Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Analysis (LCA) of the Product
2.2. Greenhouse Gas (GHG) Emissions Inventory and LCA
2.3. Quantification of the Product Carbon Footprint (PCF) of the Electrical Submersible Pump (ESP) System
- E = Emissions concentration in weight of CO2 equivalent
- AD = Activity Data
- ED = Emissions Data
- GWP = Global Warming Potential
3. Results
3.1. Result of the Life Cycle Assessment (LCA) of the Manufacturing of an ESPs
3.2. Result of the GHG Emissions Inventory in the Assembly of an ESPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldman, A.J.L.; Cortés, D.H. Cambio climático y agricultura: Una revisión de la literatura con énfasis en América Latina. El Trimest. Económico 2016, 83, 459–496. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhang, X.; Li, M.-Z.; Li, J.-R. Non-CO2 greenhouse gas separation using advanced porous materials. Chem. Soc. Rev. 2024, 53, 2056–2098. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Perathoner, S. Reduction of Non-CO2 Greenhouse Gas Emissions by Catalytic Processes. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1759–1802. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; McDuffie, E.E.; Charles, M. Opinion: Coordinated development of emission inventories for climate forcers and air pollutants. Atmos. Chem. Phys. 2022, 22, 13201–13218. [Google Scholar] [CrossRef]
- Maji, S.; Ahmed, S.; Ghosh, S. Source Apportionment of Greenhouse Gases in the Atmosphere. In Greenhouse Gases: Sources, Sinks and Mitigation; Sonwani, S., Saxena, P., Eds.; Springer Nature: Singapore, 2022; pp. 9–37. [Google Scholar] [CrossRef]
- Meza-López, P.; Trujillo-Delgado, M.K.; de la Cruz-Carrera, R.; Nájera-Luna, J.A. Estimación de la huella de carbono en la industria de transformación primaria de la madera en El Salto, Durango. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2021, 27, 127–142. [Google Scholar] [CrossRef]
- U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 27 September 2024).
- Suer, J.; Traverso, M.; Ahrenhold, F. Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067. J. Clean. Prod. 2021, 318, 128588. [Google Scholar] [CrossRef]
- Córdova, M.; Cordova, D.; Alvarez, F.C.; Chaglla, M.T.; Pico, P.E.; Pérez, L.V. Carbon Footprints in Ecuador: Case of Riobamba city’s Bus Stations. IOP Conf. Ser. Earth Environ. Sci. 2018, 151, 012001. [Google Scholar] [CrossRef]
- UNE-EN ISO 14044:2006/A2:2021; Environmental Management—Life Cycle Assessment—Requirements and Guidelines—Amendment 2. ISO: Geneva, Switzerland, 2006. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=norma-une-en-iso-14044-2006-a2-2021-n0066259&TermStoreId=30422a6b-6877-4e28-82d6-96d5dac7e3b1&TermSetId=68b35e67-1409-448a-b93c-10dd69a44760&TermId=64d4ad9d-ede1-4acd-915c-be64ad2a132d (accessed on 27 September 2024).
- Felicioni, L.; Gaspari, J.; Veselka, J.; Malík, Z. A comparative cradle-to-grave life cycle approach for addressing construction design choices: An applicative case study for a residential tower in Aalborg, Denmark. Energy Build. 2023, 298, 113557. [Google Scholar] [CrossRef]
- Gidden, M.J.; Gasser, T.; Grassi, G.; Forsell, N.; Janssens, I.; Lamb, W.F.; Minx, J.; Nicholls, Z.; Steinhauser, J.; Riahi, K. Aligning climate scenarios to emissions inventories shifts global benchmarks. Nature 2023, 624, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Ibarra, L.; Rebolledo-Leiva, R.; Angulo-Meza, L.; González-Araya, M.C.; Iriarte, A. The joint use of life cycle assessment and data envelopment analysis methodologies for eco-efficiency assessment: A critical review, taxonomy and future research. Sci. Total Environ. 2020, 738, 139538. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, M.; Dasari, K.; Duvvuri, S.S.; Prasad, K.R.K.V.; Narendra, B.K.; Murali Krishna, V.B. Design, control and performance comparison of PI and ANFIS controllers for BLDC motor driven electric vehicles. Meas. Sens. 2024, 31, 101001. [Google Scholar] [CrossRef]
- Lai, K.E.; Rahiman, N.A.; Othman, N.; Ali, K.N.; Lim, Y.W.; Moayedi, F.; Dzahir, M.A.M. Quantification process of carbon emissions in the construction industry. Energy Build. 2023, 289, 113025. [Google Scholar] [CrossRef]
- Moré, F.B.; Galindro, B.M.; Soares, S.R. Assessing the completeness and comparability of environmental product declarations. J. Clean. Prod. 2022, 375, 133999. [Google Scholar] [CrossRef]
- ISO 14067:2018(en); Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:14067:ed-1:v1:en (accessed on 27 September 2024).
- Guinée, J. Handbook on life cycle assessment—Operational guide to the ISO standards. Int. J. Life Cycle Assess. 2001, 6, 255. [Google Scholar] [CrossRef]
Parameters | Unit | Raw Material | Manufacturing | Storage | Use |
---|---|---|---|---|---|
Electric Submersible Pump | kg | 997.90 | 0 | 0 | 0 |
Electrical energy | kW/h | 0 | 0 | 0 | 5.77 × 104 |
Transportation energy | kW/h | 0 | 1491.66 | 1491.66 | 0 |
Packaging | kg | 0 | 0 | 0 | 0 |
Parameters | Unit | Raw Material | Manufacturing | Storage | Use |
---|---|---|---|---|---|
Electric Submersible Pump | kg | 656 | 0 | 0 | 0 |
Electrical energy | kW/h | 0 | 0 | 0 | 4.44 × 104 |
Transportation energy | kW/h | 0 | 1491.66 | 1491.66 | 0 |
Packaging | kg | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova-Suárez, M.; Córdova-Suárez, J.; Teves, R.; Barreno-Ávila, E.; Silva-Frey, F. Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology. Energies 2025, 18, 2898. https://doi.org/10.3390/en18112898
Córdova-Suárez M, Córdova-Suárez J, Teves R, Barreno-Ávila E, Silva-Frey F. Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology. Energies. 2025; 18(11):2898. https://doi.org/10.3390/en18112898
Chicago/Turabian StyleCórdova-Suárez, Manolo, Juan Córdova-Suárez, Ricardo Teves, Enrique Barreno-Ávila, and Fabian Silva-Frey. 2025. "Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology" Energies 18, no. 11: 2898. https://doi.org/10.3390/en18112898
APA StyleCórdova-Suárez, M., Córdova-Suárez, J., Teves, R., Barreno-Ávila, E., & Silva-Frey, F. (2025). Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology. Energies, 18(11), 2898. https://doi.org/10.3390/en18112898