Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = oil pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 10070 KiB  
Article
The Influence of MoS2 Coatings on the Subsurface Stress Distribution in Bearing Raceways
by Bing Su, Chunhao Lu and Zeyu Gong
Lubricants 2025, 13(8), 336; https://doi.org/10.3390/lubricants13080336 - 30 Jul 2025
Viewed by 296
Abstract
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there [...] Read more.
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there is no international research regarding the influence of bearing coatings on the subsurface stress distribution in raceways. The Lundberg–Palmgren (L-P) theory states that subsurface stress variations govern bearing lifespan. Therefore, this paper utilizes existing formulas and Python programming to calculate the subsurface stress field of the inner raceway in a MoS2 solid-lubricated angular contact ball bearing. Furthermore, it analyzes the impacts of factors such as coating material properties, slide-to-roll ratio, traction coefficient, and load on its subsurface stress field. The results reveal that for solid-lubricated ball bearings, as the load increases, the maximum subsurface stress shifts closer to the center of the contact area, and the maximum subsurface shear stress becomes more concentrated. As the traction coefficient increases, the stress on the XZ-plane side increases and its position moves closer to the surface, while the opposite trend is observed on the other side. Additionally, the maximum value of the subsurface von Mises stress is approximately 0.64P0, and the maximum value of the orthogonal shear stress component τyz in the subsurface is approximately 0.25P0. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

22 pages, 6823 KiB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 290
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Drag Reduction and Efficiency Enhancement in Wide-Range Electric Submersible Centrifugal Pumps via Bio-Inspired Non-Smooth Surfaces: A Combined Numerical and Experimental Study
by Tao Fu, Songbo Wei, Yang Gao and Bairu Shi
Appl. Sci. 2025, 15(14), 7989; https://doi.org/10.3390/app15147989 - 17 Jul 2025
Viewed by 241
Abstract
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was [...] Read more.
Wide-range electric submersible centrifugal pumps (ESPs) are critical for offshore oilfields but suffer from narrow high-efficiency ranges and frictional losses under dynamic reservoir conditions. This study introduces bio-inspired dimple-type non-smooth surfaces on impeller blades to enhance hydraulic performance. A combined numerical-experimental approach was employed: a 3D CFD model with the k-ω turbulence model analyzed oil–water flow (1:9 ratio) to identify optimal dimple placement, while parametric studies tested diameters (0.6–1.2 mm). Experimental validation used 3D-printed prototypes. Results revealed that dimples on the pressure surface trailing edge reduced boundary layer separation, achieving a 12.98% head gain and 8.55% efficiency improvement at 150 m3/d in simulations, with experimental tests showing an 11.5% head increase and 4.6% efficiency gain at 130 m3/d. The optimal dimple diameter (0.9 mm, 2% of blade chord) balanced performance and manufacturability, demonstrating that bio-inspired surfaces improve ESP efficiency. This work provides practical guidelines for deploying drag reduction technologies in petroleum engineering, with a future focus on wear resistance in abrasive flows. Full article
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Thermal Error Analysis of Hydrostatic Turntable System
by Jianlei Wang, Changhui Ke, Kaiyu Hu and Jun Zha
Machines 2025, 13(7), 598; https://doi.org/10.3390/machines13070598 - 10 Jul 2025
Viewed by 210
Abstract
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the [...] Read more.
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the heat of the oil pump. The amount of heat mainly depends on the working parameters, such as the oil supply pressure and the oil film gap. The unreasonable parameter setting will cause the reduction in the internal flow of the hydrostatic bearing and the increase in the oil pump power, which makes the heat of the lubricating oil increase and the heat dissipation capacity decrease during the movement. Based on the established hydrostatic turntable system, in order to explore the main influencing factors of its thermal error, the temperature field model of the component is established by calculating the thermal balance of the key components of the system. The thermal coupling analysis of the component is carried out by using the model, and the temperature rise, deformation and strain curves of the hydrostatic turntable system under different service conditions are obtained. The results show that with the increase in the temperature, the deformation and strain of the bearing increase monotonously. For every 1 °C increase, the total deformation of the bearing increases by about 0.285 μm. The higher the oil supply pressure, the higher the temperature rise in the system. The larger the oil film gap, the lower the temperature rise in the system. The oil supply pressure has a greater influence on the temperature rise and thermal deformation than the oil film gap. This study provides a valuable reference for reducing the thermal error generated by the hydraulic turntable of the ultra-precision lathe. Full article
Show Figures

Figure 1

19 pages, 4761 KiB  
Article
An Open-Type Crossflow Microfluidic Chip for Deformable Droplet Separation Driven by a Centrifugal Field
by Zekun Li, Yongchao Cai, Xiangfu Wei, Cuimin Sun, Wenshen Luo and Hui You
Micromachines 2025, 16(7), 774; https://doi.org/10.3390/mi16070774 - 30 Jun 2025
Viewed by 307
Abstract
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without [...] Read more.
This study presents an innovative wedge-shaped inlet weir-type microfluidic chip designed to address common issues of clogging and inefficiency in microfiltration processes. Driven solely by centrifugal force, the chip integrates a crossflow separation mechanism and enables selective droplet sorting based on size, without the need for external pumps. Fabricated from PMMA, the device features a central elliptical chamber, a wedge-shaped inlet, and spiral microchannels. These structures leverage shear stress and Dean vortices under centrifugal fields to achieve high-throughput separation of droplets with different diameters. Using water-in-oil emulsions as a model system, we systematically investigated the effects of geometric parameters and rotational speed on separation performance. A theoretical model was developed to derive the critical droplet size based on force balance, accounting for centrifugal force, viscous drag, pressure differentials, and surface tension. Experimental results demonstrate that the chip can effectively separate droplets ranging from 0 to 400 μm in diameter at 200 rpm, achieving a sorting efficiency of up to 72% and a separation threshold (cutoff accuracy) of 98.2%. Fluorescence analysis confirmed the absence of cross-contamination during single-chip operation. This work offers a structure-guided, efficient, and contamination-free droplet sorting strategy with broad potential applications in biomedical diagnostics and drug screening. Full article
Show Figures

Figure 1

16 pages, 5939 KiB  
Article
Modeling the Effects of Underground Brine Extraction on Shallow Groundwater Flow and Oilfield Fluid Leakage Pathways in the Yellow River Delta
by Jingang Zhao, Xin Yuan, Hu He, Gangzhu Li, Qiong Zhang, Qiyun Wang, Zhenqi Gu, Chenxu Guan and Guoliang Cao
Water 2025, 17(13), 1943; https://doi.org/10.3390/w17131943 - 28 Jun 2025
Viewed by 399
Abstract
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow [...] Read more.
The distribution of fresh and salty groundwater is a critical factor affecting the coastal wetlands. However, the dynamics of groundwater flow and salinity in river deltas remain unclear due to complex hydrological settings and impacts of human activities. The uniqueness of the Yellow River Delta (YRD) lies in its relatively short formation time, the frequent salinization and freshening alternation associated with changes in the course of the Yellow River, and the extensive impacts of oil production and underground brine extraction. This study employed a detailed hydrogeological modeling approach to investigate groundwater flow and the impacts of oil field brine leakage in the YRD. To characterize the heterogeneity of the aquifer, a sediment texture model was constructed based on a geotechnical borehole database for the top 30 m of the YRD. A detailed variable-density groundwater model was then constructed to simulate the salinity distribution in the predevelopment period and disturbance by brine extraction in the past decades. Probabilistic particle tracking simulation was implemented to assess the alterations in groundwater flow resulting from brine resource development and evaluate the potential risk of salinity contamination from oil well fields. Simulations show that the limited extraction of brine groundwater has significantly altered the hydraulic gradient and groundwater flow pattern accounting for the less permeable sediments in the delta. The vertical gradient increased by brine pumping has mitigated the salinization process of the shallow groundwater which supports the coastal wetlands. The low groundwater velocity and long travel time suggest that the peak salinity concentration would be greatly reduced, reaching the deep aquifers accounting for dispersion and dilution. Further detailed investigation of the complex groundwater salinization process in the YRD is necessary, as well as its association with alternations in the hydraulic gradient by brine extraction and water injection/production in the oilfield. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 325
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

15 pages, 3993 KiB  
Article
Study on the Electrospinning Fabrication of PCL/CNTs Fiber Membranes and Their Oil–Water Separation Performance
by Desheng Feng, Yanru Li, Yanjun Zheng, Jinlong Chen, Xiaoli Zhang, Kun Li, Junfang Shen and Xiaoqin Guo
Polymers 2025, 17(12), 1705; https://doi.org/10.3390/polym17121705 - 19 Jun 2025
Viewed by 396
Abstract
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. [...] Read more.
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. A highly uniform diameter distribution of the PCL fiber was achieved by using the dichloromethane/dimethylformamide (DCM/DMF) composite solvent with volume ratio of 7:3, as well as a PCL concentration of ca. 17 wt.%. The optimal electrospinning parameters were identified as an applied voltage of 18 kV and a syringe pump flow rate of 1 mL·h−1, which collectively ensured uniform fiber morphology under the specified processing conditions. The critical threshold concentration of CNTs in the composite system was determined to be 1 wt.%, above which the composite fibers exhibit a significant increase in diameter heterogeneity. Both pristine PCL fibrous membranes and PCL/CNTs composite membranes demonstrated excellent and stable oil–water separation performance, with separation efficiencies consistently around 90%. Notably, no significant attenuation in separation efficiency was observed after ten consecutive separation cycles. Furthermore, when incorporating 0.5 wt.% CNTs, the PCL/CNT composite membranes exhibited a 20% increase in separation flux for heavy oils compared to pristine PCL membranes. Additionally, CNTs, as a prototypical class of nanofillers for polymer matrix reinforcement, can potentially enhance the mechanical properties of composite films, thus effectively prolonging their service life. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 360
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

24 pages, 14794 KiB  
Article
Development of Laser AM Process to Repair Damaged Super Duplex Stainless Steel Components
by Abdul Ahmad, Paul Xirouchakis, Alastair Pearson, Frazer Brownlie and Yevgen Gorash
Sustainability 2025, 17(12), 5438; https://doi.org/10.3390/su17125438 - 12 Jun 2025
Viewed by 584
Abstract
The escalating demands of industrial applications, particularly those involving severe wear, temperature, and corrosive environments, present significant challenges for the long-term strength of critical components, often fabricated from high-value materials such as super duplex stainless steel alloys. Super duplex can withstand the corrosive [...] Read more.
The escalating demands of industrial applications, particularly those involving severe wear, temperature, and corrosive environments, present significant challenges for the long-term strength of critical components, often fabricated from high-value materials such as super duplex stainless steel alloys. Super duplex can withstand the corrosive environment (in particular, crevice corrosion and pitting damage) and maintain mechanical integrity sufficient for high-pressure pumping applications such as seawater injection and crude oil. Conventional repair methodologies frequently result in component rejection due to process-induced distortions or detrimental phase transformations, contributing to substantial material waste and hindering the adoption of circular economy principles. This research addresses this issue by developing and validating a novel repair process utilizing laser metal deposition (LMD) additive manufacturing. The research focuses on establishing optimized process parameters to ensure the salvaging and restoration of damaged super duplex components while preserving their requisite mechanical integrity and corrosion resistance, in accordance with industry standards. Comprehensive characterization, including microstructural analysis, chemical composition verification, hardness profiling, and mechanical fatigue testing, confirms the efficacy of the LMD repair process. This work demonstrates the potential for extending the service life of critical components, thereby promoting resource efficiency and contributing to a more sustainable and resilient industrial paradigm. Full article
Show Figures

Graphical abstract

18 pages, 3130 KiB  
Article
Mechatronic Test Bench Used to Simulate Wind Power Conversion to Thermal Power by Means of a Hydraulic Transmission
by Victor Constantin, Ionela Popescu and Mihai Avram
Technologies 2025, 13(6), 236; https://doi.org/10.3390/technologies13060236 - 6 Jun 2025
Viewed by 533
Abstract
The work presented in this paper discusses the steps taken to design, implement, and test a mechatronic test stand that uses historical wind power data to generate thermal power that could be used by small-to-medium consumers. The work also pertains to usage in [...] Read more.
The work presented in this paper discusses the steps taken to design, implement, and test a mechatronic test stand that uses historical wind power data to generate thermal power that could be used by small-to-medium consumers. The work also pertains to usage in areas where large wind turbines could not be installed due to space restrictions, such as highly populated areas. A rotor flux control (RFC) speed-controlled 2.2 kW AC motor was used to simulate the action of a wind turbine on a 6 cm3 hydraulic pump. The setup allows for a small form factor and a much lighter turbine to be installed. The paper describes the schematic, installation, usage, and initial results obtained using a hydraulic test stand developed by the authors. The initial work allowed us to obtain different temperatures of the hydraulic oil, up to 60 °C, over a period of 30 min, for various pressures and flow rates, thus confirming that the system is functional overall. Further work will elaborate on the effect of different wind patterns on the setup, as well as provide an in-depth study on a use case for the system. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

10 pages, 915 KiB  
Article
Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology
by Manolo Córdova-Suárez, Juan Córdova-Suárez, Ricardo Teves, Enrique Barreno-Ávila and Fabian Silva-Frey
Energies 2025, 18(11), 2898; https://doi.org/10.3390/en18112898 - 31 May 2025
Viewed by 531
Abstract
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle [...] Read more.
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle Assessment (LCA) of production processes. In the oil extraction industry, artificial lift systems use electro submersible pumps (ESPs) that can now incorporate new operating principles based on permanent magnet motors (PMMs) and CanSystem (CS) as an alternative to traditional normal induction motors (NIMs) and can help lower the carbon footprint. This study compares the PCF of ESPs equipped with PMMs and CS versus NIMs, using LCA methodologies in accordance with ISO 14067:2018 for defining the Functional Unit (FU) and ISO 14064-1:2019 to calculate the GHG inventory and the amount of CO2 equivalent per year. The analysis spans five key stages and 14 related activities. For ESPs with NIMs, this study calculated 999.9 kg of raw materials, 1491.66 kW/h for manufacturing and storage, and 5.77 × 104 kW/h for use. In contrast, ESPs with PMMs and CS required 656 kg of raw materials and consumed 4.44 × 104 kW/h during use, resulting in an 23% reduction in energy consumption. This contributed to an 21.9% decrease in the PCF. The findings suggest that PMMs and CS offer a sustainable solution for reducing GHG emissions in oil extraction processes globally. Full article
Show Figures

Figure 1

24 pages, 5283 KiB  
Article
Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology
by Lina Wang
Processes 2025, 13(6), 1689; https://doi.org/10.3390/pr13061689 - 28 May 2025
Viewed by 497
Abstract
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be [...] Read more.
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 4192 KiB  
Article
Analysis of Operation Characteristics of Phase-Change Temperature Maintenance System Heating by Solar Source and Sewage Source Heat Pump
by Qingfu Zuo, Qing Wu and Shangwen Zhu
Processes 2025, 13(6), 1676; https://doi.org/10.3390/pr13061676 - 27 May 2025
Viewed by 318
Abstract
To address the issues of high energy consumption and operating costs in the temperature maintenance and heating of floating roof oil tanks, a phase-change temperature maintenance simulation system using a solar source–sewage source heat pump was designed. Its operating characteristics and economic benefits [...] Read more.
To address the issues of high energy consumption and operating costs in the temperature maintenance and heating of floating roof oil tanks, a phase-change temperature maintenance simulation system using a solar source–sewage source heat pump was designed. Its operating characteristics and economic benefits were studied based on the TRNSYS platform. The study analyzed the effects of the solar energy guarantee rate, phase-change heat storage tank operating temperature, and sewage source heat pump operating temperature on various indicators, such as the heat storage and release efficiency of the phase-change heat storage tank, the heating capacity and energy proportion of crude oil, and the power consumption of the sewage source heat pump system. The economic benefits were also compared. The results indicate that when the solar energy guarantee rate is below 30%, the phase-change heat storage tank does not operate, while the sewage source heat pump operates at a higher efficiency, leading to increased system power consumption. However, when the solar energy guarantee rate exceeds 30%, the phase-change heat storage tank operates normally from April to December, while the sewage source heat pump ceases to function, resulting in reduced total system power consumption. Additionally, increasing the phase-change temperature from 38 °C to 54 °C boosts the heat storage and release efficiency of the phase-change heat storage tank from 87% to 94%, without affecting the heat pump’s heating capacity. Similarly, raising the temperature of the sewage source heat pump from 20 °C to 40 °C enhances the heat pump’s heating capacity and efficiency from 4.45 to 4.84, without impacting the heat storage and release efficiency of the phase-change heat storage tank. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

21 pages, 5400 KiB  
Article
Study on the Movement and Distribution Patterns of Sand Particles in a Vane-Type Multiphase Pump
by Chenwei Wang, Guangtai Shi, Yao Liu, Haigang Wen and Wenjuan Lv
J. Mar. Sci. Eng. 2025, 13(6), 1034; https://doi.org/10.3390/jmse13061034 - 24 May 2025
Viewed by 430
Abstract
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase [...] Read more.
In oilfield operations, produced fluids consist of complex mixtures including heavy oil, sand, and water. Variations in sand particle parameters and operational conditions can significantly impact the performance of multiphase pumps. To elucidate the movement patterns of sand particles within a vane-type multiphase pump, this study employs the Discrete Phase Model (DPM) to investigate the effects of different sand particle parameters and operational conditions on the internal flow characteristics. The study found that: sand particle diameter, flow rate, rotational speed, and oil content significantly influence the trajectories of the solid–liquid two-phase flow, the motion characteristics of sand particles, and the vortices in the liquid flow field. As sand particle diameter increases, their radial and axial momentum first rise and then decline. Both radial and axial momentum are positively correlated with sand concentration. An increase in flow rate, higher rotational speed, and lower oil content all lead to greater fluctuations in the radial momentum curve of sand particles inside the impeller. Larger sand particles are predominantly distributed near the inlet, while smaller particles are more concentrated at the outlet. Higher sand concentrations and non-spherical particles increase particle distribution within the flow passages, with the guide vane channels exhibiting the most pronounced accumulation—reaching a maximum concentration of 6260 kg/m3 due to elevated sand loading. Increasing flow rate, rotational speed, or oil content significantly reduces sand concentration in the flow channel, promoting more efficient particle transport. Conversely, lower inlet sand concentration, non-spherical particles, reduced flow rate, decreased rotational speed, and higher oil content all result in fewer large particles in the flow passage. The findings provide important guidance for improving the wear resistance of vane-type multiphase pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop