β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives
Abstract
:1. Introduction
2. Result and Discussion
2.1. Optimization of Reaction Conditions
2.1.1. Effect of Catalyst and Solvent
2.1.2. Effect of Temperature
2.2. Chemistry
2.3. Plausible Mechanism
2.4. Antimicrobial Evaluation
2.5. Comparison of the Catalytical Activity β-CD with Previous Literature Reports for the Synthesis of 4a
3. Materials and Methods
4. Experimental
4.1. Characterization of Synthesized Polyhydroquinolines Derivatives (4a–s)
- 10-amino-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4a): Yield 96%, pale yellow crystalline solid, m.p. 260–261 °C. IR Spectrum (υ, cm−1): 3326.77 (N-H), 3046.1 (C=C-H), 2959.01, 2929.2 (sp3 C-H), and 1615.16 (C=O). 1H NMR spectrum (DMSO, 500 MHz): 7.14–7.13 (t, 4H, H-2′, H-3′ H-5′, H-6′), 7.05–7.0250 (m, 1H, H-4′), 5.28 (s, 2H, N-H2), 4.95 (s, 1H, H-8), 2.91-1.99 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.02 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (DMSO, 125 MHz): 194.44 (C=O), 154.47 (C-2, C-14), 146.33 (C-7, C-9), 127.49, 127.20, 125.38 (Ph), 110.95 (C-4, C-12), 49.51 (C-3, C-13), 38.50 (C-5, C-11), 31.24 (C-8), 29.37 (CH3), 26.57 (CH3). Anal. calcd. for C23H28N2O2: C, 75.79; H, 7.74; N, 7.69. Found; C, 75.5 6 H, 7.93; N, 7.56%. ESI-MS (m/z); M + 1 = 365.62.
- 10-amino-3,3,6,6-tetramethyl-9-(4-nitrophenyl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4b): Yield 95%, pale yellow crystalline solid, m.p. 270–272 °C. IR Spectrum (υ, cm−1): 3426.77 (N-H), 3146.1 (C=C-H), 2989, 2959 (sp3 C-H), and 1665.16 (C=O), 1510, 1342 (NO2). 1H NMR spectrum (CDCl3, 500 MHz): 8.11-8.14 (d, 2H, H-2′, H-6′), 7.24–7.28 (d, 2H, H-3′, H-5′), 5.34 (s, 2H, NH2), 5.01 (s, 1H, H-8), 2.32-2.51 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.23 (s, 6H, 2*CH3), 1.11 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 190.90 (C=O), 146.56 (C-2, C-14), 146.08 (C-7, C-9), 127.63, 123.47 (Ph), 114.87 (C-4, C-12), 46.96 (C-3, C-13), 33.23 (C-5, C-11), 31.45 (C-8), 29.46 (CH3), 27.44 (CH3). Anal. calcd. for C23H27N3O4: C, 67.46%; H, 6.65%; N, 10.26%. Found: C, 67.65%; H, 6.25%; N, 10.38%. ESI-MS (m/z); M + 1 = 410.20.
- 10-amino-3,3,6,6-tetramethyl-9-(3-nitrophenyl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4c): Yield 92%, pale yellow crystalline solid, m.p. 223–225 °C. IR Spectrum (υ, cm−1): 3356.75 (N-H), 3206.1 (C=C-H), 2979, 2945 (sp3 C-H), and 1635.16 (C=O), 1525, 1346 (NO2). 1H NMR spectrum (CDCl3, 500 MHz): 7.14 (d, 1H, H-6′), 7.13 (s, 1H, H-2′), 7.05 (t, 1H, H-5′), 7.02 (d, 1H, H-4′), 5.38 (s, 2H, NH2), 5.54 (s, 1H, H-8), 2.92–2.32 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.12 (s, 6H, 2*CH3), 1.07 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 191.06 (C=O), 148.40 (C-2, C-14), 140.71 (C-7, C-9), 132.87, 129.07, 122.20, 121.00 (Ph), 114.74 (C-4, C-12), 46.99 (C-3, C-13), 32.86 (C-5, C-11), 31.41 (C-8), 29.64 (CH3), 27.26 (CH3). Anal. calcd. for C23H27N3O4: C, 67.46%; H, 6.65%; N, 10.26%. Found: C, 67.65%; H, 6.25%; N, 10.38%. ESI-MS (m/z); M + 1 = 410.20.
- 10-amino-3,3,6,6-tetramethyl-9-(2-nitrophenyl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4d): Yield 89%, pale yellow crystalline solid, m.p. 210–212 °C. IR Spectrum (υ, cm−1): 3453.75 (N-H), 3215.1 (C=C-H), 2981, 2930 (sp3 C-H), and 1629.16 (C=O), 1530, 1349 (NO2). 1H NMR spectrum (CDCl3, 500 MHz): 7.29–7.23 (d, 1H, H-6′), 7.33 (t, 1H, H-4′), 7.21 (d, 1H, H-3′), 7.07 (t, 1H, H-5′), 5.76 (s, 2H, NH2), 4.47 (s, 1H, H-8), 2.67–2.29 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.05 (s, 6H, 2*CH3), 1.01 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 197.42 (C=O), 157.40 (C-2, C-14), 153.82 (C-7, C-9), 134.90, 134.01, 133.70 (Ph), 114.73 (C-4, C-12), 51.53 (C-3, C-13), 47.70 (C-5, C-11), 36.10 (C-8), 32.20 (CH3), 27.90 (CH3). Anal. calcd. for C23H27N3O4: C, 67.46%; H, 6.65%; N, 10.26%. Found: C, 67.46%; H, 6.65%; N, 10.26%, O = 15.63; ESI-MS (m/z); M + 1 = 410.20.
- 10-amino-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4e): Yield 94%, pale yellow crystalline solid, m.p. 274–275 °C. IR Spectrum (υ, cm−1): 3216.77 (N-H), 2982.1 (C=C-H), 2919, 2887 (sp3 C-H), and 1505.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.04–7.03 (d, 2H, H-2′, H-6′), 7.01–7.00 (d, 2H, H-3′, H-5′), 5.02 (s, 2H, NH2), 4.96 (s, 1H, H-8), 2.91–1.98 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.02 (s, 6H, 2*CH3), 0.85 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 192.44 (C=O), 151.47(C-2, C-14), 142.13 (C-7, C-9), 127.89, 126.12, 124.25 (Ph), 115.57 (C-4, C-12), 49.37 (C-3, C-13), 38.50 (C-5, C-11), 30.12 (C-8), 29.12 (CH3), 26.27 (CH3). Anal. calcd. for C23H27ClN2O2: C, 69.25; H, 6.82; N, 7.02%. Found; C, 69.15; H, 6.92; N, 7.23%. ESI-MS (m/z); M + 1 = 399.18, M + 2 = 400.17.
- 10-amino-9-(2-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4f): Yield 91%, pale yellow crystalline solid, m.p. 203–204 °C. IR Spectrum (υ, cm−1): 3216.77 (N-H), 2982.1 (C=C-H), 2909, 2865 (sp3 C-H), and 1505.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 6.99–7.26 (d, 4H, H-3′,4′,5′,6′), 5.18 (s, 2H, NH2), 4.94 (s, 1H, H-8), 2.61–2.32 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.03 (s, 6H, 2*CH3), 0.99 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 200.89 (C=O), 169.14 (C-2, C-14), 151.04 (C-7, C-9), 127.98, 127.52, 124.57, 124.31, 118.32 (Ph), 115.74 (C-4, C-12), 49.93 (C-3, C-13), 32.29 (C-5, C-11), 30.95 (C-8), 29.16 (CH3), 27.77 (CH3). Anal. calcd. for C23H27ClN2O2: C, 69.25; H, 6.82; N, 7.02%. Found; C, 69.15; H, 6.92; N, 7.03%. ESI-MS (m/z); M + 1 = 399.18, M + 2 = 400.17.
- 10-amino-9-(4-bromophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4g): Yield 95%, pale yellow crystalline solid, m.p. 221–223 °C. IR Spectrum (υ, cm−1): 3350.77 (N-H), 3086.1 (C=C-H), 2979, 2959 (sp3 C-H), and 1625.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 6.94–6.96 (d, 2H, H-3′, H-5′), 7.26–7.38 (d, 2H, H-2′, H-6′), 5.29 (s, 2H, NH2), 4.97 (s, 1H, H-8), 2.90–1.06 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 0.98 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 197.45 (C=O), 157.40 (C-2, C-14), 137.29 (C-7, C-9), 131.21, 128.57, 119.54 (Ph), 115.18 (C-4, C-12), 46.99 (C-3, C-13), 32.42 (C-5, C-11), 31.36 (C-8), 28.00 (CH3), 27.38 (CH3). Anal. calcd. for C23H27BrN2O2: C, 62.31; H, 6.14; N, 6.32%. Found; C, 62.51; H, 6.04; N, 6.44%. ESI-MS (m/z); M + 1 = 443.14, M + 2 = 444.13.
- 10-amino-9-(4-florophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4h): Yield 93%, pale yellow crystalline solid, m.p. 297–299 °C. IR Spectrum (υ, cm−1): 3339.23 (N-H), 3065.1 (C=C-H), 2929, 2909 (sp3 C-H), and 1616.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.14 (d, 2H, H-3′, H-5′), 7.01 (d, 2H, H-2′, H-6′), 5.29 (s, 2H, NH2), 4.94 (s, 1H, H-8), 2.90–2.01 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.02 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 194.5 (C=O), 154.23 (C-2, C-14), 145.2 (C-7, C-9), 129.90, 128.49, 119.20, 111.38 (Ph), 115.15 (C-4, C-12), 49.47 (C-3, C-13), 31.50 (C-5, C-11), 30.26 (C-8), 29.38 (CH3), 26.57 (CH3). Anal. calcd. for C23H27FN2O2: C, 72.23; H, 7.12; N, 7.32%. Found; C, 72.43; H, 7.25; N, 7.13%. ESI-MS (m/z); M + 1 = 383.21, M + 2 = 384.21.
- 10-amino-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4i): Yield 91%, pale yellow crystalline solid, m.p. 245–246 °C. IR Spectrum (υ, cm−1): 3327.77 (N-H), 3100.1 (C=C-H), 2945, 2920 (sp3 C-H), and 1591.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.24–7.20 (d, 4H, H-2′, H-3′, H-5′, H-6′), 5.39 (s, 2H, NH2), 4.81 (s, 1H, H-8), 2.91–1.98 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.10 (s, 6H, 2*CH3), 0.96 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 195.34 (C=O), 153.40 (C-2, C-14), 147.44 (C-7, C-9), 126.20, 126.05, 125.78 (Ph), 115.55 (C-4, C-12), 48.40 (C-3, C-13), 39.25 (C-5, C-11), 33.62 (C-8), 29.78 (CH3), 26.69 (CH3). Anal. calcd. for C24H30N2O3: C, 73.07; H, 7.66; N, 7.10%. Found; C, 73.5; H, 7.60; N, 7.13%. ESI-MS (m/z); M + 1 = 395.23.
- 10-amino-9-(3-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4j): Yield 93%, pale yellow crystalline solid, m.p. 229–231 °C. IR Spectrum (υ, cm−1): 3320.67 (N-H), 3105.1 (C=C-H), 2949, 2935 (sp3 C-H), and 1593.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.35–7.33 (d, 1H, H-4′), 7.17–7.13 (t, 1H, H-5′), 7.10–7.07 (d, 1H, H-6′), 7.05–7.020 (s, 1H, H-2′), 5.170 (s, 2H, NH2), 4.62 (s, 1H, H-8), 2.85–1.97 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.11 (s, 6H, 2*CH3), 0.97 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 195.29 (C=O), 153.49 (C-2, C-14), 147.39 (C-7, C-9), 126.67, 126.25, 125.81 (Ph), 115.13 (C-4, C-12), 48.54 (C-3, C-13), 39.56 (C-5, C-11), 33.25 (C-8), 29.81 (CH3), 26.79 (CH3). Anal. calcd. for C24H30N2O3: C, 73.07; H, 7.66; N, 7.10%. Found; C, 73.5; H, 7.60; N, 7.13%. ESI-MS (m/z); M + 1 = 395.23.
- 10-amino-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4k): Yield 89%, pale yellow crystalline solid, m.p. 211–213 °C. IR Spectrum (υ, cm−1): 3326.77 (N-H), 3046.1 (C=C-H), 2959, 2929 (sp3 C-H), and 1615.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.14–7.13 (d, 4H, H-5′), 7.81–7.77 (s, 1H, H-2′), 7.05–7.0250 (d, 1H, H-6′), 5.28 (s, 2H, NH2), 4.95 (s, 1H, H-8), 2.91–1.99 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.02 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 194.44 (C=O), 154.47 (C-2, C-14), 146.33 (C-7, C-9), 127.49, 127.20, 125.38 (Ph), 115.27 (C-4, C-12), 49.47 (C-3, C-13), 38.50 (C-5, C-11), 31.26 (C-8), 29.38 (CH3), 26.57 (CH3). Anal. calcd. for C25H32N2O4: C, 70.73; H, 7.60; N, 6.60%. Found; C, 70.78; H, 7.56; N, 6.56%. ESI-MS (m/z); M + 1 = 425.24.
- 10-amino-3,3,6,6-tetramethyl-9-p-tolyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4l): Yield 92%, pale yellow crystalline solid, m.p. 279–280 °C. IR Spectrum (υ, cm−1): 3316.77 (N-H), 3053.1 (C=C-H), 2945, 2927 (sp3 C-H), and 1601.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.72–7.82 (d, 2H, H-3′, H-5′), 7.26–7.35 (d, 2H, H-2′, H-6′), 5.29 (s, 1H, H-8), 4.90 (s, 2H, NH2), 2.31–2.51 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 2.32 (s, 3H, C-4′-CH3), 1.23 (s, 6H, 2*CH3), 1.11 (s, 6H, 2*CH3) ppm. 13C NMR spectrum (CDCl3, 125 MHz): 197.51 (C=O), 160.47 (C-2, C-14), 138.10 (C-7, C-9), 128.22, 126.80, 125.85, 119.69 (Ph), 115.60 (C-4, C-12), 47.08 (C-3, C-13), 46.46 (C-5, C-11), 31.43 (C-8), 29.66 (CH3), 25.95 (CH3). Anal. calcd. for C24H30N2O2: C, 76.16; H, 7.99; N, 7.40%. Found; C, 76.10; H, 7.93; N, 7.44. ESI-MS (m/z); M + 1 = 379.23.
- 10-amino-3,3,6,6-tetramethyl-9-m-tolyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4m): Yield 93%, pale yellow crystalline solid, m.p. 241–243 °C. IR Spectrum (υ, cm−1): 3310.65 (N-H), 3049.3 (C=C-H), 2950, 2931 (sp3 C-H), and 1604.23 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.07 (d, 1H, H-4′), 7.02 (t, 1H, H-5′), 7.01 (d, 1H, H-6′), 6.95 (s, J = 7.7 Hz, 1H, H-2′), 5.25 (s, 1H, H-8), 5.20 (s, 2H, NH2), 2.29 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 2.24 (s, 3H, C-3′-CH3), 1.29 (s, 6H, 2*CH3), 1.24 (s, 6H, 2*CH3) ppm. 13C NMR spectrum (CDCl3, 125 MHz): 195.44 (C=O), 159.47 (C-2, C-14), 142.33 (C-7, C-9), 129.49, 129.20, 128.38 (Ph), 115.53 (C-4, C-12), 46.29 (C-3, C-13), 45.39 (C-5, C-11), 30.43 (C-8), 29.73 (CH3), 20.43 (CH3). Anal. calcd. for C24H30N2O2: C, 76.16; H, 7.99; N, 7.40%. Found; C, 76.10; H, 7.93; N, 7.44%. ESI-MS (m/z); M + 1 = 379.23.
- 10-amino-3,3,6,6-tetramethyl-9-styryl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4n): Yield 81%, pale yellow crystalline solid, m.p. 211–213 °C. IR Spectrum (υ, cm−1): 3325.65 (N-H), 3040.3 (C=C-H), 2966, 2943 (sp3 C-H), and 1614.23 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.54 (t, 1H, H-4′), 7.12 (t, 2H, H-3′, H-5′), 7.07 (d, 1H, H-2′, H-6′), 7.03 (d, 1H, H-2′’), 6.70 (t, 1H, H-1′’), 5.75 (d, 1H, H-8), 5.21 (s, 2H, NH2), 2.29 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.29 (s, 6H, 2*CH3), 1.24 (s, 6H, 2*CH3) ppm. 13C NMR spectrum (CDCl3, 125 MHz): 200.44 (C=O), 162.47 (C-2, C-14), 145.33 (C-7, C-9), 130.49, 129.50, 129.38 (Ph), 113.67 (C-4, C-12), 46.29 (C-3, C-13), 46.39 (C-5, C-11), 31.43 (C-8), 20.73 (CH3), 20.20 (CH3). Anal. calcd. for C25H30N2O2: C, 76.89; H, 7.74; N, 7.17%. Found; C, 76.85; H, 7.70; N, 7.09%. ESI-MS (m/z); M + 1 = 391.23.
- 10-amino-9-(furan-2-yl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4o): Yield 93%, pale yellow crystalline solid, m.p. 265–266 °C. IR Spectrum (υ, cm−1): 3310.77 (N-H), 3025.1 (C=C-H), 2969, 2930 (sp3 C-H), and 1610.26 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.09–7.26 (d, 1H, H-3′), 6.85–6.87 (m, 1H, H-4′), 6.62–6.63 (d, 1H, H-5′), 5.29 (s, 2H, NH2), 4.97 (s, 1H, H-8), 2.22–2.43 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 2.54 (s, 2H, H-11), 2.17–2.14 (s, 2H, H-3), 2.02–1.99 (s, 2H, H-13), 1.02 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 190.38 (C=O), 146.31 (C-2, C-14), 143.59 (C-7, C-9), 129.74, 119.51, 115.78, 114.08 (furyl–C), 109.82 (C-4, C-12), 55.66 (C-3, C-13), 47.09 (C-5, C-11), 46.39 (C-8), 29.84 (CH3), 27.10 (CH3). Anal. calcd. for C21H20N2O3: C, 71.16; H, 7.39; N, 7.90%. Found C, 71.19; H, 7.29; N, 7.75%. ESI-MS (m/z); M + 1 = 385.24.
- 10-amino-3,3,6,6-tetramethyl-9-(thiophen-2-yl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4p): Yield 95%, pale yellow crystalline solid, m.p. 243–244 °C. IR Spectrum (υ, cm−1): 3317.77 (N-H), 3029.1 (C=C-H), 2975, 2830 (sp3 C-H), and 1615.26 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.26 (d, 1H, H-3′), 6.79–6.80 (m, 1H, H-4′), 6.56–6.61 (d, 1H, H-5′), 5.31 (s, 2H, NH2), 4.98 (s, 1H, H-8), 2.29–2.43 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.23 (s, 6H, 2*CH3), 1.07 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 189.86 (C=O), 143.67 (C-2, C-14), 146.36 (C-7, C-9), 126.31, 124.51, 123.44 (thiolphenyl–C), 109.87 (C-4, C-12), 46.98 (C-3, C-13), 31.13 (C-5, C-11), 30.37 (C-8), 29.91 (CH3), 26.73 (CH3). Anal. calcd. for C21H26N2O2S: C, 68.08; H, 7.07; N, 7.56%. Found C, 68.19; H, 7.11; N, 7.48%. ESI-MS (m/z); M + 1 = 371.17.
- 10-amino-3,3,6,6-tetramethyl-9-(pyridin-2-yl)-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4q): Yield 89%, pale yellow crystalline solid, m.p. 278–280 °C. IR Spectrum (υ, cm−1): 3326.77 (N-H), 3046.1 (C=C-H), 2959, 2929 (sp3 C-H), and 1615.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 7.27 (d, J=7.4 Hz, 1H, H-6′), 7.20 (dd, 1H, H-4′), 7.14 (dd, 1H, H-5′), 7.08 (d, J=7.0 Hz, 1H, H-3′), 5.28 (s, 2H, NH2), 4.95 (s, 1H, H-8), 2.91–1.99 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.02 (s, 6H, 2*CH3), 0.86 (s, 6H, 2*CH3). 13C NMR spectrum (CDCl3, 125 MHz): 194.44 (C=O), 154.47(C-2, C-14), 146.33 (C-7, C-9), 127.49, 127.20, 125.38 (Ph), 112.47 (C-4, C-12), 49.47 (C-3, C-13), 38.50 (C-5, C-11), 31.26 (C-8), 29.38 (CH3), 26.57 (CH3). Anal. calcd. for C22H27N3O2: C, 72.30; H, 7.45; N, 11.50%. Found; C, 72.35; H, 7.39; N, 11.46%. ESI-MS (m/z); M + 1 = 366.24.
- 10-amino-3,3,6,6,9-pentamethyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4r): Yield 91%, pale yellow crystalline solid, m.p. 295–297 °C. IR Spectrum (υ, cm−1): 3315.77 (N-H), 3046.1 (C=C-H), 2953, 2930 (sp3 C-H), and 1625.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 5.38 (s, 2H, NH2), 2.35 (m, 8H, 2*H-3, 2*H-5, 2*H-11, 2*H-13), 1.25 (s, 6H, 2*CH3), 1.21 (s, 6H, 2*CH3) ppm. 13C NMR spectrum (CDCl3, 125 MHz): 196.44 (C=O), 163.47 (C-2, C-14), 143.33 (C-7, C-9), 111.27 (C-4, C-12), 47.79 (C-3, C-13), 46.45 (C-5, C-11), 29.41 (CH3), 20.95 (CH3). Anal. calcd. for C19H28N2O2: C, 72.12; H, 8.93; N, 8.85%. Found; C, 72.16; H, 8.98; N, 8.83%. ESI-MS (m/z); M + 1 = 317.22.
- 10-amino-3,3,6,6-tetramethyl-9-propyl-3,4,6,7-tetrahydroacridine-1,8(2H,5H,9H,10H)-dione (4s): Yield 89%, pale yellow crystalline solid, m.p. 216–217 °C. IR Spectrum (υ, cm−1): 3315.77 (N-H), 3046.1 (C=C-H), 2953, 2930 (sp3 C-H), and 1625.16 (C=O). 1H NMR spectrum (CDCl3, 500 MHz): 5.38 (s, 2H, NH2), 5.1 (s, 1H, H-4), 2.35 (m, 8H, H-3, H-5′, H-11, H-13), 1.25 (s, 6H, 2*CH3), 1.21 (s, 6H, 2*CH3) ppm, 1.01 (m, 2H, CH2), 0.92 (m, 2H, CH2), 0.73 (t, 3H, CH3). 13C NMR spectrum (CDCl3, 125 MHz): 196.44 (C=O), 163.47 (C-2, C-14), 143.33 (C-7, C-9), 113.34 (C-4, C-12), 47.79 (C-3, C-13), 46.45 (C-5, C-11), 29.41 (CH3), 20.95 (CH3). Anal. calcd. for C21H32N2O2: C, 73.22; H, 9.36; N, 8.13%. Found; C, 73.26; H, 9.41; N, 8.17%. ESI-MS (m/z); M + 1 = 345.25.
4.2. General Experimental Procedure for Preparation of 10-Amino-3,3,6,6-Tetramethyl-9-Phenyl-3,4,6,7-Tetrahydroacridine-1,8(2H,5H,9H,10H)-Dione (4a)
4.3. Antimicrobial Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, G.H.; Bian, M.; Liu, C.Y.; Zhang, B. Retracted: Heterocyclic pyran and polyhydroquinoline derivatives to inhibit human breast cancer cells. Main Group Chem. 2019, 18, 15–22. [Google Scholar] [CrossRef]
- Kalaria, P.N.; Satasia, S.P.; Raval, D.K. Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem. 2014, 78, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.M.; Pawar, R.P. Microwave Assisted Expeditious Synthesis of Bioactive Polyhydroquinoline Derivatives. Chem. Bull. 2013, 2, 679–682. Available online: https://www.researchgate.net/publication/284286952 (accessed on 14 May 2023).
- Kumar, A.; Sharma, S.; Tripathi, V.D.; Maurya, R.A.; Srivastava, S.P.; Bhatia, G.; Tamrakar, A.K.; Srivastava, A.K. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorganic Med. Chem. 2010, 18, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Zainab, H.; Yu, N.U.; Rehman, M.; Ali, A.; Alam, A.; Latif, N.; Shahab, I.; Amir Khan, A.; Jabbar Shah, M.; Khan, A. Novel Polyhydroquinoline-Hydrazide-Linked Schiff’s Base Derivatives: Multistep Synthesis, Antimicrobial, and Calcium-Channel-Blocking Activities. Antibiotics 2022, 11, 1568. [Google Scholar] [CrossRef]
- Hajjami, M.; Tahmasbi, B. Synthesis and characterization of glucosulfonic acid supported on Fe3O4 nanoparticles as a novel and magnetically recoverable nanocatalyst and its application in the synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives. RSC Adv. 2015, 5, 59194–59203. [Google Scholar] [CrossRef]
- Sapkal, S.B.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett. 2009, 50, 1754–1756. [Google Scholar] [CrossRef]
- Chopra, P.K.P.G.; Lambat, T.L.; Mahmood, S.H.; Chaudhary, R.G.; Banerjee, S. Sulfamic Acid as Versatile Green Catalyst Used For Synthetic Organic Chemistry: A Comprehensive Update. ChemistrySelect 2021, 6, 6867–6889. [Google Scholar] [CrossRef]
- Venkatapathy, K.; Magesh, C.J.; Lavanya, G.; Perumal, P.T.; Prema, S. Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood. J. Heterocycl. Chem. 2020, 57, 1936–1955. [Google Scholar] [CrossRef]
- Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 nanoparticles supported imine/Thiophene-nickel (II) complex: A new and highly active heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3-dihydroquinazoline-4(1H)-ones. Appl. Organomet. Chem. 2018, 32, e3943. [Google Scholar] [CrossRef]
- Ahmed, K.; Dubey, B.; Nadeem, S.; Shrivastava, B.; Sharma, P. p-TSA-catalyzed one-pot synthesis and docking studies of some 5H-indeno[1,2-b]quinoline-9,11 (6H,10H)-dione derivatives as anticonvulsant agents. Chin. Chem. Lett. 2016, 27, 721–725. [Google Scholar] [CrossRef]
- Hajjami, M.; Nejat, R.; Sharifirad, F.; Gholamian, F. Efficient Synthesis of Nickel (II) Complex Supported on Fe3O4@SiO2 Nanoparticles as a New and Facile Catalyst for Various Multicomponent Reactions. Org. Chem. Res. 2018, 4, 23–42. [Google Scholar] [CrossRef]
- Nezhad, S.M.; Zare, E.N.; Davarpanah, A.; Pourmousavi, S.A.; Ashrafizadeh, M.; Kumar, A.P. Ionic Liquid-Assisted Fabrication of Bioactive Heterogeneous Magnetic Nanocatalyst with Antioxidant and Antibacterial Activities for the Synthesis of Polyhydroquinoline Derivatives. Molecules 2022, 27, 1748. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. Synth. Commun. 2022, 52, 1635–1656. [Google Scholar] [CrossRef]
- Jadhvar, S.C.; Kasraliker, H.M.; Goswami, S.V.; Chakrawar, A.V.; Bhusare, S.R. One-pot synthesis and evaluation of anticancer activity of polyhydroquinoline derivatives catalyzed by [Msim]Cl. Res. Chem. Intermed. 2017, 43, 7211–7221. [Google Scholar] [CrossRef]
- Raslan, R.R.; Hessein, S.A.; Fouad, S.A.; Shmiess, N.A.M. Synthesis and antitumor evaluation of some new thiazolopyridine, nicotinonitrile, pyrazolopyridine, and polyhydroquinoline derivatives using ceric ammonium nitrate as a green catalyst. J. Heterocycl. Chem. 2022, 59, 832–846. [Google Scholar] [CrossRef]
- Brinkerhoff, R.C.; Santa-Helena, E.; Amaral, P.C.D.; Cabrera, D.D.C.; Ongaratto, R.F.; De Oliveira, P.M.; Da Ros Montes D’Oca, C.; Neves Gonçalves, C.A.; Maia Nery, L.E.; Montes D’Oca, M.G. Evaluation of the antioxidant activities of fatty polyhydroquinolines synthesized by Hantzsch multicomponent reactions. RSC Adv. 2019, 9, 24688–24698. [Google Scholar] [CrossRef] [PubMed]
- Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2005, 106, 17–89. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Rajesh, C.; Vinod, A.U.; Bindu, S.; Sreekanth, A.R.; Mathen, J.S.; Balagopal, L. Strategies for Heterocyclic Construction via Novel Multicomponent Reactions Based on Isocyanides and Nucleophilic Carbenes. Acc. Chem. Res. 2003, 36, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Zhong, A.G.; Ying, A.G. Novel SO3H-Functionalized Ionic Liquids–Catalyzed Facile and Efficient Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation under Ultrasound Irradiation. J. Heterocycl. Chem. 2015, 52, 445–449. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, R.A. Bakers’ yeast catalyzed synthesis of polyhydroquinoline derivatives via an unsymmetrical Hantzsch reaction. Tetrahedron Lett. 2007, 48, 3887–3890. [Google Scholar] [CrossRef]
- Rama, V.; Kanagaraj, K.; Pitchumani, K. A multicomponent, solvent-free, one-pot synthesis of benzoxanthenones catalyzed by HY zeolite: Their anti-microbial and cell imaging studies. Tetrahedron Lett. 2012, 53, 1018–1024. [Google Scholar] [CrossRef]
- Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron 2006, 62, 7293–7299. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Salama, R.S.; El-Hakam, S.A.; Khder, A.S.; Ahmed, A.I. Synthesis of 12-tungestophosphoric acid supported on Zr/MCM-41 composite with excellent heterogeneous catalyst and promising adsorbent of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127753. [Google Scholar] [CrossRef]
- Budhewar, V.; Karade, N.N.; Budhewar, V.H.; Shinde, S.V.; Jadhav, W.N. L-Proline as an Efficient Organo-Catalyst for the Synthesis of Polyhydroquinoline via Multicomponent Hantzsch Reaction. Lett. Org. Chem. 2007, 4, 16–19. [Google Scholar] [CrossRef]
- Reddy, C.S.; Raghu, M. Facile ZrCl4 promoted four-component coupling one-pot synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction. Indian J. Chem. 2008, 47, 1578–1582. [Google Scholar] [CrossRef]
- Wang, L.M.; Sheng, J.; Zhang, L.; Han, J.W.; Fan, Z.Y.; Tian, H.; Qian, C.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 2005, 61, 1539–1543. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Shi, X.; Li, Y.; Xing, L. Polyhydroquinone-Coated Fe3O4 Nanocatalyst for Degradation of Rhodamine B based on Sulfate Radicals. Ind. Eng. Chem. Res. 2013, 52, 13607–13612. [Google Scholar] [CrossRef]
- Kalbende, P.P.; Jadhav, N.B. K-10 Montmorillonite Catalysed Solvent Free Synthesis of Coumarins via Pechmann Condensation. Int. J. Sci. Res. Chem. Sci. 2020, 7, 15–21. Available online: https://www.researchgate.net/publication/346511710 (accessed on 14 May 2023).
- Mayurachayakul, P.; Pluempanupat, W.; Srisuwannaket, C.; Chantarasriwong, O. Four-component synthesis of polyhydroquinolines under catalyst- and solvent-free conventional heating conditions: Mechanistic studies. RSC Adv. 2017, 7, 56764–56770. [Google Scholar] [CrossRef]
- Mobinikhaledi, A.; Foroughifar, N.; Fard, M.A.B.; Moghanian, H.; Ebrahimi, S.; Kalhor, M. Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives Using Silica Sulfuric Acid as a Heterogeneous and Reusable Catalyst Under Conventional Heating and Energy-Saving Microwave Irradiation. Synth. Commun. 2009, 39, 1166–1174. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Sheng, S.-R.; Liu, X.-L. Solvent-free liquid-phase synthesis of polyhydroquinoline derivatives under microwave irradiation. Arkivoc 2007, 7, 79–86. [Google Scholar] [CrossRef]
- Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Copper Perchlorate Hexahydrate: An Efficient Catalyst for the Green Synthesis of Polyhydroquinolines under Ultrasonication. ISRN Org. Chem. 2011, 2011, 948685. [Google Scholar] [CrossRef] [PubMed]
- Ahankar, H.; Ramazani, A.; Joo, S.W. Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions. Res. Chem. Intermed. 2016, 42, 2487–2500. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, L.; Sarkisian, R.G.; Wheeler, K.; Wang, H.; Xu, Z. Arylamine-catalyzed enamine formation: Cooperative catalysis with arylamines and acids. Angew. Chem. Int. Ed. 2013, 52, 3663–3667. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sarkisian, R.; Deng, Y.; Wang, H. Sc(OTf)3-Catalyzed Three-Component Cyclization of Arylamines, β,γ-Unsaturated α-Ketoesters, and 1,3-Dicarbonyl Compounds for the Synthesis of Highly Substituted 1,4-Dihydropyridines and Tetrahydropyridines. J. Org. Chem. 2013, 78, 5751–5755. [Google Scholar] [CrossRef]
- Kalydi, E.; Malanga, M.; Ujj, D.; Benkovics, G.; Szakács, Z.; Béni, S. Fully Symmetric Cyclodextrin Polycarboxylates: How to Determine Reliable Protonation Constants from NMR Titration Data. Int. J. Mol. Sci. 2022, 23, 14448. [Google Scholar] [CrossRef]
- Garibyan, A.; Delyagina, E.; Agafonov, M.; Ilya Khodov, I.T. Effect of PH, Temperature and Native Cyclodextrins on Aqueous Solubility of Baricitinib. J. Mol. Liq. 2022, 360, 119548. [Google Scholar] [CrossRef]
- Han, G.; Cui, B.; Chen, L.; Hu, X. Synthesis of 10-amino-9-aryl-2,3,4,5,6,7,9,10-octahydroacridine-1,8-dione derivatives. J. Heterocycl. Chem. 2012, 49, 195–199. [Google Scholar] [CrossRef]
- Sachar, A.; Gupta, P.; Gupta, S.; Sharma, R.L. A novel approach towards the synthesis of tricyclic systems based on pyridine, pyran, thiopyran, azepine, oxepin, thiepin, and pyrimidine rings under different solvent conditions. Can. J. Chem. 2010, 88, 478–484. [Google Scholar] [CrossRef]
- Madankumar, N.; Pitchumani, K. β-Cyclodextrin Monosulphonic Acid Promoted Multicomponent Synthesis of 1, 8-Dioxodecahydroacridines in Water. ChemistrySelect 2018, 3, 10886–10891. [Google Scholar] [CrossRef]
- Jiang, B.; Hao, W.J.; Zhang, J.P.; Tu, S.J.; Shi, F. New domino reaction for the selective synthesis of tetracyclic cinnolino[5,4,3-cde]cinnolines. Org. Biomol. Chem. 2009, 7, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Fifere, A.; Marangoci, N.; Maier, S.; Coroaba, A.; Maftei, D.; Pinteala, M. Theoretical Study on β-Cyclodextrin Inclusion Complexes with Propiconazole and Protonated Propiconazole. Beilstein J. Org. Chem. 2012, 8, 2191–2201. [Google Scholar] [CrossRef]
- Marques, C.S.F.; Barreto, N.S.; de Oliveira, S.S.C.; Santos, A.L.S.; Branquinha, M.H.; de Sousa, D.P.; Castro, M.; Andrade, L.N.; Pereira, M.M.; da Silva, C.F. β-Cyclodextrin/Isopentyl Caffeate Inclusion Complex: Synthesis, Characterization and Antileishmanial Activity. Molecules 2020, 25, 4181. [Google Scholar] [CrossRef] [PubMed]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef] [PubMed]
- Khamkhenshorngphanuch, T.; Kulkraisri, K.; Janjamratsaeng, A.; Plabutong, N.; Thammahong, A.; Manadee, K.; Na Pombejra, S.; Khotavivattana, T. Synthesis and Antimicrobial Activity of Novel 4-Hydroxy-2-Quinolone Analogs. Molecules 2020, 25, 3059. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Cabrera, D.; Rosa, S.B.; De Oliveira, F.S.; Marinho, M.A.G.; Montes D’Oca, C.R.; Russowsky, D.; Horn, A.P.; Montes D’Oca, M.G. Synthesis and Antiproliferative Activity of Novel Hybrid 3-Substituted Polyhydroquinoline-Fatty Acids. Medchemcomm 2016, 7, 2167–2176. [Google Scholar] [CrossRef]
- Ramesh, K.B.; Pasha, M.A. Study on One-Pot Four-Component Synthesis of 9-Aryl-Hexahydro-Acridine-1,8-Diones Using SiO2-I as a New Heterogeneous Catalyst and Their Anticancer Activity. Bioorganic Med. Chem. Lett. 2014, 24, 3907–3913. [Google Scholar] [CrossRef] [PubMed]
- Yü, S.J.; Wu, S.; Zhao, X.M.; Lü, C.W. Green and Efficient Synthesis of Acridine-1,8-Diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-Type Reaction in Aqueous Ethanol. Res. Chem. Intermed. 2017, 43, 3121–3130. [Google Scholar] [CrossRef]
- Hong, M.; Xiao, G. FSG-Hf(NPf2)4 Catalyzed, Environmentally Benign Synthesis of 1,8-Dioxo-Decahydroaridines in Water-Ethanol. J. Fluor. Chem. 2012, 144, 7–9. [Google Scholar] [CrossRef]
Catalyst a | Solvent | Time (hours) | Yield b (%) |
---|---|---|---|
- | Ethanol | 9 | 52 |
- | ACN | 10 | 45 |
- | Diethyl ether | 8 | 23 |
Piperidine | Ethanol | 12 | 15 |
Piperidine | ACN | 11 | 40 |
Piperidine | Diethyl ether | 8.5 | 42 |
SDS | H2O | 11.5 | 36 |
Al(DS)3 | H2O | 13 | 47 |
Sc(DS)3 | H2O | 13 | 43 |
β-CD | Ethanol | 6 | 74 |
β-CD | ACN | 6 | 96 |
β-CD | Diethyl ether | 10 | 65 |
2-aminopyrazine | Ethanol | 8 | No product |
2-aminopyrazine | ACN | 12 | No product |
2-aminopyrazine | Diethyl ether | 10 | No product |
Temperature (°C) | Time (hours) | Yield * (%) |
---|---|---|
50 | >10 | 45 |
55 | 10 | 45 |
60 | 7 | 48 |
65 | 7 | 50 |
70 | 7 | 52 |
75 | 6.5 | 76 |
80 | 6 | 96 |
85 | 6 | 94 |
90 | 5 | 90 |
95 | 5 | 90 |
Product | R | Rf a | Melting Point (°C) | Yield b (%) | |
---|---|---|---|---|---|
Literature | Observed | ||||
4a | C6H5 | 0.68 | 260–262 | 260–261 | 96 [41] |
4b | 4-NO2 C6H4 | 0.79 | 270–272 | 270–272 | 95 [42] |
4c | 3-NO2 C6H4 | 0.71 | 224–226 | 223–225 | 92 [41] |
4d | 2-NO2 C6H4 | 0.69 | 209–211 | 210–212 | 89 [41] |
4e | 4-Cl C6H4 | 0.55 | 274–276 | 274–275 | 94 [41] |
4f | 2-Cl C6H4 | 0.58 | 204–206 | 203–204 | 91 [41] |
4g | 4-Br C6H4 | 0.57 | 222–223 | 221–223 | 95 [42] |
4h | 4-F C6H4 | 0.61 | >300 | 297–299 | 93 [42] |
4i | 4-OCH3 C6H4 | 0.59 | 244–245 | 245–246 | 91 [41] |
4j | 3-OCH3 C6H4 | 0.63 | 228–230 | 229–231 | 93 [41] |
4k | 3,4-(OCH3)2 C6H4 | 0.68 | 212–214 | 211–213 | 89 [41] |
4l | 4-CH3 C6H4 | 0.56 | 279–281 | 279–280 | 92 [41] |
4m | 3-CH3 C6H4 | 0.60 | 240–242 | 241–243 | 93 [41] |
4n | C6H5CH=CH | 0.57 | 213–215 | 211–213 | 81 [42] |
4o | 2-Furyl | 0.64 | 264–265 | 265–266 | 93 [42] |
4p | 2-Thiophenyl | 0.61 | 243–245 | 243–244 | 95 [42] |
4q | 2-Pyridyl | 0.58 | 277–280 | 278–280 | 89 [41] |
4r | CH3 | 0.63 | 296–297 | 295–297 | 91 [41] |
4s | CH3CH2CH2 | 0.56 | 216–217 | 216–217 | 89 [42] |
Product | R | Gram (+ve) Bacteria | Gram (−ve) Bacteria | Fungi | |||||
---|---|---|---|---|---|---|---|---|---|
B. subtilis | S. pyogenes | E. coli | K. pneumonia | S. aureus | A. janus | A. niger | A. sclerotiorum | ||
4a | C6H5 | 16 | 8 | 8 | 8 | 16 | 8 | 16 | 8 |
4b | 4-NO2 C6H4 | 8 | 4 | 8 | 4 | 8 | 16 | 8 | 16 |
4c | 3-NO2 C6H4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 8 |
4d | 2-NO2 C6H4 | 8 | 8 | 16 | 8 | 16 | 16 | 16 | 8 |
4e | 4-Cl C6H4 | 16 | 16 | 8 | 8 | 16 | 8 | 16 | – |
4f | 2-Cl C6H4 | 64 | 16 | 32 | 16 | 32 | 32 | 32 | 16 |
4g | 4-Br C6H4 | 16 | 32 | 32 | 32 | 16 | 32 | 32 | 32 |
4h | 4-F C6H4 | 32 | 16 | 8 | – | 16 | 32 | 16 | 16 |
4i | 4-OCH3 C6H4 | 8 | 4 | 8 | 4 | 8 | 16 | 8 | 16 |
4j | 3-OCH3 C6H4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 8 |
4k | 3,4-(OCH3)2 C6H4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
4l | 4-CH3 C6H4 | 16 | 16 | 8 | 8 | 16 | 8 | 16 | – |
4m | 3-CH3 C6H4 | 64 | 16 | 32 | 16 | 32 | 32 | 32 | 16 |
4n | C6H5CH=CH | 16 | 32 | 32 | 32 | 16 | 32 | 32 | 32 |
4o | 2-Furyl | 32 | 16 | 8 | – | 16 | 32 | 16 | 16 |
4p | 2-Thiophenyl | 8 | 16 | 16 | 32 | – | 16 | 16 | 32 |
4q | 2-Pyridyl | 8 | 8 | 8 | 16 | 8 | 16 | 32 | 16 |
4r | CH3 | 64 | 64 | 64 | 32 | 128 | 64 | 128 | 64 |
4s | CH3CH2CH2 | 64 | 128 | 128 | 64 | 32 | - | 64 | 128 |
Amoxicillin Fluconazole | 4 | 4 | 4 | 4 | 4 | – | – | – | |
– | – | – | – | – | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, S.; Kaur, M.; Bhowmik, P.K.; Sohal, H.S.; Husain, F.M.; Han, H. β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives. Molecules 2024, 29, 4655. https://doi.org/10.3390/molecules29194655
Garg S, Kaur M, Bhowmik PK, Sohal HS, Husain FM, Han H. β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives. Molecules. 2024; 29(19):4655. https://doi.org/10.3390/molecules29194655
Chicago/Turabian StyleGarg, Sonali, Manvinder Kaur, Pradip K. Bhowmik, Harvinder Singh Sohal, Fohad Mabood Husain, and Haesook Han. 2024. "β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives" Molecules 29, no. 19: 4655. https://doi.org/10.3390/molecules29194655
APA StyleGarg, S., Kaur, M., Bhowmik, P. K., Sohal, H. S., Husain, F. M., & Han, H. (2024). β-Cyclodextrin Catalyzed, One-Pot Multicomponent Synthesis and Antimicrobial Potential of N-Aminopolyhydroquinoline Derivatives. Molecules, 29(19), 4655. https://doi.org/10.3390/molecules29194655