Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Model Configuration
2.2. Observation Data and Model Validation
2.3. Estimation of Contribution Concentration
3. Results
3.1. Contributions of PM2.5 from Ship Emissions in Busan
3.2. Characteristics of Changes in Air Quality in Busan According to IMO2020
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transport 2021; United Nations Conference on Trade and Development (UNCTAD): Switzerland, Geneva, 2021. [Google Scholar]
- Eyring, V.; Corbett, J.J.; Lee, D.S.; Winebrake, J.J. Brief summary of the impact of ship emissions on atmospheric composition, climate, and human health. In Document Submitted to the Health and Environment Sub-Group of the International Maritime Organization; IMO: London, UK, 2007. [Google Scholar]
- Chen, C.; Saikawa, E.; Comer, B.; Mao, X.; Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) Region, China, in 2015, with projections to 2030. GeoHealth 2019, 3, 284–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merico, E.; Cesari, D.; Gregoris, E.; Gambaro, A.; Cordella, M.; Contini, D. Shipping and air quality in Italian port cities: State-of-the-art analysis of available results of estimated impacts. Atmosphere 2021, 12, 536. [Google Scholar] [CrossRef]
- Schwarzkopf, D.A.; Petrik, R.; Matthias, V.; Quante, M.; Yu, G.; Zhang, Y. Comparison of the Impact of Ship Emissions in Northern Europe and Eastern China. Atmosphere 2022, 13, 894. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO); Marine Environment. Prevention of Air Pollution from Ships. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Air-Pollution.aspx (accessed on 3 December 2021).
- Kotchenruther, R.A. The effects of marine vessel fuel sulfur regulations on ambient PM2.5 at coastal and near coastal monitoring sites in the. U.S. Atmos. Environ. 2017, 151, 52–61. [Google Scholar] [CrossRef]
- Anastasopolos, A.T.; Sofowote, U.M.; Hopke, P.K.; Rouleau, M.; Shin, T.; Dheri, A.; Peng, H.; Kulka, R.; Gibson, M.D.; Farah, P.M.; et al. Air quality in Canadian port cities after regulation of low-sulphur marine fuel in the North American Emissions Control Area. Sci. Total Environ. 2021, 791, 147949. [Google Scholar] [CrossRef]
- Liu, H.; Jin, X.; Wu, L.; Wang, X.; Fu, M.; Lv, Z.; Morawska, L.; Huang, F.; He, K. The impact of marine shipping and its DECA control on air quality in the Pearl River Delta, China. Sci. Total Environ. 2018, 625, 1476–1485. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, Y.; Zhao, J.; Zhou, Y.; Wang, X.; Yang, X.; Zou, Z.; Zhang, C.; Fu, Q.; et al. Changes in the SO2 level and PM2.5 components in Shanghai driven by implementing the ship Emission control policy. Environ. Sci. Technol. 2019, 53, 11580–11587. [Google Scholar] [CrossRef]
- Korea Law Translation Center. Marine Environment Management Act. Available online: https://elaw.klri.re.kr/kor_service/lawView.do?hseq=53831&lang=ENG (accessed on 1 September 2022).
- Korean Register. Notice of the Information Regarding to the Vessel Operation in the Sox Emission Control Area in Republic of Korea. Available online: http://www.krs.co.kr/TECHNICAL_FILE/2020-ETC-06(E).pdf (accessed on 1 September 2022).
- Song, S.K.; Shon, Z.H.; Moon, S.H.; Lee, T.H.; Kim, H.S.; Kang, S.H.; Park, G.H.; Yoo, E.C. Impact of international Maritime Organization 2020 sulfur content regulations on port air quality at international hub port. J. Clean. Prod. 2022, 347, 131298. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-K model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 120, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment; Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology University of California: Riverside, CA, USA, 1999; Available online: https://intra.engr.ucr.edu/~carter/pubs/s99doc.pdf (accessed on 1 July 2022).
- Colella, P.; Woodward, P.L. The piecewise parabolic method (PPM) for gasdynamical simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef] [Green Version]
- Louise, J.F. A Parametic Model of Vertical Eddy Fluxes in the Atmosphere. Bound.-Layer Meteor. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Pleim, J.E.; Chang, J.S. A non-local closure model in the convective boundary layer. Atmos. Environ. 1992, 26A, 965–981. [Google Scholar] [CrossRef]
- AirKorea. Available online: https://www.airkorea.or.kr/eng (accessed on 4 November 2021).
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, M.J.; Zhang, Y. Source apportionment of fine particulate matter over the Eastern US, Part I: Source sensitivity simulations using CMAQ with the Brute Force method. Atmos. Pollut. Res. 2011, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Itahashi, S.; Hayami, H.; Uno, I. Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia. J. Geophys. Res.-Atmos. 2015, 120, 331–358. [Google Scholar] [CrossRef]
- Clappier, A.; Belis, C.A.; Pernigotti, D.; Thunis, P. Source apportionment and sensitivity analysis: Two methodologies with two different purposes. Geosci. Model Dev. 2017, 10, 4245–4256. [Google Scholar] [CrossRef] [Green Version]
- Merico, E.; Gambaro, A.; Argiriou, A.; Alebic-Juretic, A.; Barbaro, E.; Cesari, D.; Chasapidis, L.; Dimopoulos, S.; Dinoi, A.; Donateo, A.; et al. Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities: Comparison and harmonization of different approaches. Transp. Res. D 2017, 50, 431–445. [Google Scholar] [CrossRef]
- NIER. Standard Work Procedure for Establishment of Basic Data on National Air Pollutant Emissions—Based on 2016 Emissions; National Institute of Environmental Research (NIER): Incheon, Korea, 2019; ISBN 978-89-6558-492-6. [Google Scholar]
- EPA. Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories, Final Report. Available online: https://www.epa.gov/sites/default/files/2016-06/documents/2009-port-inventory-guidance.pdf (accessed on 27 July 2022).
Physics | Selected Option | Reference |
---|---|---|
Microphysics | WSM 3-class simple ice scheme | [16] |
Longwave Radiation | RRTM scheme | [17] |
Shortwave Radiation | Dudhia scheme | [18] |
Surface Layer | Revised MM5 Monin–Obukhov scheme | [19] |
Land Surface | Unified Noah land–surface model | [20] |
Planetary Boundary layer | YSU scheme | [21] |
Cumulus Parameterization | Kain_Fritsch scheme | [22] |
Category | Selected Option | Reference |
---|---|---|
Chemical Mechanism | SAPRC99 | [24] |
Advection Scheme | PPM | [25] |
Horizontal Diffusion | Multiscale | [26] |
Vertical Diffusion | Eddy | [26] |
Cloud Scheme | ACM | [27] |
Local Region | Contribution Rate (%) | ||
---|---|---|---|
SO2 | PM2.5 | NO2 | |
Seoul | 0.04 | 0.04 | −0.01 |
Incheon | 0.02 | 0.02 | 0.00 |
Gyeonggi-do | 0.04 | 0.04 | 0.00 |
Chungcheongnam-do | 0.03 | 0.05 | 0.02 |
Sejong | 0.12 | 0.08 | 0.04 |
Daejeon | 0.13 | 0.08 | 0.01 |
Chungcheongbuk-do | 0.11 | 0.08 | 0.04 |
Gwangju | 0.30 | 0.15 | 0.07 |
Jeollabuk-do | 0.11 | 0.10 | 0.05 |
Jellanam-do | 0.18 | 0.21 | 0.14 |
Busan | 50.92 | 6.79 | 19.27 |
Ulsan | 0.19 | 0.35 | 0.43 |
Daegu | 0.27 | 0.23 | 0.14 |
Gyeongsangnam-do | 4.01 | 0.54 | 2.83 |
Gyeongsangbuk-do | 0.21 | 0.20 | 0.20 |
Gangwon-do | 0.07 | 0.03 | 0.03 |
Jeju-do | 0.13 | 0.13 | 0.04 |
Nationwide | 4.16 | 0.43 | 1.62 |
Emission Source | SOx | PM2.5 | NOx |
---|---|---|---|
Cargo ship | 7632.78 (99.93%) | 958.50 (97.38%) | 18,666.89 (97.26%) |
Ferry | 1.33 (0.02%) | 0.12 (0.01%) | 1.93 (0.01%) |
Fishing boat | 4.23 (0.06%) | 10.88 (1.11%) | 520.63 (2.71%) |
Leisure ship | 0.00 * (0.00%) | 14.75 (1.50%) | 3.83 (0.02%) |
Oil Type | Emission Reduction Percentage | |
---|---|---|
SOx | PM2.5 | |
Bunker-A oil | 66.7% | 48.8% |
Bunker-B oil | 57.9% | 22.0% |
Bunker-C oil | 85.7% | 55.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Moon, N.; Chung, Y.; Seo, J. Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea. Atmosphere 2022, 13, 1631. https://doi.org/10.3390/atmos13101631
Kim Y, Moon N, Chung Y, Seo J. Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea. Atmosphere. 2022; 13(10):1631. https://doi.org/10.3390/atmos13101631
Chicago/Turabian StyleKim, Yumi, Nankyoung Moon, Yoonbae Chung, and Jihyun Seo. 2022. "Impact of IMO Sulfur Regulations on Air Quality in Busan, Republic of Korea" Atmosphere 13, no. 10: 1631. https://doi.org/10.3390/atmos13101631