Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = oil-controlling mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 196
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

14 pages, 2295 KiB  
Article
Design of Novel Hydraulic Drive Cleaning Equipment for Well Maintenance
by Zhongrui Ji, Qi Feng, Shupei Li, Zhaoxuan Li and Yi Pan
Processes 2025, 13(8), 2424; https://doi.org/10.3390/pr13082424 - 31 Jul 2025
Viewed by 231
Abstract
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. [...] Read more.
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. This paper proposes a novel hydraulic drive well washing device which consists of two main units. The wellbore cleaning unit comprises a hydraulic drive cutting–flushing module, a well cleaning mode-switching module, and a filter storage module. The unit uses hydraulic and mechanical forces to perform combined cleaning to prevent mud and sand from settling. By controlling the flow direction of the well washing fluid, it can directly switch between normal and reverse washing modes in the downhole area, and at the same time, it can control the working state of corresponding modules. The assembly control unit includes the chain lifting module and the arm assembly module, which can lift and move the device through the chain structure, allow for the rapid assembly of equipment through the use of a mechanical arm, and protect the reliability of equipment through the use of a centering structure. The device converts some of the hydraulic power into mechanical force, effectively improving cleaning and plugging removal efficiency, prolonging the downhole continuous working time of equipment, reducing manual operation requirements, and comprehensively improving cleaning efficiency and energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 1124 KiB  
Article
Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum
by Lucas Martins Lopes, Lêda Rita D’Antonino Faroni, Gutierres Nelson Silva, Douglas Rafael e Silva Barbosa, Marcela Silva Carvalho, Herus Pablo Firmino Martins, Thaís Rodrigues dos Santos, Igor da Silva Dias and Adalberto Hipólito de Sousa
Insects 2025, 16(7), 697; https://doi.org/10.3390/insects16070697 - 6 Jul 2025
Viewed by 651
Abstract
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil [...] Read more.
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil (EOPH) on the development and population growth of four populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), as well as the persistence of safrole residue in treated corn grains. Population development rates were determined using emergence curves and total emerged adults, while population growth was assessed by counting live insects in the feeding substrate at different storage intervals. Safrole residue persistence was analyzed using solid-phase microextraction in headspace mode (SPME-HS). Sublethal exposure to EOPH significantly reduced the development rate, total emergence, and growth in three of the four populations. The population from Crixás, GO, showed no significant reduction, with a population curve overlapping the control. The lethal dose was reduced by 98.20%, indicating low persistence and potential food safety. The EOPH exhibited sublethal effects on S. zeamais populations, reducing both development rates and population growth. This reduction varied among the populations studied. Further research is encouraged to explore its effects on different insect populations and under broader environmental conditions. Full article
(This article belongs to the Special Issue Integrated Pest Management in Stored Products)
Show Figures

Figure 1

13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Cited by 1 | Viewed by 338
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 4963 KiB  
Article
Fouling Mitigation of Silicon Carbide Membranes by Pre-Deposited Dynamic Membranes for the Separation of Oil-in-Water Emulsions
by Xin Wu, Minfeng Fang and Guanghui Li
Membranes 2025, 15(7), 195; https://doi.org/10.3390/membranes15070195 - 30 Jun 2025
Viewed by 500
Abstract
Membrane fouling poses a significant challenge in the widespread adoption and cost-effective operation of membrane technology. Among different strategies to mitigate fouling, dynamic membrane (DM) technology has emerged as a promising one for effective control and mitigation of membrane fouling. Silicon carbide (SiC) [...] Read more.
Membrane fouling poses a significant challenge in the widespread adoption and cost-effective operation of membrane technology. Among different strategies to mitigate fouling, dynamic membrane (DM) technology has emerged as a promising one for effective control and mitigation of membrane fouling. Silicon carbide (SiC) membranes have attracted considerable attention as membrane materials due to their remarkable advantages, yet membrane fouling is still inevitable in challenging separation tasks, such as oil-in-water (O/W) emulsion separation, and thus effective mitigation of membrane fouling is essential to maximize their economic viability. This study investigates the use of pre-deposited oxide DMs to mitigate the fouling of SiC membranes during the separation of O/W emulsions. Among five screened oxides (Fe2O3, SiO2, TiO2, ZrO2, Al2O3), SiO2 emerged as the most effective DM material due to its favorable combination of particle size, negative surface charge, hydrophilicity, and underwater oleophobicity, leading to minimized oil droplet adhesion via electrostatic repulsion to DM surfaces and enhanced antifouling performance. Parameter optimization in dead-end mode revealed a DM deposition amount of 300 g/m2, a transmembrane pressure (TMP) of 0.25 bar, and a backwashing pressure of 2 bar as ideal conditions, achieving stable oil rejection (~93%) and high pure water flux recovery ratios (FRR, >90%). Cross-flow filtration outperformed dead-end mode, maintaining normalized permeate fluxes of ~0.4–0.5 (cf. ~0.2 in dead-end) and slower FRR decline, attributed to reduced concentration polarization and enhanced DM stability under tangential flow. Optimal cross-flow conditions included a DM preparation time of 20 min, a TMP of 0.25 bar, and a flow velocity of 0.34 m/s. The results establish SiO2-based DMs as a cost-effective strategy to enhance SiC membrane longevity and efficiency in O/W emulsion separation. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

22 pages, 3320 KiB  
Article
Permeability Characteristics and Strength Degradation Mechanisms of Drilling Fluid Invading Bedding-Shale Fluid
by Guiquan Wang, Fenfen Li, Yu Suo, Cuilong Kong, Xiaoguang Wang and Lingzhi Zhou
Symmetry 2025, 17(7), 981; https://doi.org/10.3390/sym17070981 - 21 Jun 2025
Viewed by 571
Abstract
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression [...] Read more.
The development of shale bedding and fractures exacerbates the invasion of drilling fluid, leading to significant reservoir damage. This article elucidates the strength degradation behavior of shale with bedding orientations of 0° and 90° under drilling fluid immersion, as determined through triaxial compression experiments. An improved Hooke–Brown anisotropic strength criterion has been established to quantitatively characterize the degradation effects. Additionally, a dynamic mechanism of pore pressure accumulation was simulated. The research findings indicate the following: (1) As the intrusion pressure increases from 6 MPa to 8 MPa, the penetration depth significantly increases. In the horizontal bedding direction (0°), cracks dominate the flow mode, resulting in a sudden drop in strength; (2) An increase in bedding density or opening exacerbates the degree of invasion and strength degradation in the horizontal bedding direction, with a degradation rate exceeding 40%. In contrast, the vertical bedding direction is influenced by permeability anisotropy and crack blockage, leading to limited seepage and minimal degradation. By optimizing the dosage of emulsifiers and other treatment agents through orthogonal experiments, a low-viscosity, high-shear-strength plugging oil-based drilling fluid system was developed, effectively reducing the invasion depth of the drilling fluid by over 30%. The primary innovations of this article include the establishment of a quantitative model for Reynolds number degradation for the first time, which elucidates the mechanism of accelerated crack propagation during turbulent transition (when the Reynolds number exceeds the critical value of 10). Additionally, a novel method for synergistic control between sealing and rheology is introduced, significantly decreasing the degradation rate of horizontal bedding. Furthermore, the development of the Darcy–Forchheimer partitioning algorithm addresses the issue of prediction bias exceeding 15% in high-Reynolds-number regions (Re > 30). The research findings provide a crucial theoretical foundation and data support for the optimized design of drilling fluids. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

28 pages, 3106 KiB  
Article
Integrated Control Strategies of EGR System and Fuel Injection Pressure to Reduce Emissions and Fuel Consumption in a DI Engine Fueled with Diesel-WCOME Blends and Neat Biodiesel
by Giorgio Zamboni and Massimo Capobianco
Energies 2025, 18(11), 2791; https://doi.org/10.3390/en18112791 - 27 May 2025
Viewed by 385
Abstract
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, [...] Read more.
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, included 40 and 70% of WCOME, on a volumetric basis. The influence of biodiesel was analyzed by testing the engine in two part-load operating conditions, applying proper control strategies to the exhaust gas recirculation (EGR) circuit and rail pressure, to assess the interactions between the engine management and the tested fuels. The variable nozzle turbine (VNT) was controlled to obtain a constant level of intake pressure in the two experimental points. Referring to biodiesel effects at constant operating mode, higher WCOME content generally resulted in better efficiency and soot emission, while NOX emission was negatively affected. EGR activation allowed for limited NO formation but with penalties in soot emission. Furthermore, interactions between the EGR circuit and turbocharger operations and control led to higher fuel consumption and lower efficiency. Finally, the increase in rail pressure corresponded to better soot emission and penalties in NOX emission. Combining all these effects, the selection of EGR rate and rail pressure values higher than the standard levels resulted in better efficiency, NOX, and soot emissions when comparing blends and neat biodiesel to conventional B7, granting advantages not only with regard to greenhouse gas emissions. Combustion parameters were also assessed, showing that combustion stability and combustion noise were not negatively affected by biodiesel use. Combustion duration was reduced when using WCOME and its blend, even if the center of combustion was slightly shifted along the expansion stroke. The main contribution of this investigation to the scientific and technical knowledge on biodiesel application to internal combustion engines is related to the development of tests on diesel–biodiesel blends with high WCOME content or neat WCOME, identifying their effects on NOX emissions, the definition of integrated strategies of HP EGR system, fuel rail pressure, and VNT for the simultaneous reduction in NOX and soot emissions, and the detailed assessment of the influence of biodiesel on a wide range of combustion parameters. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

15 pages, 2907 KiB  
Article
Flexible Concentration Gradient Droplet Generation via Partitioning–Recombination in a Shear Flow-Driven Multilayer Microfluidic Chip
by Linkai Yu, Qingyang Feng, Yifan Chen, Yongji Wu, Haizhen Sun, Hao Yang and Lining Sun
Symmetry 2025, 17(6), 826; https://doi.org/10.3390/sym17060826 - 26 May 2025
Cited by 1 | Viewed by 414
Abstract
Concentration gradient generation plays a pivotal role in advancing applications across drug screening, chemical synthesis, and biomolecular studies, yet conventional methods remain constrained by labor-intensive workflows, limited throughput, and inflexible gradient control. This study presents a novel multilayer microfluidic chip leveraging shear flow-driven [...] Read more.
Concentration gradient generation plays a pivotal role in advancing applications across drug screening, chemical synthesis, and biomolecular studies, yet conventional methods remain constrained by labor-intensive workflows, limited throughput, and inflexible gradient control. This study presents a novel multilayer microfluidic chip leveraging shear flow-driven partitioning–recombination mechanisms to enable the flexible and high-throughput generation of concentration gradient droplets. The chip integrates interactive upper and lower polydimethylsiloxane (PDMS) layers, where sequential fluid distribution and recombination are achieved through circular and radial channels while shear forces from the oil phase induce droplet formation. Numerical simulations validated the dynamic pressure-driven concentration gradient formation, demonstrating linear gradient profiles across multiple outlets under varied flow conditions. The experimental results revealed that the shear flow mode significantly enhances mixing uniformity and droplet generation efficiency compared to continuous flow operations, attributed to intensified interfacial interactions within contraction–expansion serpentine channels. By modulating hydrodynamic parameters such as aqueous- and oil-phase flow rates, this system achieved tunable gradient slopes and droplet sizes, underscoring the intrinsic relationship between flow dynamics and gradient formation. The proposed device eliminates reliance on complex channel networks, offering a compact and scalable platform for parallelized gradient generation. This work provides a robust framework for optimizing microfluidic-based concentration gradient systems, with broad implications for high-throughput screening, combinatorial chemistry, and precision biomolecular assays. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Micro/Nanofluidic Devices and Applications)
Show Figures

Figure 1

17 pages, 2158 KiB  
Article
Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model
by Dimitrios Kalompatsios, Martha Mantiniotou and Dimitris P. Makris
Waste 2025, 3(2), 16; https://doi.org/10.3390/waste3020016 - 23 May 2025
Viewed by 977
Abstract
This investigation aimed at studying the effect of enrichment of corn oil, which was used as a model lipid, using waste orange peel (WOP), polyphenolic antioxidants, to provide effective shielding against oxidation. An initial comparison of two modes, a stirred-tank and an ultrasound-assisted [...] Read more.
This investigation aimed at studying the effect of enrichment of corn oil, which was used as a model lipid, using waste orange peel (WOP), polyphenolic antioxidants, to provide effective shielding against oxidation. An initial comparison of two modes, a stirred-tank and an ultrasound-assisted one, evidenced that the latter was more efficacious in enriching corn oil with total polyphenols. However, detailed examination of the polyphenolic composition revealed that the oil enriched with the stirred-tank mode may have almost two times higher polyphenolic content, which totaled 109 mg per kg of oil. The major polyphenolic constituents identified were polymethylated flavones, but also ferulic acid and naringenin. Oil stability trials, including the monitoring of peroxide value and p-anisidin value, demonstrated that the oil enriched with WOP polyphenols using the stirred-tank mode exhibited significantly higher oxidative resilience compared to control (neat oil), but also compared to the oil enriched using ultrasonication. Furthermore, it was observed that when neat oil was ultrasonicated, it also displayed exceptional stability against oxidation. Based on the outcome of this study, it is recommended that WOP, owed to its richness in lipophilic flavonoids, might be an ideal candidate for edible oil fortification, which could provide the oil with natural powerful antioxidants. Such a process could lend oils high oxidative resilience, but also functional ingredients. Full article
Show Figures

Graphical abstract

10 pages, 2206 KiB  
Article
Experimental Investigation of Lubrication Performance of Rhombic-Textured TiN-Coated Surfaces Under Lubricated Conditions
by Juan Chen, Jie Zhou, Binbin Ji, Liangcai Zeng, Yang Mao and Jun Wei
Coatings 2025, 15(5), 594; https://doi.org/10.3390/coatings15050594 - 17 May 2025
Viewed by 431
Abstract
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A [...] Read more.
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A total of 17 sets of samples were designed, including a control sample (with no rhombic texture and no TiN coating), a TiN-coated sample and rhombic-textured TiN-coated samples. The rhombic surface texture was fabricated using the end surface of a brass bar. TiN coating deposited TiN on the textured surface. This study focuses on measuring and comparatively analyzing the lubrication load capacity, friction coefficient (COF) and binding force of TiN coatings/substrates in the pin-on-disk friction test mode. Compared with the bare control sample, a rhombic texture can enhance lubrication load-carrying capacity by generating hydrodynamic lubrication effects, thereby reducing friction. Additionally, a rhombic texture enables the mitigation of third-body wear due to wear debris. This research provides valuable insights into the design and fabrication of mechanical friction pairs with high wear resistance under oil-lubricated conditions. For lubrication property enhancement, the influence of groove depth was larger than that of the length of the rhombic side. Full article
Show Figures

Figure 1

14 pages, 2029 KiB  
Communication
The Effect of Poppy Oil on Egg Production and Calcium Metabolism in Japanese Quail
by Csaba Szabó, Xénia Ozsváth, Brigitta Csernus, Gabriella Gulyás, Márta Horváth, Levente Czeglédi, János Oláh, Nafiatur Rizqoh, Gabriele Achille and János Posta
Animals 2025, 15(9), 1348; https://doi.org/10.3390/ani15091348 - 7 May 2025
Viewed by 630
Abstract
Consumers tend to favor natural dietary supplements to improve their health. However, vendors rarely cite scientific evidence to justify these claims. In the case of poppy oil, it is often mentioned as having a positive effect on Ca metabolism-related disorders, but no proof [...] Read more.
Consumers tend to favor natural dietary supplements to improve their health. However, vendors rarely cite scientific evidence to justify these claims. In the case of poppy oil, it is often mentioned as having a positive effect on Ca metabolism-related disorders, but no proof has been provided. Therefore, the aim of our trial was to test the possible effect of poppy oil on calcium metabolism using Japanese quail layers as a model animal. A total of 120 four-week-old quail were divided into three dietary treatments (four cages per treatment, with ten birds in each cage): a control group (using sunflower oil as the energy source in the diet), 0.5%, and 1% poppy oil supplementation (replacing sunflower oil). Egg production, eggshell thickness, eggshell strength, and egg yolk color were investigated. Ca retention was determined using the acid-insoluble ash method. At the end of the experiment, two birds per cage were sacrificed, and uterus and jejunum samples were collected for gene expression analyses. Poppy oil supplementation improved egg production in terms of intensity, egg weight, and eggmass production. The thickness and eggshell strength decreased when 1% poppy oil was fed to the animals, while Ca retention improved. Poppy oil supplementation increased the expression of Ca transporter genes (CALB1, SLC8A1, and SLC26A9) in the uterus and ITPR1 in the jejunum. Our results indicate a possible effect of poppy oil on Ca metabolism. Further studies are needed to identify the active compound and to understand the mode of action. Full article
Show Figures

Figure 1

17 pages, 7857 KiB  
Article
Geochemical Characteristics and Hydrocarbon Accumulation Model of Natural Gas in the Third Member of the Oligocene Lingshui Formation in the Baodao Sag, Qiongdongnan Basin, South China Sea
by Xue Yan, Nan Wu, Jun Gan, Yang Tian, Xiaofeng Xiong, Yong Feng and Gaokun Zuo
J. Mar. Sci. Eng. 2025, 13(4), 774; https://doi.org/10.3390/jmse13040774 - 14 Apr 2025
Viewed by 451
Abstract
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of [...] Read more.
The deep-water area of the Qiongdongnan basin is currently a hot topic for exploration. The discovery of gas fields in the Baodao sag confirms its abundant oil and gas resources and potential, making it of significant economic and strategic importance. The complexity of sedimentary structural evolution within the Baodao sag makes the process of oil and gas accumulation in the area extremely complex, and the law of natural gas enrichment is difficult to grasp, resulting in unclear exploration directions. Therefore, this study focuses on the third member of the Lingshui Formation in the Paleogene of the Baodao sag. Based on the abundant thin section, scanning electron microscopy, 3D seismic and geochemical analysis data in the area, through analyzing the density of natural gas, the proportion of hydrocarbon and non-hydrocarbon components, the dryness coefficient carbon, and the isotopic characteristics, combined with the deep natural gas genesis discrimination chart, the types and genesis types of natural gas and organic matter in the sag are clarified. In addition, combined with the package and BasinMod 2009 software, the filling period and reservoir-filling process were clarified and restored. At the same time, the reservoir formation characteristics of the different fault-step zones inside the sag were dissected and the primary and secondary migration of natural gas were analyzed in order to clarify the types and characteristics of different fault-step zone transport systems. Finally, the research findings indicate that there are two reservoir formation modes developed within the depression, as follows: “multiple hydrocarbon generation and control sources—continuous vertical control of large faults—lateral sand body convergence (T + Z-type transport)—multiple cap layer closure” and “mixed-source hydrocarbon supply—continuous vertical control of large faults—short lateral sand body convergence (Z-type transport)—multiple cap layer closure”, providing an important basis for the next exploration of the basin. Full article
Show Figures

Figure 1

19 pages, 9083 KiB  
Article
Sealing of Unconformity Structure and Hydrocarbon Accumulation in the Baikouquan Formation of the Mahu Sag
by Zexin Wan, Menglin Zheng, Xiaolong Wang, Yiyao Bao, Zhiyuan An, Qilin Xiao and Yunqiao Chen
Appl. Sci. 2025, 15(7), 4061; https://doi.org/10.3390/app15074061 - 7 Apr 2025
Viewed by 406
Abstract
Unconformity stratigraphic traps are widely developed in the Mahu Sag, on the northwestern margin of the Junggar Basin. It is of great significance for subsequent oil and gas exploration to explore the role of conglomerate accumulation mode and unconformity inner structure in the [...] Read more.
Unconformity stratigraphic traps are widely developed in the Mahu Sag, on the northwestern margin of the Junggar Basin. It is of great significance for subsequent oil and gas exploration to explore the role of conglomerate accumulation mode and unconformity inner structure in the formation of oil and gas reservoirs. Therefore, this study uses oil and gas geophysical technology combined with geological theory to identify the P/T unconformity structure in the study area, determine the development characteristics and accumulation control of the unconformity structure, and explore the accumulation mode of stratigraphic oil and gas reservoirs. The results show the following: (1) Based on the different logging response characteristics of the upper, middle, and lower layers of the unconformity structure, five types of unconformity structure are divided according to different lithologic combinations. (2) Through experimental and numerical simulation analysis, it was verified that fracture pressure and thickness are important indicators for evaluating the sealing property of unconformity structure. P/T unconformity structure provides good floor conditions for the Baikouquan Formation reservoir, further confirming its key role in the process of oil and gas accumulation and storage. (3) Based on the analysis of actual cases, the accumulation model of stratigraphic oil and gas reservoirs under the control of unconformity structure is summarized as cross-layer accumulation above the source, fault communication source reservoir, unconformity lateral transmission and distribution, and mudstone lateral docking. The research results provide technical support and important reference values for the exploration and development of unconformity-related oil and gas reservoirs in the Junggar Basin. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 2177 KiB  
Article
Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi
by Laura Košćak, Janja Lamovšek, Edyta Đermić and Sara Godena
Agronomy 2025, 15(4), 819; https://doi.org/10.3390/agronomy15040819 - 26 Mar 2025
Cited by 2 | Viewed by 696
Abstract
One of the most persistent and damaging diseases in olive trees is olive knot disease. This disease is caused by an infection by the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi pv. savastanoi that is notoriously difficult to control. The increasing demand for eco-friendly and [...] Read more.
One of the most persistent and damaging diseases in olive trees is olive knot disease. This disease is caused by an infection by the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi pv. savastanoi that is notoriously difficult to control. The increasing demand for eco-friendly and sustainable agricultural solutions has driven research into plant-based agents. This study investigated the antibacterial properties of essential oils (EOs) and their constituents, olive mill wastewater (OMWW), the phenolic compound hydroxytyrosol (HTyr), and algae and garlic extracts, as well as copper-based and plant-stimulating commercial products against P. savastanoi pv. savastanoi, a significant olive tree pathogen. Antibacterial activity was determined using the Kirby–Bauer disc diffusion and broth microdilution methods. The EOs derived from Thymus vulgaris (thyme) and Origanum compactum (oregano), and their key components thymol and carvacrol, exhibited the strongest antibacterial efficacy. Conversely, the OMWW, plant-stimulating products, and algae and garlic extracts showed limited to no antibacterial activity in vitro, with their antibacterial properties determined using the disc diffusion method. While the EOs were highly effective in vitro, regardless of the testing method, their efficacy in bacterial growth inhibition was strain- and concentration-dependent, possibly highlighting some metabolic or genetic variability in the target pathogen, even though the MIC values against all tested strains of P. savastanoi pv. savastanoi were equal. Bacterial membrane disruption and the consequent leakage of metabolites were determined as the modes of action of carvacrol and oregano EO. Carvacrol also promoted plant growth in lettuce without significant phytotoxic effects, although minor necrotic lesions were observed in young olive leaves at higher concentrations, presenting these agents as potential next-generation green bactericides. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

17 pages, 5168 KiB  
Article
Unveiling the Micro-Mechanism of Functional Group Regulation for Enhanced Dielectric Properties in Novel Natural Ester Insulating Oil TME-C10
by Min Chen, Tao Zhang, Jinyuan Zhang, Chunyi Liu, Dong Chen and Jin Zhang
Molecules 2025, 30(7), 1431; https://doi.org/10.3390/molecules30071431 - 24 Mar 2025
Viewed by 461
Abstract
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on [...] Read more.
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on density functional theory (DFT) calculations, systematically explores the micro-mechanism of the effects of C=C double bonds, ester groups (-COOC), and β-H groups on the performance of insulating oils. The results show that the chemical stability and anti-aging ability of the TME-C10 molecule are significantly improved by eliminating the C=C double bond and β-H group. The electronic behavior of the TME-C10 molecule is mainly controlled by the ester group (-COOC), while the GT molecule is significantly affected by the unsaturated C=C double bond, resulting in a significant difference in the mode of electronic transition between the two molecules: the TME-C10 molecule shows the nσ transition, while the GT molecule is the ππ transition. In addition, the HOMO orbital energy level, electron transition energy, and ionization energy of the GT molecules are lower than those of the TME-C10 molecules. Under the action of an external electric field, the TME-C10 molecules exhibit excellent dielectric properties. In summary, the TME-C10 molecules not only overcome the aging defects of traditional natural ester insulating oils, but also possess excellent insulation properties, making it a new type of insulating oil material with broad application prospects. Full article
Show Figures

Figure 1

Back to TopTop