balance (HLB) of the obtained quaterpolymers. Their synthesis was achieved via a one-pot reversible addition fragmentation chain transfer (RAFT) polymerization in two distinct compositions and molecular architectures, linear and hyperbranched, respectively, in order to explore the effects of macromolecular topology. The resulting statistical quaterpolymers were characterized via 1H-NMR and ATR-FTIR spectroscopies. Their behavior in aqueous solutions was studied by dynamic (DLS) and electrophoretic light scattering (ELS) and fluorescence spectroscopy (FS), producing vital information concerning their self-assembly and the structure of the formed aggregates. The physicochemical studies were extended by tuning parameters such as the solution pH and ionic strength. Finally, the quaterpolymer behavior in FBS/PBS solutions was investigated to test their colloid stability and biocompatibility in an in vivo-mimicking, biological fluid environment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 42729 KiB  
Article
Nanostructure Lipid Carrier of Curcumin Co-Delivered with Linalool and Geraniol Monoterpenes as Acetylcholinesterase Inhibitor of Culex pipiens
by Ibrahim Taha Radwan, Nirvina Abdel Raouf Ghazawy, Abeer Mousa Alkhaibari, Hattan S. Gattan, Mohammed H. Alruhaili, Abdelfattah Selim, Mostafa E. Salem, Eman Alaaeldin AbdelFattah and Heba M. Hamama
Molecules 2024, 29(1), 271; https://doi.org/10.3390/molecules29010271 - 4 Jan 2024
Cited by 12 | Viewed by 2969
Abstract
(1) Background: A molecular hybridization docking approach was employed to develop and detect a new category of naturally activated compounds against Culex pipiens as acetylcholinesterase inhibitors via designing a one-pot multicomponent nano-delivery system. (2) Methods: A nanostructure lipid carrier (NLC), as a second [...] Read more.
(1) Background: A molecular hybridization docking approach was employed to develop and detect a new category of naturally activated compounds against Culex pipiens as acetylcholinesterase inhibitors via designing a one-pot multicomponent nano-delivery system. (2) Methods: A nanostructure lipid carrier (NLC), as a second generation of solid lipid nanoparticles, was used as a carrier to deliver the active components of curcumin (Cur), geraniol (G), and linalool (L) in one nanoformulation after studying their applicability in replacing the co-crystallized ligand imidacloprid. (3) Results: The prepared nanostructure showed spherical-shaped, polydisperse particles ranging in size from 50 nm to 300 nm, as found using a transmission electron microscope. Additionally, dynamic light scattering confirmed an average size of 169 nm and a highly stable dispersed solution, as indicated by the zeta potential (−38 mV). The prepared NLC-Cur-LG displayed competitive, high-malignancy insecticidal activity against fourth instar C. pipiens with an elevated rate of death of 0.649 µg/mL. The treatment, due to the prepared nanostructure, affects oxidative stress enzymes, e.g., hydrogen peroxide (4 ppm), superoxide dismutase (SOD) (0.03 OD/mg), and protein carbonyl (0.08 OD/mg), and there are observable upward and downward fluctuations when using different concentrations of NLC-Cur-LG, suggesting significant problems in its foreseeable insecticidal activity. The acetylcholinesterase activity was assessed by an enzyme inhibition assay, and strengthened inhibition occurred due to the encapsulated NLCs (IC50 = 1.95 µg/mL). An investigation of the gene expression by Western blotting, due to treatment with NLC-Cur-LG, revealed a severe reduction of nearly a quarter of what was seen in the untreated group. As a preliminary safety step, the nanoformulation’s toxicity against normal cell lines was tested, and a reassuring result was obtained of IC50 = 158.1 µg/mL for the normal lung fibroblast cell line. (4) Conclusions: the synthesized nanoformulation, NLC-Cur-LG, is a useful insecticide in field conditions. Full article
(This article belongs to the Special Issue Natural Products as Insecticidal Agents)
Show Figures

Figure 1

22 pages, 5905 KiB  
Review
One-Pot Reactions of Triethyl Orthoformate with Amines
by Elina Marinho
Reactions 2023, 4(4), 779-800; https://doi.org/10.3390/reactions4040045 - 2 Dec 2023
Cited by 2 | Viewed by 8855
Abstract
One-pot reactions offer advantages like easy automation, higher product yields, minimal waste generation, operational simplicity, and thus reduced cost, time and energy. This review presents a comprehensive overview of one-pot reactions including triethyl orthoformate and amines as valuable and efficient reagents for carrying [...] Read more.
One-pot reactions offer advantages like easy automation, higher product yields, minimal waste generation, operational simplicity, and thus reduced cost, time and energy. This review presents a comprehensive overview of one-pot reactions including triethyl orthoformate and amines as valuable and efficient reagents for carrying out two-, three- or four-component organic reactions. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2023)
Show Figures

Figure 1

4 pages, 758 KiB  
Proceeding Paper
Green and Eco-Friendly Multicomponent Synthesis of 2-Hydroxypyridines Under Free Solvent Conditions
by Djamila Benzenine, Fatima Belhadj, Zahira Kibou, M. Pilar Vázquez-Tato, Julio A. Seijas and Noureddine Choukchou-Braham
Chem. Proc. 2023, 14(1), 109; https://doi.org/10.3390/ecsoc-27-16297 - 17 Nov 2023
Viewed by 514
Abstract
2-Hydroxypyridines (or commonly named 2-pyridones) are widespread nitrogen heterocycles in natural and synthetic products and their applications in biological, pharmaceutical and agrochemical compounds are becoming increasingly important. Therefore, several procedures have been described in the literature for the preparation of this heterocyclic framework. [...] Read more.
2-Hydroxypyridines (or commonly named 2-pyridones) are widespread nitrogen heterocycles in natural and synthetic products and their applications in biological, pharmaceutical and agrochemical compounds are becoming increasingly important. Therefore, several procedures have been described in the literature for the preparation of this heterocyclic framework. Among them, multicomponent reactions are the currently practiced method in synthetic organic chemistry, where reduced reaction times, high yields, and ease of product isolation are the main benefits of this method. In order to study the effect of the aforementioned method under greener medium, we herein describe a novel one-pot route for the design of 4,6-diaryl-3-cyano-2-pyridone derivatives under free solvent conditions. The three-component condensation of alkenes, ketones, and ammonium acetate efficiently resulted in the target heterocycles, with higher yields within a short time reaction compared to the classical method. Full article
Show Figures

Figure 1

Back to TopTop