Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = oil advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8377 KiB  
Article
Numerical Modeling and Sea Trial Studies of Oil Spills in the Sea Area from Haikou to Danzhou
by Weihang Wang, Bijin Liu, Zhen Guo, Zhenwei Zhang and Chao Chen
Water 2025, 17(9), 1379; https://doi.org/10.3390/w17091379 - 3 May 2025
Viewed by 544
Abstract
This study utilized the FVCOM model to establish a hydrodynamic model for the waters from Haikou to Danzhou. Based on this framework, a numerical model for oil spill drift and diffusion was developed using the Lagrangian particle method, incorporating processes such as advection, [...] Read more.
This study utilized the FVCOM model to establish a hydrodynamic model for the waters from Haikou to Danzhou. Based on this framework, a numerical model for oil spill drift and diffusion was developed using the Lagrangian particle method, incorporating processes such as advection, diffusion, spreading, emulsification, dissolution, volatilization, and shoreline adsorption. Sea experiments involving drifters and dye were conducted to validate the oil spill model. The model was subsequently applied to analyze the impacts of tidal phases and wind fields on oil spill trajectories, predict affected areas, and assess risks to environmentally sensitive zones. The results demonstrate that the hydrodynamic model accurately reproduces the tidal current characteristics of the study area. Validation using drifter and dye experiments confirmed that the model’s predictive error remains within 20%, meeting operational forecasting standards. Potential sources of error include uncertainties in wind–wave–current interactions and discrepancies in windage coefficients between oil spills and drifters. Tidal currents and wind fields were identified as the dominant drivers of oil spill drift and diffusion. Under southerly wind conditions, the oil spill exhibited the largest spatial extent, covering 995.25 km2 with a trajectory length of 226.92 km. A sensitivity analysis highlighted the Lingao Silverlip Pearl Oyster Marine Protected Area and Shatu Bay Beach as high-risk regions. The developed model provides critical technical support for oil spill emergency response under diverse environmental conditions, enabling proactive pathway forecasting and preventive measures to mitigate ecological damage. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

25 pages, 1010 KiB  
Article
Solutions for Modelling the Marine Oil Spill Drift
by Catalin Popa, Dinu Atodiresei, Alecu Toma, Vasile Dobref and Jenel Vatamanu
Environments 2025, 12(4), 132; https://doi.org/10.3390/environments12040132 - 21 Apr 2025
Viewed by 764
Abstract
Oil spills represent a critical environmental hazard with far-reaching ecological and economic consequences, necessitating the development of sophisticated modelling approaches to predict, monitor, and mitigate their impacts. This study presents a computationally efficient and physically grounded modelling framework for simulating oil spill drift [...] Read more.
Oil spills represent a critical environmental hazard with far-reaching ecological and economic consequences, necessitating the development of sophisticated modelling approaches to predict, monitor, and mitigate their impacts. This study presents a computationally efficient and physically grounded modelling framework for simulating oil spill drift in marine environments, developed using Python coding. The proposed model integrates core physical processes—advection, diffusion, and degradation—within a simplified partial differential equation system, employing an integrator for numerical simulation. Building on recent advances in marine pollution modelling, the study incorporates real-time oceanographic data, satellite-based remote sensing, and subsurface dispersion dynamics into an enriched version of the simulation. The research is structured in two phases: (1) the development of a minimalist Python model to validate fundamental oil transport behaviours, and (2) the implementation of a comprehensive, multi-layered simulation that includes NOAA ocean currents, 3D vertical mixing, and support for inland and chemical spill modelling. The results confirm the model’s ability to reproduce realistic oil spill trajectories, diffusion patterns, and biodegradation effects under variable environmental conditions. The proposed framework demonstrates strong potential for real-time decision support in oil spill response, coastal protection, and environmental policy-making. This paperwork contributes to the field by bridging theoretical modelling with practical response needs, offering a scalable and adaptable tool for marine pollution forecasting. Future extensions may incorporate deep learning algorithms and high-resolution sensor data to further enhance predictive accuracy and operational readiness. Full article
Show Figures

Figure 1

15 pages, 12548 KiB  
Article
The Implications of Seeping Hydrocarbon Gases in the Gunsan Basin, Central Yellow Sea, off the Southwest of Korea
by Jin-Hyung Cho, Seung-Yong Lee, Seok Jang, Nam-Do Jang, Cheol-Ku Lee, Seung-Hun Lee, Byung-Cheol Kum, Bo-Ram Lee and Seom-Kyu Jung
Geosciences 2024, 14(9), 230; https://doi.org/10.3390/geosciences14090230 - 27 Aug 2024
Viewed by 1881
Abstract
A detailed analysis of high-resolution (3.5 kHz) chirp seismic profiles acquired in the Gunsan Basin of the central Yellow Sea revealed that hydrocarbon gases are actively seeping via the formation of many plumes. The uppermost sedimentary layer was acoustically confirmed to be fully [...] Read more.
A detailed analysis of high-resolution (3.5 kHz) chirp seismic profiles acquired in the Gunsan Basin of the central Yellow Sea revealed that hydrocarbon gases are actively seeping via the formation of many plumes. The uppermost sedimentary layer was acoustically confirmed to be fully or partially charged with gases. Somewhat favored by the low-tide period, episodic gas seepage is mainly associated with the underlying fault systems of Cretaceous-Cenozoic sedimentary strata in the southwestern part of the basin. Catastrophic gas expulsion seems to have formed a crater at the sidewall of a sedimentary ridge and two diapirs. Here, methane is poorly concentrated but rich in the heavy carbon isotope (δ13C, −52.6‰ to −44.7‰ The Vienna Peedee Belemnite [VPDB]), indicating that methane formed mainly through biodegradation of heavy oils at depth remains in the shallow sediments following its expulsion. Episodic rapid upward advection of porewater is also manifest by unmixed heavy methane trapped in the upper part of the primary biogenic methane (δ13C, about −90‰ VPDB)-filled sediment core. These findings imply that the Gunsan Basin fulfills the requirements for possible generation and preservation of oil and gas, like the petroliferous basins of eastern China and the Yellow Sea. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

20 pages, 8057 KiB  
Article
Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts
by Mingxing Yang, Yuesuo Yang, Xinyao Yang, Xiaoming Song, Xinqiang Du and Ying Lu
Water 2024, 16(13), 1773; https://doi.org/10.3390/w16131773 - 22 Jun 2024
Cited by 3 | Viewed by 1640
Abstract
A quantitative and qualitative assessment using molecular markers derived from compound-specific indices for indicating groundwater impacted by petroleum spills in an oil field was recently undertaken and demonstrated serious contamination, with both high total petroleum hydrocarbons (TPH) (3.68–7.32 mg/L) and hazardous compounds in [...] Read more.
A quantitative and qualitative assessment using molecular markers derived from compound-specific indices for indicating groundwater impacted by petroleum spills in an oil field was recently undertaken and demonstrated serious contamination, with both high total petroleum hydrocarbons (TPH) (3.68–7.32 mg/L) and hazardous compounds in the groundwater. A petroleum source was identified, and the analysis revealed a decreasing trend of fresh petroleum input, along with groundwater advection and an increasing trend of biodegradation potential at locations farther from the source. This was confirmed via microbial analysis with both biodegrading microorganisms and diversity indices (Shannon, Simpson, and Pielou) and the principal component analysis (PCA) modeling approach, which classified the field samples into three types according to the distribution correlations between different organic compounds. Biodegradation was believed to be the dominant sink of hydrocarbons due to the increasing Pr/C17 and Ph/C18 values with seasonal changes. Raised temperatures activated the microbial degradation process; specifically, low-weight hydrocarbons degraded more rapidly than high-weight hydrocarbons, resulting in the accumulation of an unresolved complex mixture of bioproducts at locations that were farther away. Spatially, the Pr/C17 and Ph/C18 values increased from the upstream to the downstream areas, showing substantial biodegradation. The relationships between the molecular markers and chemical indices were quantified via canonical correlation analysis (CCA) to visually explain the interactive reaction processes. It was also demonstrated that the biodegradation of petroleum organics can be characterized by the consumption of dissolved oxygen and a decreasing Pr/Ph ratio, due to system reduction. These results demonstrate that compound-specific molecular markers, coupled with biochemical parameters, can effectively support a better understanding and effective fingerprinting of the fate and transport of petroleum organic contaminants, thus offering valuable technical support for a cost-effective remediation strategy. Full article
(This article belongs to the Special Issue Persistent and Emerging Organic Contaminants in Natural Environments)
Show Figures

Figure 1

24 pages, 8210 KiB  
Review
Transport Barriers in Geophysical Flows: A Review
by Sergey Prants
Symmetry 2023, 15(10), 1942; https://doi.org/10.3390/sym15101942 - 20 Oct 2023
Cited by 3 | Viewed by 2239
Abstract
In the Lagrangian approach, the transport processes in the ocean and atmosphere are studied by tracking water or air parcels, each of which may carry different tracers. In the ocean, they are salt, nutrients, heat, and particulate matter, such as plankters, oil, radionuclides, [...] Read more.
In the Lagrangian approach, the transport processes in the ocean and atmosphere are studied by tracking water or air parcels, each of which may carry different tracers. In the ocean, they are salt, nutrients, heat, and particulate matter, such as plankters, oil, radionuclides, and microplastics. In the atmosphere, the tracers are water vapor, ozone, and various chemicals. The observation and simulation reveal highly complex patterns of advection of tracers in turbulent-like geophysical flows. Transport barriers are material surfaces across which the transport is minimal. They can be classified into elliptic, parabolic, and hyperbolic barriers. Different diagnostics in detecting transport barriers and the analysis of their role in the dynamics of oceanic and atmospheric flows are reviewed. We discuss the mathematical tools, borrowed from dynamical systems theory, for detecting transport barriers in simple kinematic and dynamic models of vortical and jet-like flows. We show how the ideas and methods, developed for simple model flows, can be successfully applied for studying the role of barriers in oceanic and atmospheric flows. Special attention is placed on the significance of transport barriers in important practical issues: anthropogenic and natural pollution, advection of plankton, cross-shelf exchange, and propagation of upwelling fronts in coastal zones. Full article
(This article belongs to the Special Issue Geophysical Fluid Dynamics and Symmetry)
Show Figures

Figure 1

13 pages, 1496 KiB  
Article
Characteristics and Risk Assessment of PAH Pollution in Soil of a Retired Coking Wastewater Treatment Plant in Taiyuan, Northern China
by Yuan Li, Quanxi Zhang, Donggang Guo and Jinhua Dang
Toxics 2023, 11(5), 415; https://doi.org/10.3390/toxics11050415 - 27 Apr 2023
Cited by 4 | Viewed by 2349
Abstract
We analyzed the soil at the site of a former coking wastewater treatment plant on redeveloped land in Taiyuan, northern China, in an attempt to detect the presence of 16 types of priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental [...] Read more.
We analyzed the soil at the site of a former coking wastewater treatment plant on redeveloped land in Taiyuan, northern China, in an attempt to detect the presence of 16 types of priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency (US EPA) and evaluate the potential pollution risks. The results show that the total proportion of PAHs in the surface soil of the redeveloped land ranged from 0.3 to 1092.57 mg/kg, with an average value of 218.5 mg/kg, mainly consisting of high-ring (5–6 rings) components. Characteristic ratio analysis indicated that the pollution was mainly related to the combustion of petroleum, coal, and biomasses. The wastewater treatment units operated according to the following treatment train: advection oil separation tank, dissolved air flotation tank, aerobic tank, secondary sedimentation tank, and sludge concentration tank. Our study found that pollution resulting from low-ring PAHs mainly appeared in the advection oil separation tank during the pre-wastewater treatment stage, while medium-ring PAH contamination mainly occurred in the dissolved air floatation tank, aerobic tank, and secondary sedimentation tank during the middle stages of wastewater treatment. High-ring PAH contamination primarily appeared in the sludge concentration tank in the latter stage of wastewater treatment. Based on our assessment of the ecological risk using the Nemerow Comprehensive Pollution Index and the toxicity equivalent factor (TEF) method, we determined that individual PAHs in the study area exceeded acceptable levels and the total amount of pollution was potentially harmful to the ecological environment. In addition, the comprehensive lifetime cancer risk for different populations resulting from exposure to the soil in the study area was determined to be within acceptable limits based on the average PAH concentrations. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

22 pages, 8863 KiB  
Article
Investigating the Influence of Groundwater Flow and Charge Cycle Duration on Deep Borehole Heat Exchangers for Heat Extraction and Borehole Thermal Energy Storage
by Christopher S. Brown, Hannah Doran, Isa Kolo, David Banks and Gioia Falcone
Energies 2023, 16(6), 2677; https://doi.org/10.3390/en16062677 - 13 Mar 2023
Cited by 27 | Viewed by 3929
Abstract
Decarbonisation of heat is essential to meeting net zero carbon targets; however, fluctuating renewable resources, such as wind or solar, may not meet peak periods of demand. Therefore, methods of underground thermal energy storage can aid in storing heat in low demand periods [...] Read more.
Decarbonisation of heat is essential to meeting net zero carbon targets; however, fluctuating renewable resources, such as wind or solar, may not meet peak periods of demand. Therefore, methods of underground thermal energy storage can aid in storing heat in low demand periods to be exploited when required. Borehole thermal energy storage (BTES) is an important technology in storing surplus heat and the efficiency of such systems can be strongly influenced by groundwater flow. In this paper, the effect of groundwater flow on a single deep borehole heat exchanger (DBHEs) was modelled using OpenGeoSys (OGS) software to test the impact of varying regional Darcy velocities on the performance of heat extraction and BTES. It is anticipated that infrastructure such as ex-geothermal exploration or oil and gas development wells approaching the end of life could be repurposed. These systems may encounter fluid flow in the subsurface and the impact of this on single well deep BTES has not previously been investigated. Higher groundwater velocities can increase the performance of a DBHE operating to extract heat only for a heating season of 6 months. This is due to the reduced cooling of rocks in proximity to the DBHE as groundwater flow replenishes heat which has been removed from the rock volume around the borehole (this can also be equivalently thought of as “coolth” being transported away from the DBHE in a thermal plume). When testing varying Darcy velocities with other parameters for a DBHE of 920 m length in rock of thermal conductivity 2.55 W/(m·K), it was observed that rocks with larger Darcy velocity (1e-6 m/s) can increase the thermal output by up to 28 kW in comparison to when there is no groundwater flow. In contrast, groundwater flow inhibits single well deep BTES as it depletes the thermal store, reducing storage efficiency by up to 13% in comparison to models with no advective heat transfer in the subsurface. The highest Darcy velocity of 1e-6 m/s was shown to most influence heat extraction and BTES; however, the likelihood of this occurring regionally, and at depth of around or over 1 km is unlikely. This study also tested varying temporal resolutions of charge and cyclicity. Shorter charge periods allow a greater recovery of heat (c. 34% heat injected recovered for 1 month charge, as opposed to <17% for 6 months charge). Full article
(This article belongs to the Special Issue Advances in Underground Thermal Energy Storage)
Show Figures

Figure 1

17 pages, 2101 KiB  
Article
Differences in CO2 Emissions on a Bare-Drained Peat Area in Sarawak, Malaysia, Based on Different Measurement Techniques
by Hasimah Mos, Mohd Haniff Harun, Nur Maisarah Jantan, Zulkifli Hashim, Anis Suriani Ibrahim and Yusri Yusup
Agriculture 2023, 13(3), 622; https://doi.org/10.3390/agriculture13030622 - 5 Mar 2023
Cited by 1 | Viewed by 2917
Abstract
The drainage and cultivation of peatlands will lead to subsidence and mineralisation of organic matter, increasing carbon (C) loss as more CO2 is emitted. There is little information about carbon emissions from bare peat soil. A study was undertaken to measure the [...] Read more.
The drainage and cultivation of peatlands will lead to subsidence and mineralisation of organic matter, increasing carbon (C) loss as more CO2 is emitted. There is little information about carbon emissions from bare peat soil. A study was undertaken to measure the CO2 emissions from a logged-over peat swamp area that was purposely vegetation-free. We aimed to report CO2 emissions from a bare, drained peatland developed for an oil palm plantation. For 12 months, we used eddy covariance (EC), closed chambers, and soil subsidence measurements to derive CO2 emissions from a logged-over peat swamp area. Significant variations in the estimated soil CO2 efflux were observed in the three tested measurement techniques. The average CO2 flux rate measured by the EC technique was 4.94 ± 0.12 µmol CO2 m−2 s−1 (or 68.55 tonnes CO2 ha−1 year−1). Meanwhile, the soil CO2 efflux rate measured by the closed chamber technique was 4.19 ± 0.22 µmol CO2 m−2 s−1 (or 58.14 tonnes CO2 ha−1 year−1). Subsidence amounted to 1.9 cm year−1, corresponding to 36.12 tonnes CO2 ha−1 year−1. The estimation of the C loss was found to be highest by the EC technique, lower by the soil chamber technique, and lowest by the peat subsidence rate technique. The higher CO2 emission rate observed in the EC technique could be attributed to soil microbial respiration and decomposing woody residues in the nearby stacking rows due to the large EC footprint. It could also be affected by CO2 advection from oil palms adjacent to the study site. Despite the large differences in the CO2 emission rates by the different techniques, this study provides valuable information on the soil heterotrophic respiration of deep peat in Sarawak. Carbon emissions from a bare peat area cover only a fraction of the soil CO2 respiration component, i.e., the soil heterotrophic respiration. Further investigations are needed to determine the CO2 emissions by soil microbial activities and plant roots from other peat areas in Sarawak. Full article
(This article belongs to the Special Issue Ecological Monitoring and Restoration of Agricultural Environment)
Show Figures

Figure 1

15 pages, 6129 KiB  
Article
Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea
by Yumi Kim, Nankyoung Moon, Yoonbae Chung and Jihyun Seo
Atmosphere 2022, 13(10), 1631; https://doi.org/10.3390/atmos13101631 - 7 Oct 2022
Cited by 5 | Viewed by 3191
Abstract
In this study, we investigate the air quality improvement effect in Busan, the largest port city in South Korea, caused by the implementation of International Maritime Organization (IMO) sulfur regulations. Currently, the Korean government is struggling with problems related to PM2.5, [...] Read more.
In this study, we investigate the air quality improvement effect in Busan, the largest port city in South Korea, caused by the implementation of International Maritime Organization (IMO) sulfur regulations. Currently, the Korean government is struggling with problems related to PM2.5, and ships are one of the major sources of PM2.5 generation in South Korea. Therefore, we tried to estimate how much the PM2.5 levels in South Korea could be improved via low-sulfur regulation. According to the Clean Air Quality Policy Support System (CAPSS; National Emission Inventory) in 2016, ship emissions in Busan accounted for 39%, 71%, and 39% of PM2.5, SO2, and NO2 emissions, respectively. To simulate the effect of the IMO’s 0.5 percent sulfur regulation, SOx and PM2.5 emissions from oil-fueled cargo ships were reduced. Via ship fuel regulation, the PM2.5 concentration was improved by up to 19% at a site near the port in 2020. In addition, in the case of sulfate, the reduction rate was higher on the downwind side of the Busan port and not near the port, which can be considered as the cause of advection and secondary formation. The PM2.5 contributions from ships to each of the sub-regions in Busan also decreased by an average of 47% because of IMO sulfur regulation. Although there were limitations in terms of emission estimations because of the application of low-sulfur regulation, we expect that the results of this paper can be used for additional PM2.5 improvement plans developed by the Korean government and by the local government as well. Full article
Show Figures

Figure 1

26 pages, 9128 KiB  
Article
Characteristic Forced and Spontaneous Imbibition Behavior in Strongly Water-Wet Sandstones Based on Experiments and Simulation
by Pål Østebø Andersen, Liva Salomonsen and Dagfinn Søndenaa Sleveland
Energies 2022, 15(10), 3531; https://doi.org/10.3390/en15103531 - 11 May 2022
Cited by 17 | Viewed by 3327
Abstract
 Forced and spontaneous imbibition of water is performed to displace oil from strongly water-wet Gray Berea (~130 mD) and Bentheimer (~1900 mD) sandstone core plugs. Two nonpolar oils (n-heptane and Marcol-82) were used as a non-wetting phase, with viscosities between 0.4 and 32 [...] Read more.
 Forced and spontaneous imbibition of water is performed to displace oil from strongly water-wet Gray Berea (~130 mD) and Bentheimer (~1900 mD) sandstone core plugs. Two nonpolar oils (n-heptane and Marcol-82) were used as a non-wetting phase, with viscosities between 0.4 and 32 cP and brine (1 M NaCl) for the wetting phase with viscosity 1.1 cP. Recovery was measured for both imbibition modes, and pressure drop was measured during forced imbibition. Five forced imbibition tests were performed using low or high injection rates, using low or high oil viscosity. Seventeen spontaneous imbibition experiments were performed at four different oil viscosities. By varying the oil viscosity, the injection rate and imbibition modes, capillary and advective forces were allowed to dominate, giving trends that could be captured with modeling. Full numerical simulations matched the experimental observations consistently. The findings of this study provide better understanding of pressure and recovery behavior in strongly water-wet systems. A strong positive capillary pressure and a favorable mobility ratio resulting from low water relative permeability were main features explaining the observations. Complete oil recovery was achieved at water breakthrough during forced imbibition for low and high oil viscosity and the recovery curves were identical when plotted against the injected volume. Analytical solutions for forced imbibition indicate that the pressure drop changes linearly with time when capillary pressure is negligible. Positive capillary forces assist water imbibition, reducing the pressure drop needed to inject water, but yielding a jump in pressure drop when the front reaches the outlet. At a high injection rate, capillary forces are repressed and the linear trend between the end points was clearer than at a low rate for the experimental data. Increasing the oil viscosity by a factor of 80 only increased the spontaneous imbibition time scale by five, consistent with low water mobility constraining the imbibition rate. The time scale was predicted to be more sensitive to changes in water viscosity. At a higher oil-to-water mobility ratio, a higher part of the total recovery follows the square root of time. Our findings indicate that piston-like displacement of oil by water is a reasonable approximation for forced and spontaneous imbibition, unless the oil has a much higher viscosity than the water.  Full article
(This article belongs to the Special Issue Management of High Water Cut and Mature Petroleum Reservoirs)
Show Figures

Figure 1

35 pages, 6686 KiB  
Review
From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment
by Hernando Pactao Bacosa, Sheila Mae B. Ancla, Cris Gel Loui A. Arcadio, John Russel A. Dalogdog, Dioniela Mae C. Ellos, Heather Dale A. Hayag, Jiza Gay P. Jarabe, Ahl Jimhar T. Karim, Carl Kenneth P. Navarro, Mae Princess I. Palma, Rodolfo A. Romarate, Kaye M. Similatan, Jude Albert B. Tangkion, Shann Neil A. Yurong, Jhonamie A. Mabuhay-Omar, Chihiro Inoue and Puspa L. Adhikari
J. Mar. Sci. Eng. 2022, 10(3), 426; https://doi.org/10.3390/jmse10030426 - 15 Mar 2022
Cited by 44 | Viewed by 17032
Abstract
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates [...] Read more.
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates captured a significant interest of the scientific community and regulatory agencies. Typically, the environment has natural mechanisms (e.g., photooxidation, biodegradation, evaporation) to weather/degrade and remove the spilled oil from the environment. Among various oil weathering mechanisms, biodegradation by naturally occurring bacterial populations removes a majority of spilled oil, thus the focus on bioremediation has increased significantly. Helping in the marginal recognition of this promising technique for oil-spill degradation, this paper reviews recently published articles that will help broaden the understanding of the factors affecting biodegradation of spilled oil in coastal-marine environments. The goal of this review is to examine the effects of various environmental variables that contribute to oil degradation in the coastal-marine environments, as well as the factors that influence these processes. Physico-chemical parameters such as temperature, oxygen level, pressure, shoreline energy, salinity, and pH are taken into account. In general, increase in temperature, exposure to sunlight (photooxidation), dissolved oxygen (DO), nutrients (nitrogen, phosphorous and potassium), shoreline energy (physical advection—waves) and diverse hydrocarbon-degrading microorganisms consortium were found to increase spilled oil degradation in marine environments. In contrast, higher initial oil concentration and seawater pressure can lower oil degradation rates. There is limited information on the influences of seawater pH and salinity on oil degradation, thus warranting additional research. This comprehensive review can be used as a guide for bioremediation modeling and mitigating future oil spill pollution in the marine environment by utilizing the bacteria adapted to certain conditions. Full article
(This article belongs to the Special Issue Degradation of Marine Oil Pollution)
Show Figures

Figure 1

22 pages, 2872 KiB  
Article
Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake
by Greg F. Slater, Corey A. Goad, Matthew B. J. Lindsay, Kevin G. Mumford, Tara E. Colenbrander Nelson, Allyson L. Brady, Gerdhard L. Jessen and Lesley A. Warren
Microorganisms 2021, 9(12), 2509; https://doi.org/10.3390/microorganisms9122509 - 3 Dec 2021
Cited by 7 | Viewed by 3203
Abstract
Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit [...] Read more.
Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015–2018) chemical and isotopic (δ13C) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR. Overall, the water-column methane concentrations decreased over the course of the study, though this was dynamic both seasonally and annually. Phospholipid fatty acid (PLFA) distributions and δ13C demonstrated that dissolved methane, primarily input via fluid fine tailings (FFT) porewater advection, was oxidized by the water column microbial community at all sampling times. Modeling and under-ice observations indicated that the dissolution of methane from bubbles during ebullition, or when trapped beneath ice, was also an important source of dissolved methane. The addition of alum to BML in the fall of 2016 impacted the microbial cycling in BML, leading to decreased methane oxidation rates, the short-term dominance of a phototrophic community, and longer-term shifts in the microbial community metabolism. Overall, our results highlight a need to understand the dynamic nature of these microbial communities and the impact of perturbations on the associated biogeochemical cycling within oil sands pit lakes. Full article
(This article belongs to the Special Issue The Microbiology of Oil Sands Tailings)
Show Figures

Figure 1

26 pages, 118357 KiB  
Article
Drifting Speed of Lagrangian Fronts and Oil Spill Dispersal at the Ocean Surface
by Gina Fifani, Alberto Baudena, Milad Fakhri, Georges Baaklini, Yannice Faugère, Rosemary Morrow, Laurent Mortier and Francesco d’Ovidio
Remote Sens. 2021, 13(22), 4499; https://doi.org/10.3390/rs13224499 - 9 Nov 2021
Cited by 13 | Viewed by 4297
Abstract
Due to its dire impacts on marine life, public health, and socio-economic services, oil spills require an immediate response. Effective action starts with good knowledge of the ocean dynamics and circulation, from which Lagrangian methods derive key information on the dispersal pathways present [...] Read more.
Due to its dire impacts on marine life, public health, and socio-economic services, oil spills require an immediate response. Effective action starts with good knowledge of the ocean dynamics and circulation, from which Lagrangian methods derive key information on the dispersal pathways present in the contaminated region. However, precise assessments of the capacity of Lagrangian methods in real contamination cases remain rare and limited to large slicks spanning several hundreds of km. Here we address this knowledge gap and consider two medium-scale (tens of km wide) events of oil in contrasting conditions: an offshore case (East China Sea, 2018) and a recent near-coastal one (East Mediterranean, 2021). Our comparison between oil slicks and Lagrangian diagnostics derived from near-real-time velocity fields shows that the calculation of Lagrangian fronts is, in general, more robust to errors in the velocity fields and more informative on the dispersion pathways than the direct advection of a numerical tracer. The inclusion of the effect of wind is also found to be essential, being capable of suddenly breaking Lagrangian transport barriers. Finally, we show that a usually neglected Lagrangian quantity, the Lyapunov vector, can be exploited to predict the front drifting speed, and in turn, its future location over a few days, on the basis of near-real-time information alone. These results may be of special relevance in the context of next-generation altimetry missions that are expected to provide highly resolved and precise near-real-time velocity fields for both open ocean and coastal regions. Full article
Show Figures

Graphical abstract

17 pages, 2719 KiB  
Review
A Review of River Oil Spill Modeling
by Davor Kvočka, Dušan Žagar and Primož Banovec
Water 2021, 13(12), 1620; https://doi.org/10.3390/w13121620 - 8 Jun 2021
Cited by 23 | Viewed by 7257
Abstract
River oil spills are generally more frequent and pose greater environmental and public health risk than coastal and offshore oil spills. However, the river oil spill research has received a negligible amount of academic attention in the past three decades, while at the [...] Read more.
River oil spills are generally more frequent and pose greater environmental and public health risk than coastal and offshore oil spills. However, the river oil spill research has received a negligible amount of academic attention in the past three decades, while at the same time the coastal and offshore oil spill research has expanded and evolved tremendously. This paper provides the state-of-the-art review of river oil spill modeling and summarizes the developments in the field from 1994 to present. The review has revealed that the majority of the gaps in knowledge still remain. Thus, there is a need for (i) experimental studies in order to develop and validate new models and better understand the main physicochemical processes, (ii) studies on inter-linking of the governing processes, such as hydrodynamics, advection–dispersion, and weathering processes, (iii) adaptation and validation of coastal and offshore oil spill models for applications in riverine environments, and (iv) development of river oil spill remote sensing systems and detection techniques. Finally, there is a need to more actively promote the importance of river oil spill research and modeling in the context of environmental and public health protection, which would form the basis for obtaining more research funding and thus more academic attention. Full article
(This article belongs to the Special Issue Ecohydraulics Modeling and Simulation)
Show Figures

Figure 1

22 pages, 24460 KiB  
Article
Modeling of Accidental Oil Spills at Different Phases of LNG Terminal Construction
by Byoungjoon Na, Sangyoung Son and Jae-Cheon Choi
J. Mar. Sci. Eng. 2021, 9(4), 392; https://doi.org/10.3390/jmse9040392 - 7 Apr 2021
Cited by 3 | Viewed by 2536
Abstract
Accidental oil spills not only deteriorate biodiversity but also cause immediate threats to coastal environments. This study quantitatively investigates the initial dispersion of spilled oil using the environmental fluid dynamics code (EFDC) model, loosely coupled with an endorsed oil spill model (MEDSLIK-II) accounting [...] Read more.
Accidental oil spills not only deteriorate biodiversity but also cause immediate threats to coastal environments. This study quantitatively investigates the initial dispersion of spilled oil using the environmental fluid dynamics code (EFDC) model, loosely coupled with an endorsed oil spill model (MEDSLIK-II) accounting for time-dependent advection, diffusion, and physiochemical weathering of the surface oil slick. Focusing on local contributing factors (i.e., construction activities) to oil dispersion, the current model is applied to likely oil spills occurring at three different phases of the Songdo LNG terminal construction on a reclaimed site in South Korea. Applied phases pose detailed ship collision scenarios generated based on a proposed construction plan of the terminal. The effects of permeable revetments, required for reclamation, on the currents were also investigated and applied in subsequent oil spill modeling. For each scenario, the simulated results showed distinct patterns in the advection, dispersion, and transformation of the oil slick. Oil absorption into the coast, which causes immense damage to the coastal communities, is found to be highly dependent on the tidal currents, volume of oil spilled, and nearby construction activities. Full article
(This article belongs to the Special Issue Advances in Nearshore Hydrodynamics Research)
Show Figures

Figure 1

Back to TopTop