Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Bacterial Cultures
2.2. Susceptibility of Pseudomonas savastanoi pv. savastanoi to Antimicrobials
2.3. Preparation of the Antibacterial Treatments
2.3.1. Essential Oils and Their Constituents
2.3.2. Copper-Based and Plant-Stimulating Products
2.3.3. Plant Extracts—Garlic, OMWW, and the Phenol HTyr
2.4. The Susceptibility of Three Different Bacterial Strains to Antimicrobials
2.5. Determination of the Minimal Inhibitory Concentrations (MICs) of Antimicrobials Against Different Strains of P. savastanoi pv. savastanoi
2.6. The Inhibition of Growth and the Growth Kinetics of P. savastanoi pv. savastanoi Treated with Plant-Based Antimicrobials
2.7. The Growth Kinetics of P. savastanoi pv. savastanoi Treated with EOs and Their Constituents
2.8. The Mechanism of Action of Oregano EO and Carvacrol Against P. savastanoi pv. savastanoi
2.9. The Effect of Oregano EO and Carvacrol on Lettuce and Olive Plants
2.10. Data Analysis
2.10.1. Antibacterial Activity of the Plant-Based Treatments
2.10.2. The Antibacterial Mechanisms of Action and In Vivo Effect of Oregano EO and Carvacrol on the Lettuce and Olive Plants
3. Results
3.1. The Susceptibility of Pseudomonas savastanoi pv. savastanoi to the Antimicrobials
3.2. Minimal Inhibitory Concentrations (MICs) of the Antimicrobials
3.3. Inhibition of the Growth of Three Different Strains of Pseudomonas savastanoi pv. savastanoi Treated with Plant-Based Antimicrobials
3.4. The Growth Kinetics of Pseudomonas savastanoi pv. savastanoi Treated with Plant-Based Antimicrobials
3.5. The Leakage of Intercellular Metabolites of P. savastanoi pv. savastanoi Treated with Origanum compactum EO and Carvacrol
3.6. The Effect of Oregano EO and Carvacrol on the Lettuce and Olive Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirik, M.; Aysan, Y.; Sahin, F. Characterization of Pseudomonas savastanoi pv. savastanoi strains isolated from several host plants in Turkey and report of fontanesia as a new host. J. Plant Pathol. 2011, 93, 263–270. [Google Scholar]
- EU Directive 2009/128/EC. Directive 2009/128/EC of the European Parliament and of the Council Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC113943/ (accessed on 14 October 2024).
- Broniarek-Niemiec, A.; Børve, J.; Puławska, J. Control of Bacterial Canker in Stone Fruit Trees by Chemical and Biological Products. Agronomy 2023, 13, 1166. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mçczka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Camele, I.; Grul’ova, D.; Elshafie, H.S. Chemical Composition and Antimicrobial Properties of Mentha × piperita cv. ‘Kristinka’ Essential Oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Bozkurt, I.A.; Soylu, S.; Kara, M.; Soylu, E.M. Chemical Composition and Antibacterial Activity of Essential Oils Isolated from Medicinal Plants against Gall Forming Plant Pathogenic Bacterial Disease Agents. KSU J. Agric. Nat. 2020, 23, 1474–1482. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Touj, N.; Hammami, I.; Dridi, K.; Al-Ayed, A.S.; Hamdi, N. Chemical Composition and in vivo Efficacy of the Essential Oil of Mentha piperita L. in the Suppression of Crown Gall Disease on Tomato Plants. J. Oleo Sci. 2019, 68, 419–426. [Google Scholar] [CrossRef]
- Muthee Gakuubi, M.; Wagacha, J.M.; Dossaji, S.F.; Wanzala, W. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria. Int. J. Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Grul’ová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogal’ová, Z.; Poráčová, B.; Camele, I.; De Feo, V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; González-García, V.; Palacio-Bielsa, A.; Lorenzo-Vidal, B.; Buzón-Durán, L.; Martín-Gil, J.; Martín-Ramos, P. Antibacterial Activity of Ginko biloba Extracts against Clavibacter michiganensis subsp. michiganensis, Pseudomonas spp., and Xanthomonas vesicatoria. Horticulturae 2023, 9, 461. [Google Scholar] [CrossRef]
- Schollenberger, M.; Staniek, T.M.; Paduch-Cichal, E.; Dasiewicz, B.; Gadomska-Gajadhur, A.; Mirzwa-Mróz, E. The activity of essential oils obtained from species and interspecies hybrids of the Mentha genus against selected plant pathogenic bacteria. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–174. [Google Scholar] [CrossRef]
- Wenzler, E.; Maximos, M.; Asempa, T.E.; Biehle, L.; Schuetz, A.N.; Hirsch, E.B. Antimicrobial susceptibility testing: An updated primer for clinicians in the era of antimicrobial resistance: Insight from the Society of Infectious Diseases Pharmacists. Pharmacoteraphy 2023, 43, 264–278. [Google Scholar] [CrossRef]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement. Altern. Med. 2019, 22, 106. [Google Scholar] [CrossRef]
- Saghrouchni, H.; Barnossi, A.E.; Mssillou, I.; Lavkor, I.; Ay, T.; Kara, M.; Alarfaj, A.A.; Hirad, A.H.; Nafidi, H.A.; Bourhia, M.; et al. Potential of carvacrol as plant growth-promotor and green fungicide against fusarium wilt disease of perennial ryegrass. Front. Plant Sci. 2023, 14, 973207. [Google Scholar] [CrossRef]
- Russo, E.; Spallarossa, A.; Comite, A.; Pagliero, M.; Guida, V.; Belotti, V.; Caviglia, D.; Schito, A.M. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. Antioxidants 2022, 11, 903. [Google Scholar] [CrossRef]
- Caballero-Guerrero, B.; Garrido-Fernández, A.; Fermoso, F.G.; Rodríguez-Gutierrez, G.; Fernández-Prior, M.A.; Reinhard, C.; Nyström, L.; Benítez-Cabello, A.; Nóe Arroyo-López, F. Antimicrobial effects of treated olive mill waste on foodborne pathogens. LWT Food Sci. Technol. 2022, 164, 113628. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; Santos, B.; Castro, A.; García Romero, F.; Brenes, M. Antimicrobial Activity of Olive Solutions from stored Alpeorujo against Plant Pathogenic Microorganisms. J. Agric. Food Chem. 2011, 59, 6927–6932. [Google Scholar] [CrossRef]
- Capasso, R.; Evidente, A.; Schivo, L.; Orru’, G.; Marcialis, M.A.; Cristinzio, G. Antibacterial polyphenols from olive oil mill waste waters. J. Appl. Bacteriol. 1995, 79, 393–398. [Google Scholar] [CrossRef]
- Pannucci, E.; Caracciolo, R.; Romani, A.; Cacciola, F.; Dugo, P.; Bernini, R.; Varvaro, L.; Santi, L. An hydroxytyrosol enriched extract from olive mill wastewater exerts antioxidant activity and antimicrobial activity on Pseudomonas savastanoi pv. savastanoi and Agrobacterium tumefaciens. Nat. Prod. Res. 2019, 35, 2677–2684. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009; pp. 1–23. [Google Scholar]
- Vardar-Vardar-Unlü, G.; Candan, F.; Sökmen, A.; Daferera, D.; Polissiou, M.; Sökmen, M.; Dönmez, E.; Tepe, B. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). J. Agric. Food Chem. 2003, 51, 63–67. [Google Scholar] [CrossRef]
- Hejna, M.; Dell’Anno, M.; Liu, Y.; Rossi, L.; Aksmann, A.; Pogorzelski, G.; Jóźwik, A. Assessment of the antibacterial and antioxidant activities of seeweed–derived extracts. Sci. Rep. 2024, 14, 21044. [Google Scholar] [CrossRef]
- Košćak, L.; Lamovšek, J.; Košćak, L.; Lamovšek, J.; Lukić, M.; Kovačević, T.K.; Đermić, E.; Goreta Ban, S.G.; Major, N.; Godena, S. Varietal Susceptibility of Olive to Pseudomonas savastanoi pv. savastanoi and Antibacterial Potential of Plant-Based Agents. Microorganisms 2024, 12, 1301. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Mozetič Vodopivec, B. Ultrasonic Extraction of Phenols from Olive Mill Wastewater: Comparison with Conventional Methods. J. Agric. Food Chem. 2011, 59, 2725–12731. [Google Scholar] [CrossRef]
- Yakhlef, W.; Arhab, R.; Romero, C.; Brenes, M.; de Castro, A.; Medina, E. Phenolic composition and antimicrobial activity of Algerian olive products and by-products. Food Sci. Technol. 2018, 98, 323–328. [Google Scholar] [CrossRef]
- CLSI. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Wayne, P.A., Ed.; Approved Guideline. CLSI Document M26-A; Clinical Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Liu, Q.; Yang, J.; Ahmed, W.; Wan, X.; Wei, L.; Ji, G. Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J. Microbiol. 2022, 60, 496–510. [Google Scholar] [CrossRef]
- Mombeshora, M.; Chi, G.F.; Mukanganyama, S. Antibiofilm Activity of Extract and a Compound Isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem. Res. Int. 2021, 2021, 9946183. [Google Scholar] [CrossRef]
- Elcocks, E.R.; Spencer-Phillips, P.T.N.; Adukwu, E.C. Rapid bactericidal effect of cinnamon bark essential oil against Pseudomonas aeruginosa. J. Appl. Microbiol. 2019, 128, 1025–1037. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Miksusanti; Jenie, B.S.L.; Priosoeryanto, B.P.; Syarief, R.; Rekso, G.T. Mode of action temu kunci (Kaempferia pandurata) essential oil on E. coli k1.1 cell determined by leakage of material cell and salt tolerance assays. HAYATI J. Biosci. 2008, 15, 56–60. [Google Scholar] [CrossRef]
- Obanor, F.O.; Jaspers, M.V.; Jones, E.E.; Walter, M. Greenhouse and field evaluation of fungicides for control of olive leaf spot in New Zealand. Crop Prot. 2008, 27, 1335–1342. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 9 January 2025).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Barić, B. Integrirana zaštita maslina od bolesti i štetnika unutar integrirane proizvodnje. Pomol. Croat. 2006, 12, 87–92. [Google Scholar]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef]
- Novy, P.; Kloucek, P.; Rondevaldova, J.; Havlik, J.; Kourimska, L.; Kokoska, L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia 2014, 94, 102–107. [Google Scholar] [CrossRef]
- Reiter, J.; Levina, N.; van der Linden, M.; Gruhlke, M.; Martin, C.; Slusarenko, A.J. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor. Molecules 2017, 22, 1711. [Google Scholar] [CrossRef]
- Tarakanov, R.I.; Dzhalilov, F.S.U. Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean. Plants 2022, 11, 2989. [Google Scholar] [CrossRef]
- Quesada, J.M.; Penyalver, R.; Pérez-Panadés, J.; Salcedo, C.I.; Carbonell, E.A.; López, M.M. Dissemination of Pseudomonas savastanoi pv. savastanoi populations and subsequent appearance of olive knot disease. Plant Pathol. 2010, 59, 262–269. [Google Scholar] [CrossRef]
- Baldassarre, F.; Schiavi, D.; Ciarroni, S.; Tagliavento, V.; De Stradis, A.; Vergaro, V.; Suranna, G.P.; Balestra, G.M.; Ciccarella, G. Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xyllela fastidiosa. Nanomaterials 2023, 13, 1285. [Google Scholar] [CrossRef]
- Bubonja-Šonje, M.; Knežević, M.; Abram, M. Challenges to antimicrobial susceptibility testing of plant-derived polyphenolic compounds. Arch. Ind. Hyg. Toxicol. 2020, 71, 300–311. [Google Scholar] [CrossRef]
- Nagy, J.K.; Móricz, Á.M.; Böszörményi, A.; Ambrus, Á.; Schwarczinger, I. Antibacterial effect of essential oils and their components against Xanthomonas arboricola pv. pruni revealed by microdilution and direct bioautographic assays. Front. Cell. Infect. Microbiol. 2023, 13, 1204027. [Google Scholar] [CrossRef]
- Ashraf, S.; Chatha, M.A.; Ejaz, W.; Janjua, H.A.; Hussain, I. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity. Nanoscale Res. Lett. 2014, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula × intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
- Bouchekouk, C.; Zohra Kara, F.; Tail, G.; Saidi, F.; Benabdelkader, T. Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn. Biol. Futur. 2019, 70, 56–61. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef]
- Caparrotta, S.; Comparini, D.; Marone, E.; Kimmenfield, R.; Luzzietti, L.; Taiti, C.; Mancuso, S. Correlation between VOC fingerprinting and antimicrobial activity of several essential oils extracted by plant resins against A. tumefaciens and P. savastanoi. Flavour. Fragr. J. 2019, 5, 377–387. [Google Scholar] [CrossRef]
- Camele, I.; Elshafie, H.S.; Caputo, L.; De Feo, V. Anti-quorum Sensing and Antimicrobial Effect of Mediterranean Plant Essential Oils against Phytopathogenic Bacteria. Front. Microbiol. 2019, 10, 2619. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Vinceković, M.; Maslov Bandić, L.; Jurić, S.; Jalšenjak, N.; Caić, A.; Živičnjak, E.; Ðermić, E.; Karoglan, M.; Osrečak, M.; Topolovec-Pintarić, S. The enhancement of bioactive potential in Vitis vinifera leaves by application of microspheres loaded with biological and chemical agents. J. Plant Nutr. 2019, 42, 543–558. [Google Scholar] [CrossRef]
- Jurić, S.; Sopko Stracenski, K.; Król-Kilińska, Z.; Žutić, I.; Uher, S.F.; Ðermić, E.; Vinceković, M. The enhancement of plant secondary metabolites content in Lactuca sativa L. by encapsulated bioactive agents. Sci. Rep. 2020, 10, 3737. [Google Scholar] [CrossRef]
- Melchionna Albuquerque, P.; Gomes Azevedo, S.; Pereira de Andrade, C.; Corrêa de Souza D’Ambros, N.; Martins Pérez, M.T.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef]
Group of treatments | Treatment | Concentration (mg/mL) |
---|---|---|
Essential oils | peppermint | undiluted |
thyme | ||
oregano | ||
sweet marjoram | ||
sage | ||
Essential oil ingredients | DL-menthol | 10 |
thymol | 10 | |
carvacrol | undiluted | |
(−)-terpinen-4-ol | undiluted | |
α,β-thujone | undiluted | |
Pure phenol solution in water | HTyr | 1.25 |
Copper-based treatments | Neoram WG | 3.00 |
Nordox 75 WG | 1.00 and 2.00 | |
Amaline Flow | 0.25 | |
Plant stimulators | Phylgreen | 0.10 |
Tora Micro Blue | 0.53 | |
Olive mill wastewater (OMWW) pH adjusted to 2 | T1A | undiluted |
T2A | ||
T3A | ||
T4A | ||
T5A | ||
Olive mill wastewater (OMWW) non-adjusted pH | T1 | undiluted |
T2 | ||
T3 | ||
T4 | ||
T5 | ||
Aqueous extract | garlic | undiluted |
Antibiotic | tetracycline | 0.50 |
Control | sterile distilled water (SDW) | - |
Group of Treatments | Treatment | Concentration (mg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
Dilution | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Essential oils (EOs) | thyme | 20 | 10 | 5.0 | 2.50 | 1.25 | 0.63 | 0.31 |
oregano | ||||||||
peppermint | 40 | 20 | 10 | 5.0 | 2.50 | 1.25 | 0.63 | |
sweet marjoram | ||||||||
sage | ||||||||
Essential oil components (EOsCs) | DL-menthol | 5.0 | 2.50 | 1.25 | 0.63 | 0.31 | 0.16 | 0.08 |
thymol | ||||||||
carvacrol | ||||||||
(−)-terpinen-4-ol | ||||||||
α,β-thujone | ||||||||
Plant-stimulating product | Tora Micro Blue | 0.53 | 0.27 | 0.13 | 0.07 | 0.03 | 0.02 | 0.01 |
Copper-based commercial products | Nordox 75 WG | 2.0 | 1.0 | 0.50 | 0.25 | 0.13 | 0.06 | 0.03 |
Neoram WG | 3.0 | 1.5 | 0.75 | 0.38 | 0.19 | 0.09 | 0.05 | |
Amaline Flow | 0.53 | 0.27 | 0.13 | 0.07 | 0.03 | 0.02 | 0.01 | |
Phenol | HTyr | 2.50 | 1.25 | 0.63 | 0.31 | 0.16 | 0.08 | 0.04 |
Aqueous plant extract | garlic | 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 |
Treatments | Antimicrobial Agent | Growth Inhibition of Pseudomonas savastanoi pv. savastanoi (Clearing Zone, mm) | ||
---|---|---|---|---|
Average | Min. | Max. | ||
Essential oils | peppermint | 8.6 | 7.0 | 10.1 |
thyme | 21.1 | 16.5 | 25.4 | |
oregano | 20.3 | 17.8 | 24.9 | |
sweet marjoram | 10.2 | 8.6 | 12.4 | |
sage | 13.2 | 10.3 | 18.4 | |
Essential oil ingredients | DL-menthol | 9.6 | 9.0 | 10.3 |
thymol | 9.1 | 8.0 | 10.3 | |
carvacrol | 28.5 | 23.0 | 35.7 | |
(−)-terpinen-4-ol | 10.8 | 8.6 | 15.8 | |
α,β-thujone | 11.7 | 10.4 | 13.3 | |
Copper-based commercial products | Neoram WG | 12.0 | 11.5 | 12.4 |
Nordox 75 WG 1,0 | 10.7 | 9.7 | 11.5 | |
Nordox 75 WG 2,0 | 23.0 | 22.3 | 24.0 | |
Amaline Flow | 21.2 | 20.1 | 22.0 | |
Plant stimulating products | Tora Micro Blue | 9.0 | 7.6 | 10.3 |
Phylgreen | 0.00 | 0.00 | 0.00 | |
Olive mill wastewater | T1A–T5A (pH = 2) | 0.00 | 0.00 | 0.00 |
T1–T5 | 0.00 | 0.00 | 0.00 | |
Phenol | HTyr | 11.6 | 7.3 | 17.7 |
Plant aqueous extract | garlic | 16.2 | 12.2 | 18.9 |
Antibiotic tetracycline | positive control | 25.5 | 24.5 | 27.0 |
Sterile distilled water (SDW) | negative control | 0.00 | 0.00 | 0.00 |
Group of Treatment | Antimicrobial Agent | Growth Inhibition of P. savastanoi pv. savastanoi Strains (Clearing Zone, mm) | ||
---|---|---|---|---|
CFBP 5075 (Italy) | A1–1 (Slovenia) | I7 L (Croatia) | ||
Essential oils | peppermint | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
thyme | 8.52 ± 0.37 | 8.69 ± 0.39 | 8.41 ± 3.17 | |
oregano | 7.76 ± 3.00 | 8.69 ± 0.39 | 9.63 ± 0.55 | |
sweet marjoram | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
sage | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
Essential oil constituents | DL-menthol | 0.00 ± 0.00 | 0.00 ± 0.00 | 9.83 ± 0.40 |
thymol | 8.99 ± 0.26 | 8.68 ± 0.31 | 9.30 ± 0.41 | |
carvacrol | 9.15 ± 0.31 | 8.90 ± 0.42 | 9.52 ± 0.35 | |
(−)-terpinen-4-ol | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | |
α,β-thujone | 8.76 ± 0.55 | 9.05 ± 0.80 | 9.49 ± 1.02 | |
Copper-based commercial product | copper(I) oxide (2.0 mg/mL) | 17.84 ± 2.93 | 18.81 ± 1.03 | 19.00 ± 0.85 |
Phenol | HTyr (1.25 mg/mL) | 7.03 ± 2.32 | 9.19 ± 0.92 | 9.57 ± 1.14 |
Aqueous extract | garlic extract (pure) | 16.17 ± 2.36 | 16.29 ± 1.71 | 17.80 ± 1.85 |
Antibiotic | tetracycline (0.5 mg/mL) | 25.57 ± 0.66 | 25.45 ± 1.17 | 25.49 ± 0.84 |
Negative control | sterile distilled water (SDW) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Group of Antimicrobials | Treatment | MIC (mg/mL) | ||
---|---|---|---|---|
CFBP 5075 (Italy) | A1-1 (Slovenia) | I7 L (Croatia) | ||
Essential oils | thyme | 1.25 | 1.25 | 1.25 |
oregano | 0.63 | 0.63 | 0.63 | |
Essential oil ingredients | thymol | 5.00 | 5.0 | 5.00 |
carvacrol | 2.50 | 2.50 | 2.50 | |
Phenol | HTyr | n.d. | ||
Aqueous plant extract | garlic | n.d. | ||
Copper-based products | Nordox 75 WG | 1.00 | 1.00 | 1.00 |
Neoram WG | 3.00 | 3.00 | 3.00 | |
Amaline Flow | 0.53 | 0.53 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košćak, L.; Lamovšek, J.; Đermić, E.; Godena, S. Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi. Agronomy 2025, 15, 819. https://doi.org/10.3390/agronomy15040819
Košćak L, Lamovšek J, Đermić E, Godena S. Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi. Agronomy. 2025; 15(4):819. https://doi.org/10.3390/agronomy15040819
Chicago/Turabian StyleKošćak, Laura, Janja Lamovšek, Edyta Đermić, and Sara Godena. 2025. "Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi" Agronomy 15, no. 4: 819. https://doi.org/10.3390/agronomy15040819
APA StyleKošćak, L., Lamovšek, J., Đermić, E., & Godena, S. (2025). Potential of Plant-Based Agents as Next-Generation Plant Growth-Promotors and Green Bactericides Against Pseudomonas savastanoi pv. savastanoi. Agronomy, 15(4), 819. https://doi.org/10.3390/agronomy15040819