Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Setting and Sampling Strategy
2.2. Hydrocarbon Analysis
2.2.1. Extraction of Hydrocarbons
2.2.2. GC-MS Conditions
2.2.3. Inorganic Analysis
2.2.4. Microbial Analysis
- Microbial Incubation
- 2.
- Screening of Dominant Strains
- 3.
- Molecular Testing of Microbes
- 4.
- Microbial Community Structure Analysis
2.3. Determination of Molecular Markers
2.4. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Hydrocarbons at the Site
3.1.1. Alkane Hydrocarbons
3.1.2. Aromatic Hydrocarbons
3.1.3. Unresolved Complex Mixture
3.1.4. Molecular Marker Analysis
3.1.5. PCA Analysis of Petroleum Hydrocarbons
3.2. Biodegradation of Petroleum Hydrocarbons
3.2.1. Biodegrading Microorganism Analysis
3.2.2. Spatial Features
3.2.3. Temporal Features
3.3. Canonical Correspondence Analysis (CCA) of Indicators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Apulu, O.G.; Potravny, I.M.; Sukhorukova, I.V. Methods of Justification and Selection of Technologies for Remediation of Oil-contaminated Land. Ecol. Ind. Russ. 2021, 25, 38–43. [Google Scholar] [CrossRef]
- Crivellari, A.; Bonvicini, S.; Tugnoli, A.; Cozzani, V. Key performance indicators for environmental contamination caused by offshore oil spills. Process Saf. Environ. 2021, 153, 60–74. [Google Scholar] [CrossRef]
- Behera, D.; Krishnakumar, S.; Anoop, A. Occurrence, distribution and sources of petroleum contamination in reef-associated sediments of the Gulf of Mannar, India. Mar. Pollut. Bull. 2023, 196, 115576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hu, Q.; Wang, B.; Wang, J.; Li, C.; You, P.; Zhou, R.; Zeng, W.; Liu, X.; Li, Q. Effects of single and combined contamination of total petroleum hydrocarbons and heavy metals on soil microecosystems: Insights into bacterial diversity, assembly, and ecological function. Chemosphere 2023, 345, 140288. [Google Scholar] [CrossRef]
- Gao, H.; Wu, M.; Liu, H.; Xu, Y.; Liu, Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ. Pollut. 2022, 293, 118511. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zhang, Y.; Zhou, Y.; Feng, X. BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chem. Eng. J. 2022, 435, 134825. [Google Scholar] [CrossRef]
- Verena, K.; Uta, P. Quantitative review summarizing the effects of oil pollution on subarctic and arctic marine invertebrates. Environ. Pollut. 2023, 319, 120960. [Google Scholar]
- Pehnec, G.; Jakovljević, I.; Godec, R.; Štrukil, Z.S.; Žero, S.; Huremović, J.; Dzepina, K. Carcinogenic organic content of particulate matter at urban locations with different pollution sources. Sci. Total Environ. 2020, 734, 139414. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, S.; Wu, G. Quantitative oil spill risk from offshore fields in the Bohai Sea, China. Sci. Total Environ. 2019, 688, 494–504. [Google Scholar] [CrossRef]
- Qu, Z.; An, C.; Yue, R.; Bi, H.; Zhao, S. Assessment of the infiltration of water-in-oil emulsion into soil after spill incidents. Sci. Total Environ. 2023, 896, 165325. [Google Scholar] [CrossRef]
- Mansour, M.S.M.; Abdel-Shafy, H.I.; Ibrahim, A.M. Petroleum wastewater: Environmental protection, treatment, and safe reuse: An overview. J. Environ. Manag. 2024, 351, 119827. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Tiraferri, A.; Zhang, X.; Liu, P.; Gan, Z.; Crittenden, J.C.; Ma, J.; Liu, B. Dissolved organic matter in complex shale gas wastewater analyzed with ESI FT-ICR MS: Typical characteristics and potential of biological treatment. J. Hazard. Mater. 2023, 447, 130823. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Das, S. Bacterial enzymatic degradation of recalcitrant organic pollutants: Catabolic pathways and genetic regulations. Environ. Sci. Pollut. Res. Int. 2023, 30, 79676–79705. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Qaria, M.A.; Xu, Q.; Zhu, D. The role of microorganisms in petroleum degradation: Current development and prospects. Sci. Total Environ. 2023, 865, 161112. [Google Scholar]
- Padhye, L.P.; Srivastava, P.; Jasemizad, T.; Bolan, S.; Hou, D.; Shaheen, S.M.; Rinklebe, J.; O’Connor, D.; Lamb, D.; Wang, H. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. J. Hazard. Mater. 2023, 455, 131575. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhan, G.; Wei, K.; Zhou, B.; Zhang, H.; Gao, T.; Zhang, L. Raman spectroscopic and microscopic monitoring of on-site and in-situ remediation dynamics in petroleum contaminated soil and groundwater. Water Res. 2023, 233, 119777. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cui, C.; Zhang, J.; Shen, J.; He, B.; Long, Y.; Ye, J. Biodegradation of petroleum hydrocarbons based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. Ecotox. Environ. Saf. 2023, 253, 114673. [Google Scholar] [CrossRef] [PubMed]
- Romantschuk, M.; Lahti-Leikas, K.; Kontro, M.; Galitskaya, P.; Talvenmäki, H.; Simpanen, S.; Allen, J.A.; Sinkkonen, A. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Front. Microbiol. 2023, 14, 1258148. [Google Scholar] [CrossRef]
- Cai, D.; Wang, Y.; Zhao, X.; Zhang, C.; Dang, Q.; Xi, B. Regulating the biodegradation of petroleum hydrocarbons with different carbon chain structures by composting systems. Sci. Total Environ. 2023, 903, 166552. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Yu, Z.; Dong, X.; Liu, S.; Cui, H.; Sun, B. Advances in research on petroleum biodegradability in soil. Environ. Sci.-Process. Imp. 2021, 23, 9–27. [Google Scholar] [CrossRef]
- Hoang, S.A.; Sarkar, B.; Seshadri, B.; Lamb, D.; Wijesekara, H.; Vithanage, M.; Liyanage, C.; Kolivabandara, P.A.; Rinklebe, J.; Lam, S.S. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. J. Hazard. Mater. 2021, 416, 125702. [Google Scholar] [CrossRef]
- Mishra, P.; Kiran, N.S.; Romanholo Ferreira, L.F.; Yadav, K.K.; Mulla, S.I. New insights into the bioremediation of petroleum contaminants: A systematic review. Chemosphere 2023, 326, 138391. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Lv, Y.; Wang, W.; Wu, Q.; Huang, L.; Zhu, L. Ecological and health risk assessments of polycyclic aromatic hydrocarbons (PAHs) in soils around a petroleum refining plant in China: A quantitative method based on the improved hybrid model. J. Hazard. Mater. 2024, 461, 132476. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, B.; Kotoky, R.; Pandey, P. Impacts of rhizoremediation and biostimulation on soil microbial community, for enhanced degradation of petroleum hydrocarbons in crude oil-contaminated agricultural soils. Environ. Sci. Pollut. Res. 2023, 30, 94649–94668. [Google Scholar] [CrossRef]
- Wu, B.; Guo, S.; Zhang, L.; Wang, S.; Liu, D.; Cheng, Z.; Si, N. Spatial variation of residual total petroleum hydrocarbons and ecological risk in oilfield soils. Chemosphere 2022, 291, 132916. [Google Scholar] [CrossRef] [PubMed]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Dzinun, H.; Imtiaz, A.; Li, T.; El-badawy, T.; Khan, A.U.; Puteh, M.H.; Yuliwati, E. Photocatalytic degradation of recalcitrant aromatic hydrocarbon compounds in oilfield-produced water: A critical review. J. Clean. Prod. 2023, 415, 137567. [Google Scholar] [CrossRef]
- Houlahan, S.; Errington, I.; Hose, G.C.; King, C.K.; George, S.C. Anthropogenic petroleum signatures and biodegradation in subantarctic Macquarie Island soils. Chemosphere 2023, 325, 138395. [Google Scholar] [CrossRef]
- Pehr, K.; Baczynski, A.A.; Bekker, A.; Hoffmann, A.; Freeman, K.H.; Poulton, S.W.; Love, G.D. Compound-specific carbon isotope measurements of individual lipid biomarkers from immature Ediacaran rocks of Baltica. Org. Geochem. 2023, 182, 104641. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, M.; Zhu, X.; Zhang, J.; Xu, J.; Jiang, W. Chemical composition and antioxidant activity of petroleum ether fraction of Rosmarinus officinalis. Heliyon 2023, 9, e21316. [Google Scholar] [CrossRef]
- Monaghan, J.; Richards, L.C.; Vandergrift, G.W.; Hounjet, L.J.; Stoyanov, S.R.; Gill, C.G.; Krogh, E.T. Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatic hydrocarbons in waters impacted by diluted bitumen and conventional crude oil. Sci. Total Environ. 2021, 765, 144206. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, O.M.; Queiroz, A.F.D.S.; Cerqueira, J.R.; Soares, S.A.; Garcia, K.S.; Pavani Filho, A.; Rosa, M.D.L.D.S.; Suzart, C.M.; Pinheiro, L.D.L.; Moreira, Í.T. Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Mar. Pollut. Bull. 2020, 160, 111597. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Wilkinson, H.; Civil, W.; Hutt, L.; Armenise, E.; Kieboom, N.; Sims, K.; Besien, T. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. Sci. Total Environ. 2022, 835, 155101. [Google Scholar] [CrossRef] [PubMed]
- Stern, G.; Macdonald, C.R.; Carvalho, P.C.; Wolfe, T. Baseline levels and characterization of hydrocarbons in surface marine sediments along the transportation corridor in Hudson Bay: A multivariate analysis of n-alkanes, PAHs and biomarkers. Sci. Total Environ. 2023, 855, 158718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, Y.; Zhou, Q.; Xu, X.; Liu, J.; Zhou, G.; Wang, J. Geochemical insights into contribution of petroleum hydrocarbons to the formation of hydrates in the Taixinan Basin, the South China Sea. Geosci. Front. 2021, 12, 100974. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Zhao, S.; Cao, L.; Pan, Y.; Li, F.; Li, F.; Lu, J.; Li, Y.; Song, G. Uncovering the dynamic evolution of microbes and n-alkanes: Insights from the Kuroshio Extension in the Northwest Pacific Ocean. Sci. Total Environ. 2023, 875, 162418. [Google Scholar] [CrossRef]
- Vivian, U.O.; Leo, C.O.; Achugasim, O. Aliphatic Hydrocarbon Fingerprints of Some Crude Oil Polluted Soils from Niger Delta, Nigeria. Chem. Eng. Sci. 2018, 5, 1–5. [Google Scholar]
- Cai, F.; Wang, R.; Cai, J.; Huang, Q.; Huang, Z.; Xu, Y.; Yang, Q. Investigation of the maturation effects on biomarker distributions in bituminous coals. Org. Geochem. 2022, 173, 104496. [Google Scholar] [CrossRef]
- Song, D.; Chen, Y.; Wang, T.; Li, M.; Li, P. Organic geochemical compositions of Mesoproterozoic source rocks in the Yanliao Rift, Northern China. Mar Pet. Geol. 2021, 123, 104740. [Google Scholar] [CrossRef]
- Mehta, B.; Ankit, Y.; Basu, S.; Anoop, A. Characterization of sedimentary organic matter and depositional processes in the Mandovi estuary, western India: An integrated lipid biomarker, sedimentological and stable isotope approach. Appl. Geochem. 2021, 131, 105041. [Google Scholar]
- Shi, H.; Gao, W.; Zheng, Y.; Yang, L.; Han, B.; Zhang, Y.; Zheng, L. Distribution and abundance of oil-degrading bacteria in seawater of the Yellow Sea and Bohai Sea, China. Sci. Total Environ. 2023, 902, 166038. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, G.; Jiang, W.; Song, Z.; Wang, N. Organic geochemistry and petrology of source rocks from the Banqiao Sag, Bohai Bay Basin, China: Implications for petroleum exploration. Petrol. Sci. 2022, 19, 1505–1515. [Google Scholar] [CrossRef]
- Asemani, M.; Rabbani, A.R.; Sarafdokht, H. Origin, geochemical characteristics and filling pathways in the Shadegan oil field, Dezful Embayment, SW Iran. J. Afr. Earth Sci. 2021, 174, 104047. [Google Scholar] [CrossRef]
- Liu, Q.; Xia, C.; Wang, L.; Tang, J. Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment. Sci. Rep. 2022, 12, 4808. [Google Scholar] [CrossRef]
- Kim, S.; Woo, H.; An, S.; Chung, J.; Lee, S.; Lee, S. What determines the efficacy of landfarming for petroleum-contaminated soils: Significance of contaminant characteristics. Chemosphere 2022, 290, 133392. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Laczi, K.; Kis, Á.E.; Szilágyi, Á.; Bounedjoum, N.; Bodor, A.; Vincze, G.; Kovács, T.; Rákhely, G.; Perei, K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front. Microbiol. 2020, 11, 590049. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Chen, X.; Sun, Y.; Zhao, L.; Han, T.; Tian, L.; Weng, L.; Li, Y. A nitrogen supplement to regulate the degradation of petroleum hydrocarbons in soil microbial electrochemical remediation. Chem. Eng. J. 2021, 426, 131202. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Liu, Y.; Tao, S.; Liu, W. Assessing spatiotemporal sources of biogenic and anthropogenic sedimentary organic matter from the mainstream Haihe River, China: Using n-alkanes as indicators. Sci. Total. Environ. 2022, 834, 155382. [Google Scholar] [CrossRef]
- Fragkou, E.; Antoniou, E.; Daliakopoulos, I.N.; Manios, T.; Theodorakopoulou, M.; Kalogerakis, N. In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review. J. Mar. Sci. Eng. 2021, 9, 1003. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Ding, Y.; Song, H.; Liu, T.; Zhang, Y.; Xu, W.; Shi, Y. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. Chemosphere 2023, 311, 137173. [Google Scholar] [CrossRef] [PubMed]
- GB/T 14848-2017; Quality Standard for Ground Water. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Standards Press of China: Beijing, China, 2017.
- Sahoo, B.M.; Kumar, R.B.V.V.; Banik, B.K.; Borah, P. Polyaromatic Hydrocarbons (PAHs): Structures, Synthesis and their Biological Profile. Curr. Org. Synth. 2020, 17, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ye, J.; Jiang, K.; Wang, Y.; Li, Y. Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable hydrocarbon-degrading bacteria. Ecotox. Environ. Saf. 2021, 225, 112740. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Li, X.; Lin, W.; Li, D.; Dong, H.; Lei, W. Biosurfactants produced by novel facultative-halophilic Bacillus sp. XT-2 with biodegradation of long chain n-alkane and the application for enhancing waxy oil recovery. Energy 2022, 240, 122802. [Google Scholar] [CrossRef]
- Gautom, S.; Bora, B.; Talukdar, P.; Ahmed, A.; Sawarkar, A.N.; Saikia, R.; Geed, S.R.; Verma, J.S. Optimized approach for naphthalene wastewater biodegradation by Enterobacter ludwigii NS12 isolated from petroleum industry sludge: Bioreactor study and kinetic investigation. J. Water Process Eng. 2024, 62, 105359. [Google Scholar] [CrossRef]
- Mou, B.; Gong, G.; Wu, S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. Chemosphere 2023, 341, 140017. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.S.; Jazza, S.H.; Dageem, H.N.; Banoon, S.R.; Balboul, B.A.; Abdelzaher, M.A. Bacterial biodegradation of oil-contaminated soil for pollutant abatement contributing to achieve sustainable development goals: A comprehensive review. Results Eng. 2024, 22, 102083. [Google Scholar] [CrossRef]
- Mayans, B.; Antón-Herrero, R.; García-Delgado, C.; Delgado-Moreno, L.; Guirado, M.; Pérez-Esteban, J.; Escolástico, C.; Eymar, E. Bioremediation of petroleum hydrocarbons polluted soil by spent mushroom substrates: Microbiological structure and functionality. J. Hazard. Mater. 2024, 473, 134650. [Google Scholar] [CrossRef]
Station | S1 | Z1 | Z6 | Z7 | Z8 | Z9 | Z10 | Z11 | Z16 | Z19 | Z20 | Z21 | Z22 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPH | January | 5.12 | 5.08 | 4.77 | 4.69 | 4.31 | 4.13 | 4.17 | 4.15 | 4.69 | 4.74 | 4.12 | 4.35 | 4.37 |
March | 6.25 | 6.01 | 4.83 | 4.79 | 4.62 | 4.58 | 4.87 | 4.68 | 4.56 | 4.38 | 4.02 | 4.13 | 4.41 | |
April | 7.09 | 6.24 | 5.71 | 5.58 | 5.41 | 5.37 | 5.27 | 5.59 | 4.74 | 5.52 | 5.93 | 5.33 | 5.32 | |
June | 7.32 | 6.41 | 4.28 | 4.21 | 4.13 | 4.02 | 4.83 | 4.29 | 4.45 | 4.16 | 4.18 | 4.15 | 4.13 | |
July | 5.39 | 5.12 | 4.41 | 4.34 | 4.15 | 3.93 | 3.95 | 3.68 | 3.91 | 3.82 | 3.95 | 3.95 | 3.82 | |
ALHs | January | 3.61 | 2.82 | 2.74 | 1.84 | 1.81 | 1.82 | 2.58 | 2.44 | 2.53 | 2.85 | 1.54 | 2.48 | 2.06 |
March | 4.79 | 4.25 | 3.61 | 2.92 | 3.11 | 2.19 | 2.53 | 2.16 | 3.16 | 2.92 | 2.75 | 2.28 | 2.58 | |
April | 4.27 | 3.77 | 3.68 | 3.65 | 3.26 | 2.38 | 2.75 | 2.92 | 2.51 | 2.63 | 2.68 | 3.43 | 2.77 | |
June | 3.31 | 2.64 | 2.15 | 2.28 | 2.01 | 1.38 | 2.45 | 1.64 | 2.08 | 2.51 | 1.45 | 1.61 | 1.58 | |
July | 2.99 | 2.09 | 3.08 | 2.52 | 2.02 | 1.59 | 1.26 | 1.51 | 1.93 | 2.25 | 1.58 | 2.16 | 1.52 | |
ARHs | January | 0.21 | 1.21 | 0.73 | 0.96 | 0.66 | 0.53 | 0.72 | 0.71 | 0.72 | 0.26 | 0.32 | 0.58 | 0.84 |
March | 0.82 | 0.91 | 0.61 | 0.89 | 0.71 | 0.49 | 0.51 | 0.86 | 0.63 | 0.51 | 0.72 | 0.63 | 0.73 | |
April | 1.13 | 0.56 | 0.82 | 0.67 | 0.62 | 0.58 | 0.51 | 0.91 | 0.58 | 0.45 | 0.33 | 0.23 | 0.29 | |
June | 2.71 | 0.68 | 0.54 | 0.52 | 0.81 | 0.99 | 0.39 | 0.28 | 0.31 | 0.32 | 1.19 | 1.11 | 0.97 | |
July | 0.97 | 0.59 | 0.31 | 0.32 | 0.41 | 0.59 | 0.78 | 0.47 | 0.35 | 0.18 | 0.36 | 0.13 | 0.30 | |
UCM | January | 0.98 | 1.03 | 0.69 | 0.34 | 0.38 | 0.85 | 0.53 | 0.58 | 1.01 | 0.96 | 0.95 | 1.03 | 1.31 |
March | 0.60 | 0.66 | 0.55 | 0.37 | 0.42 | 1.65 | 1.51 | 1.65 | 0.28 | 0.39 | 0.95 | 1.21 | 0.99 | |
April | 1.61 | 2.15 | 1.16 | 1.21 | 1.51 | 2.13 | 1.88 | 1.55 | 1.51 | 1.99 | 1.96 | 1.29 | 0.57 | |
June | 1.28 | 1.25 | 1.56 | 1.38 | 1.22 | 1.63 | 1.71 | 2.23 | 1.38 | 0.84 | 1.62 | 1.43 | 1.33 | |
July | 1.34 | 1.11 | 0.99 | 1.52 | 1.61 | 1.72 | 1.88 | 1.66 | 1.56 | 1.22 | 1.91 | 1.38 | 1.77 |
Sites | S1 | Z1 | Z6 | Z7 | Z8 | Z9 | Z10 | Z11 | Z16 | Z19 | Z20 | Z21 | Z22 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Markers | ||||||||||||||
CPI | 0.97 | 0.94 | 0.87 | 0.73 | 0.90 | 0.53 | 0.58 | 0.92 | 0.93 | 0.83 | 0.59 | 0.61 | 0.74 | |
OEP | 1.30 | 1.08 | 0.96 | 0.94 | 0.85 | 0.70 | 0.63 | 0.69 | 0.92 | 0.78 | 0.82 | 0.61 | 1.06 | |
L/H | 4.43 | 3.01 | 2.32 | 2.26 | 2.63 | 1.20 | 1.21 | 1.59 | 1.32 | 1.09 | 1.08 | 1.20 | 1.28 | |
Pr/Ph | 1.07 | 1.21 | 0.81 | 0.87 | 0.89 | 1.11 | 1.32 | 0.69 | 1.06 | 0.81 | 0.68 | 0.75 | 0.58 | |
Pr/C17 | 0.53 | 0.65 | 0.68 | 0.67 | 0.69 | 1.41 | 1.20 | 1.36 | 1.12 | 1.39 | 1.28 | 1.16 | 0.95 | |
Ph/C18 | 0.41 | 0.46 | 0.42 | 0.48 | 0.43 | 1.13 | 0.85 | 1.05 | 0.52 | 0.78 | 1.03 | 2.08 | 0.56 | |
DO | 3.96 | 3.21 | 3.68 | 2.43 | 2.36 | 2.65 | 1.93 | 3.56 | 2.5 | 2.51 | 1.89 | 2.69 | 2.85 | |
EC | 973 | 1632 | 2427 | 1308 | 1332 | 1668 | 469 | 1200 | 1282 | 1489 | 1682 | 1041 | 1832 | |
ORP | −14.62 | −120.36 | −34.31 | −94.65 | −86.21 | −83.41 | 4.09 | −24.29 | −115.68 | −33.41 | −93.98 | −83.96 | −106.78 | |
Fe3+ | 1.66 | 7.29 | 13.97 | 12.87 | 16.22 | 18.33 | 7.52 | 7.03 | 7.03 | 2.59 | 6.87 | 35.66 | 11.39 | |
Mn2+ | 1.9 | 1.26 | 1.52 | 1.82 | 1.92 | 3.42 | 1.89 | 1.48 | 2.31 | 1.88 | 1.28 | 3.7 | 3.72 | |
SO42− | 1.58 | 4.73 | 3.15 | 1.58 | 2.62 | 11.03 | 15.75 | 7.88 | 12.6 | 15.75 | 7.88 | 9.45 | 6.3 |
Microbial Type | Microbial Number | Bacterium with Related Bacterial Sequence | Accession Number | Similarity (%) |
---|---|---|---|---|
Bacteria | SX1 | Bacillus amyloliquefaciens | NC_009725.1 | 100 |
SX2 | Bacillus subtilis | AEHM01000001.1 | 99 | |
SX3 | Bacillus subtilis | NC_014976.1 | 96 | |
Actinomycetes | SF1 | Sphingomonas sp. | AJ717392 | 98 |
SF2 | Alpha proteobacterium | AF235994 | 99 | |
SF3 | Sphingomonas sp. | AY429693 | 96 | |
Fungi | SZ1 | Penicillium italicum | AF548091 | 98 |
SZ2 | Aspergillus versicolor | AB008411 | 99 |
Axes | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Eigenvalues | 0.142 | 0.046 | 0.006 | 0.020 |
Correlations between two type parameters | 0.962 | 0.916 | 0.957 | 0.000 |
Cumulative PV of indices | 66.0 | 87.2 | 90.3 | 99.7 |
Cumulative PV of markers | 73.1 | 96.7 | 100.0 | 0.0 |
Sum of all eigenvalues | 0.214 | |||
Sum of all canonical eigenvalues | 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Yang, Y.; Yang, X.; Song, X.; Du, X.; Lu, Y. Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts. Water 2024, 16, 1773. https://doi.org/10.3390/w16131773
Yang M, Yang Y, Yang X, Song X, Du X, Lu Y. Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts. Water. 2024; 16(13):1773. https://doi.org/10.3390/w16131773
Chicago/Turabian StyleYang, Mingxing, Yuesuo Yang, Xinyao Yang, Xiaoming Song, Xinqiang Du, and Ying Lu. 2024. "Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts" Water 16, no. 13: 1773. https://doi.org/10.3390/w16131773
APA StyleYang, M., Yang, Y., Yang, X., Song, X., Du, X., & Lu, Y. (2024). Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts. Water, 16(13), 1773. https://doi.org/10.3390/w16131773