Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (394)

Search Parameters:
Keywords = offset angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7695 KB  
Article
Effect of Axial Offset, Index Angle, and RPM Differential on the Aerodynamics of Co-Axial Co-Rotating Propellers
by Su Won Jeon and Sang Wook Lee
Aerospace 2025, 12(10), 940; https://doi.org/10.3390/aerospace12100940 - 18 Oct 2025
Viewed by 49
Abstract
Coaxial co-rotating (CCR) propeller systems provide structural simplicity, compactness, and high disk loading, making them attractive for an Electric Distributed Propulsion System (EDPS). However, aerodynamic interactions between the upper and lower propellers can lead to efficiency losses, and the effects of key design [...] Read more.
Coaxial co-rotating (CCR) propeller systems provide structural simplicity, compactness, and high disk loading, making them attractive for an Electric Distributed Propulsion System (EDPS). However, aerodynamic interactions between the upper and lower propellers can lead to efficiency losses, and the effects of key design parameters on overall performance remain insufficiently understood. This study employs Reynolds Averaged Navier–Stokes (RANS)-based Computational Fluid Dynamics (CFD) simulations to examine the effects of axial offset distance, index angle, and differential rotational speeds on the aerodynamic performance of an 18-inch two-blade coaxial co-rotating propeller. Maximum thrust is typically obtained at an index angle of around 60°, while the maximum Figure of Merit (FoM) is achieved at 90°. Increasing the offset distance from 0.05R to 0.20R improves the FoM by approximately 17.3% and reduces its sensitivity to index angle. When different rotating speeds are applied, assigning the higher rpm to the lower propeller increases thrust by 9.4% and the FoM by roughly 9.2%. These results offer practical guidelines for enhancing aerodynamic performance of a CCR propeller in unmanned aerial vehicle and urban air mobility platforms. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 6322 KB  
Article
Position Sensorless Control of BLDCM Fed by FSTP Inverter with Capacitor Voltage Compensation
by Hanrui Wang, Lu Zhou, Qinghui Meng, Ying Xin, Xinmin Li and Chen Li
World Electr. Veh. J. 2025, 16(10), 582; https://doi.org/10.3390/wevj16100582 - 15 Oct 2025
Viewed by 222
Abstract
Aiming at the commutation error in position sensorless control of brushless DC motors (BLDCMs) driven by four-switch three-phase (FSTP) inverters—caused by ignoring capacitor voltage fluctuations—this paper proposes a novel position sensorless control method based on voltage offset compensation. By independently performing PWM modulation [...] Read more.
Aiming at the commutation error in position sensorless control of brushless DC motors (BLDCMs) driven by four-switch three-phase (FSTP) inverters—caused by ignoring capacitor voltage fluctuations—this paper proposes a novel position sensorless control method based on voltage offset compensation. By independently performing PWM modulation on the switches of the non-capacitor-connected phases (Phase a and Phase b), the method suppresses three-phase current distortion. Meanwhile, it calculates the terminal voltages using switch signals and constructs a G(θ) function independent of the motor speed. Based on the voltage compensation amount derived in this paper, the influence of capacitor voltage fluctuations on this function is compensated. According to the relationship between the extreme value jump edges of the G(θ) function (after voltage compensation) and the commutation points, the accurate commutation signals required for motor operation are determined. The proposed strategy eliminates the need for filters, which not only avoids phase delay but also is suitable for motor rotor position estimation over a wider speed range. Experimental results show that compared with the uncompensated method, the average commutation error is reduced from approximately 18° to less than 3° electrical angle. Under different operating conditions, the proposed method can always obtain uniform commutation signals and exhibits strong robustness. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

23 pages, 3161 KB  
Article
Characterizing Hydraulic Fracture Morphology and Propagation Patterns in Horizontal Well Stimulation via Micro-Seismic Monitoring Analysis
by Longbo Lin, Xiaojun Xiong, Zhiyuan Xu, Xiaohua Yan and Yifan Wang
Symmetry 2025, 17(10), 1732; https://doi.org/10.3390/sym17101732 - 14 Oct 2025
Viewed by 171
Abstract
In horizontal well technology, hydraulic fracturing has been established as an essential technique for enhancing hydrocarbon production. However, the complex architecture of fracture networks challenges conventional monitoring methods. Micro-seismic monitoring, recognized for its superior resolution and sensitivity, enables precise fracture morphology characterization. This [...] Read more.
In horizontal well technology, hydraulic fracturing has been established as an essential technique for enhancing hydrocarbon production. However, the complex architecture of fracture networks challenges conventional monitoring methods. Micro-seismic monitoring, recognized for its superior resolution and sensitivity, enables precise fracture morphology characterization. This study advances diagnostic capabilities through integrated field–laboratory investigations and multi-domain signal processing. Hydraulic fracturing experiments under varied geological conditions generated critical micro-seismic datasets, with quantitative analyses revealing asymmetric propagation patterns (total length 312 ± 15 m, east wing 117 m/west wing 194 m) forming a 13.37 × 104 m3 stimulated reservoir volume. Spatial event distribution exhibited density disparities correlating with geophone offsets (west wing 3.8 events/m vs. east 1.2 events/m at 420–794 m distances). Advanced time–frequency analyses and inversion algorithms differentiated signal characteristics demonstrating logarithmic SNR (Signal-to-Noise Ratio)–magnitude relationships (SNR 0.49–4.82, R2 = 0.87), with near-field events (<500 m) showing 68% reduced magnitude variance compared to far-field counterparts. Coupled numerical simulations confirmed stress field interactions where fracture trajectories deviated 5–15° from principal stress directions due to prior-stage stress shadows. Branch fracture networks identified in Stages 4/7/9/10 with orthogonal/oblique intersections (45–65° dip angles) enhanced stimulation reservoir volume (SRV) by 37–42% versus planar fractures. These geometric parameters—including height (20 ± 3 m), width (44 ± 5 m), spacing, and complexity—were quantitatively linked to micro-seismic response patterns. The developed diagnostic framework provides operational guidelines for optimizing fracture geometry control, demonstrating how heterogeneity-driven signal variations inform stimulation strategy adjustments to improve reservoir recovery and economic returns. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2025)
Show Figures

Figure 1

16 pages, 5781 KB  
Article
Design of an Underwater Optical Communication System Based on RT-DETRv2
by Hexi Liang, Hang Li, Minqi Wu, Junchi Zhang, Wenzheng Ni, Baiyan Hu and Yong Ai
Photonics 2025, 12(10), 991; https://doi.org/10.3390/photonics12100991 - 8 Oct 2025
Viewed by 326
Abstract
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time [...] Read more.
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time Detection Transformer v2 (RT-DETRv2) model. We have improved the underwater light source detection model by collaboratively designing a lightweight backbone network and deformable convolution, constructing a cross-stage local attention mechanism to reduce the number of network parameters, and introducing geometrically adaptive convolution kernels that dynamically adjust the distribution of sampling points, enhance the representation of spot-deformation features, and improve positioning accuracy under optical interference. To verify the effectiveness of the model, we have constructed an underwater light-emitting diode (LED) light-spot detection dataset containing 11,390 images was constructed, covering a transmission distance of 15–40 m, a ±45° deflection angle, and three different light-intensity conditions (noon, evening, and late night). Experiments show that the improved model achieves an average precision at an intersection-over-union threshold of 0.50 (AP50) value of 97.4% on the test set, which is 12.7% higher than the benchmark model. The UWOC system built based on the improved model achieves zero-bit-error-rate communication within a distance of 30 m after assisted alignment (an initial lateral offset angle of 0°–60°), and the bit-error rate remains stable in the 10−7–10−6 range at a distance of 40 m, which is three orders of magnitude lower than the traditional Remotely Operated Vehicle (ROV) underwater optical communication system (a bit-error rate of 10−6–10−3), verifying the strong adaptability of the improved model to complex underwater environments. Full article
Show Figures

Figure 1

17 pages, 2801 KB  
Article
Glenoid Radiolucent Lines and Subsidence Show Limited Impact on Clinical and Functional Long-Term Outcomes After Anatomic Total Shoulder Arthroplasty: A Retrospective Analysis of Cemented Polyethylene Glenoid Components
by Felix Hochberger, Jonas Limmer, Justus Muhmann, Frank Gohlke, Laura Elisa Streck, Maximilian Rudert and Kilian List
J. Clin. Med. 2025, 14(19), 7058; https://doi.org/10.3390/jcm14197058 - 6 Oct 2025
Viewed by 403
Abstract
Background: Glenoid radiolucenct lines (gRLL) and glenoid component subsidence (gSC) after anatomic total shoulder arthroplasty (aTSA) have traditionally been linked to implant loosening and functional decline. However, their impact on long-term clinical outcomes remains unclear. This study aimed to evaluate whether gRLL [...] Read more.
Background: Glenoid radiolucenct lines (gRLL) and glenoid component subsidence (gSC) after anatomic total shoulder arthroplasty (aTSA) have traditionally been linked to implant loosening and functional decline. However, their impact on long-term clinical outcomes remains unclear. This study aimed to evaluate whether gRLL and gSC are associated with inferior clinical or functional results in patients without revision surgery. Methods: In this retrospective study, 52 aTSA cases (2008–2015) were analyzed with a minimum of five years of clinical and radiographic follow-up. Based on final imaging, patients were categorized according to the presence and extent of gRLL and gSC. Clinical outcomes included the Constant-Murley Score, DASH, VAS for pain, and range of motion (ROM). Radiographic parameters included the critical shoulder angle (CSA), acromiohumeral distance (AHD), lateral offset (LO), humeral head-stem index (HSI), and cranial humeral head decentration (DC). Group comparisons were conducted between: (1) ≤2 vs. 3 gRLL zones, (2) 0 vs. 1 zone, (3) 0 vs. 3 zones, (4) gSC vs. no gSC, and (5) DC vs. no DC. Results: Demographics and baseline characteristics were comparable across groups. Functional scores (Constant, DASH), pain (VAS), and ROM were largely similar. Patients with extensive gRLL showed reduced external rotation (p = 0.01), but the difference remained below the MCID. Similarly, gSC was associated with lower forward elevation (p = 0.04) and external rotation (p = 0.03), both below MCID thresholds. No significant differences were observed for DC. Conclusions: Neither extensive gRLL nor gSC significantly impaired long-term clinical or functional outcomes. As these radiographic changes can occur in the absence of symptoms, regular radiographic monitoring is essential, and revision decisions should be made individually in cases of progressive bone loss. Full article
(This article belongs to the Special Issue Clinical Updates on Shoulder Arthroplasty)
Show Figures

Figure 1

13 pages, 6991 KB  
Article
Predisposition of Hip Prosthesis Component Positioning on Dislocation Risk: Biomechanical Considerations Based on Finite Element Method Analysis
by Maciej Kostewicz, Marcin Zaczyk and Grzegorz Szczęsny
J. Clin. Med. 2025, 14(19), 7056; https://doi.org/10.3390/jcm14197056 - 6 Oct 2025
Viewed by 403
Abstract
Background/Objectives: Total hip arthroplasty (THA) is a widely accepted and effective intervention for advanced degenerative hip disease. However, prosthetic dislocation remains one of the most common postoperative complications. This study aimed to evaluate the biomechanical consequences of implant positioning variations and their influence [...] Read more.
Background/Objectives: Total hip arthroplasty (THA) is a widely accepted and effective intervention for advanced degenerative hip disease. However, prosthetic dislocation remains one of the most common postoperative complications. This study aimed to evaluate the biomechanical consequences of implant positioning variations and their influence on prosthetic stability. Methods: A three-dimensional finite element model (FEM) of the pelvis and hip joint was developed using SolidWorks Professional 2025, based on CT imaging of an anatomically normal adult. Multiple implant configurations were simulated, varying acetabular cup inclination and anteversion angles, femoral stem depth, and femoral offset. Muscle force vectors replicating single-leg stance conditions were applied according to biomechanical reference data. The mechanical performance of each configuration was quantified using the safety factor (SF), defined as the ratio of allowable material stress to calculated stress in the model. Results: The configuration with 45° cup inclination, 15° anteversion, standard femoral offset, and optimal stem depth demonstrated the highest SF values (9–12), indicating a low risk of mechanical failure or dislocation. In contrast, malpositioned implants—particularly those with low or high anteversion, excessive offset, or shallow stem insertion—resulted in a marked decrease in SF values (2–5), especially in the anterosuperior and posterosuperior quadrants of the acetabular interface. Conclusions: The findings underscore the critical importance of precise implant alignment in THA. Even moderate deviations from optimal positioning can substantially compromise biomechanical stability and increase the risk of dislocation. These results support the need for individualized preoperative planning and the use of assistive technologies during surgery to enhance implant placement accuracy and improve clinical outcomes. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

11 pages, 826 KB  
Article
A Novel Virtual Reality-Based System for Measuring Deviation Angle in Strabismus: A Prospective Study
by Jhih-Yi Lu, Yin-Cheng Liu, Jui-Bang Lu, Ming-Han Tsai, Wen-Ling Liao, I-Ming Wang, Hui-Ju Lin and Yu-Te Huang
Diagnostics 2025, 15(18), 2402; https://doi.org/10.3390/diagnostics15182402 - 20 Sep 2025
Viewed by 369
Abstract
Background/Objectives: To develop a new Virtual Reality (VR) system software for measuring ocular deviation in strabismus patients. Methods: This prospective study included subjects with basic-type exotropia (XT) and non-refractive accommodative esotropia (ET). Ocular deviation was measured using the alternate prism cover [...] Read more.
Background/Objectives: To develop a new Virtual Reality (VR) system software for measuring ocular deviation in strabismus patients. Methods: This prospective study included subjects with basic-type exotropia (XT) and non-refractive accommodative esotropia (ET). Ocular deviation was measured using the alternate prism cover test (APCT) and two VR-based methods: target offset (TO) and a newly developed camera rotation (CR) method. Results: A total of 28 subjects were recruited (5 cases were excluded for preliminary testing and 5 for not meeting inclusion criteria). Among the 18 included patients, 10 (66.7%) had XT and 5 (33.3%) had ET. The median age was 21.5 years (IQR 17 to 25). The mean age was 22.3 years (range: 9–46), with 5 (27.8%) having manifest strabismus and 12 (61.1%) measured while wearing glasses. VR-based methods (TO and CR) showed comparable results to APCT for deviation angle measurements (p = 0.604). Subgroup analysis showed no significant differences in ET patients (all p > 0.05). In XT patients, both TO and CR underestimated deviation angles compared to APCT (p = 0.008 and p = 0.001, respectively), but no significant difference was observed between the two methods (p = 0.811). Linear regression showed CR had a stronger correlation with APCT than TO (R2 = 0.934 vs. 0.874). Conclusions: This newly developed VR system software, incorporating the CR method, provides a reliable approach for measuring ocular deviation. By shifting the entire visual scene rather than just the target, it lays a strong foundation for immersive diagnostic and therapeutic VR applications. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis and Prognosis of Eye Diseases)
Show Figures

Figure 1

23 pages, 5537 KB  
Article
Machine Learning Approaches for Simulating Temporal Changes in Bed Profiles Around Cylindrical Bridge Pier: A Comparative Analysis
by Ahad Molavi, Fariborz Ahmadzadeh Kaleybar, Namal Rathnayake, Upaka Rathnayake, Mehdi Fuladipanah and Hazi Mohammad Azamathulla
Hydrology 2025, 12(9), 238; https://doi.org/10.3390/hydrology12090238 - 15 Sep 2025
Viewed by 1110
Abstract
Submerged vanes offer a promising solution for reducing scour depth around hydraulic structures such as bridge piers by modifying near-bed flow patterns. However, temporal changes in bed profiles around a cylindrical pier remain insufficiently quantified. This study employs three machine learning models (MLMs), [...] Read more.
Submerged vanes offer a promising solution for reducing scour depth around hydraulic structures such as bridge piers by modifying near-bed flow patterns. However, temporal changes in bed profiles around a cylindrical pier remain insufficiently quantified. This study employs three machine learning models (MLMs), gene expression programming (GEP), support vector regression (SVR), and an artificial neural network (ANN), to simulate the temporal evolution of the bed profile around a cylindrical pier under constant subcritical flow. We use a published laboratory flume dataset (106 observations) obtained for a pier of diameter D=6cm and uniform sediment with median size D50=0.43mm. Geometric/layout parameters of the submerged vanes (number n, transverse offset z, longitudinal spacing e, and distance from the pier base a) were fixed at their reported optima, and subsequent tests varied installation angles α to minimize scour. Models were trained on 70% of the data and tested on 30% using dimensionless inputs (t/te,α1,α2,α3) with t the elapsed time from the start of the run and te the equilibrium time at which scour growth becomes negligible and response s/D with s the instantaneous scour depth at time t. The GEP model with a three-gene structure achieved the best accuracy. During training and testing, GEP attained (RMSE, MAE, R2, (Ds/D)DDR(max))=(0.0864,0.0681,0.9237,4.25) and (0.0729,0.0641,0.9143,4.94), respectively, where Ds denotes scour depth at equilibrium state, D is the pier diameter, and DDR(max)max(Ds/D) is the maximum dimensionless depth ratio observed/predicted. Full article
Show Figures

Figure 1

14 pages, 3393 KB  
Article
Optical Sensor for Scanning Angle of Micromirror with Improved 2D Calibration Method
by Longqi Ran, Zhongrui Ma, Ting Li, Jiangbo He, Jiahao Wu and Wu Zhou
Micromachines 2025, 16(9), 1046; https://doi.org/10.3390/mi16091046 - 13 Sep 2025
Viewed by 477
Abstract
The optical angle sensor demonstrates considerable potential to supersede the piezoresistive sensor as the preferred angle detection mechanism for micromirrors, primarily due to its reduced vulnerability to temperature fluctuations. However, this sensor is susceptible to interference from rotations about non-detectable axes and exhibits [...] Read more.
The optical angle sensor demonstrates considerable potential to supersede the piezoresistive sensor as the preferred angle detection mechanism for micromirrors, primarily due to its reduced vulnerability to temperature fluctuations. However, this sensor is susceptible to interference from rotations about non-detectable axes and exhibits inadequate linearity. To mitigate these challenges, this paper introduces a sub-region calibration method. A mapping surface was created to link the output signal offsets of two axes with their input angles, allowing the effects of non-measured axes to be treated as variables. To simplify the mathematical model of this mapping surface, it was divided into an n-by-n grid of small areas. Each area uses bilinear interpolation to calculate the corresponding angle from the output values. To quickly locate which grid area a sensor output belongs to, the entire mapping surface was scaled to a range from 0 to n. Sensor outputs are then assigned to specific grid areas using the floor function. For validation, an optical sensor and a 2D rotating stage were built for calibration tests. Experimental results show that this calibration method keeps measurement errors below 0.01° within a ±8° operating range of the sensor. Full article
(This article belongs to the Special Issue Recent Advances in MEMS Mirrors)
Show Figures

Figure 1

12 pages, 1558 KB  
Article
Impact of Lower-Limb Muscle Fatigue on Dynamic Postural Control During Stair Descent: A Study Using Stair-Embedded Force Plates
by Liangsen Wang, Wenyue Ma, Wenfei Zhu, Qian Xie and Yuliang Sun
Sensors 2025, 25(17), 5570; https://doi.org/10.3390/s25175570 - 6 Sep 2025
Viewed by 1256
Abstract
This study used stair-embedded force plates to investigate the effects of lower-limb muscle fatigue on dynamic postural control during stair descent in young adults. Twenty-five healthy male adults (age = 19.2 ± 1.5 years) were tested for stair descent gait in pre-fatigue and [...] Read more.
This study used stair-embedded force plates to investigate the effects of lower-limb muscle fatigue on dynamic postural control during stair descent in young adults. Twenty-five healthy male adults (age = 19.2 ± 1.5 years) were tested for stair descent gait in pre-fatigue and post-fatigue conditions. To induce fatigue, participants performed a sit-to-stand task. The kinematic and kinetic data were collected synchronously, and gait parameters were analyzed. Data were analyzed using one-dimensional statistical parametric mapping (SPM1d) and paired t-tests in SPSS. After fatigue, the right knee flexion angle increased significantly across all phases (0–14%, p < 0.001; 14–19%, p = 0.032; 42–50%, p = 0.023; 60–65%, p = 0.022; 80–100%, p = 0.012). Additionally, the step width widened notably (p < 0.001), while the proportion of the swing phase decreased (p = 0.030). During the event of right-foot release, the left knee flexion (p = 0.005) and ankle dorsiflexion (p = 0.001) angle increased significantly, along with a larger left ankle plantarflexion moment (p = 0.032). After fatigue, the margin of stability in the anterior–posterior direction (MoS-AP) (p = 0.002, p = 0.014) and required coefficient of friction (RCOF) (p = 0.031, p = 0.021) significantly increased at the left-foot release and right-foot release moments. This study demonstrates that lower-limb muscle fatigue increases dynamic instability during stair descent. Participants adopted compensatory strategies, including widening step width, reducing single-support duration, and enhancing ankle plantarflexion to offset knee strength deficits. These adaptations likely reflect central nervous system mechanisms prioritizing stability, highlighting the ankle’s compensatory role as a potential target for joint-specific interventions in fall prevention and rehabilitation. Future studies should investigate diverse populations, varying fatigue levels, and comprehensive neuromuscular indicators. Full article
(This article belongs to the Special Issue Sensors Fusion in Digital Healthcare Applications)
Show Figures

Figure 1

22 pages, 1243 KB  
Article
ProCo-NET: Progressive Strip Convolution and Frequency- Optimized Framework for Scale-Gradient-Aware Semantic Segmentation in Off-Road Scenes
by Zihang Liu, Donglin Jing and Chenxiang Ji
Symmetry 2025, 17(9), 1428; https://doi.org/10.3390/sym17091428 - 2 Sep 2025
Viewed by 531
Abstract
In off-road scenes, segmentation targets exhibit significant scale progression due to perspective depth effects from oblique viewing angles, meaning that the size of the same target undergoes continuous, boundary-less progressive changes along a specific direction. This asymmetric variation disrupts the geometric symmetry of [...] Read more.
In off-road scenes, segmentation targets exhibit significant scale progression due to perspective depth effects from oblique viewing angles, meaning that the size of the same target undergoes continuous, boundary-less progressive changes along a specific direction. This asymmetric variation disrupts the geometric symmetry of targets, causing traditional segmentation networks to face three key challenges: (1) inefficientcapture of continuous-scale features, where pyramid structures and multi-scale kernels struggle to balance computational efficiency with sufficient coverage of progressive scales; (2) degraded intra-class feature consistency, where local scale differences within targets induce semantic ambiguity; and (3) loss of high-frequency boundary information, where feature sampling operations exacerbate the blurring of progressive boundaries. To address these issues, this paper proposes the ProCo-NET framework for systematic optimization. Firstly, a Progressive Strip Convolution Group (PSCG) is designed to construct multi-level receptive field expansion through orthogonally oriented strip convolution cascading (employing symmetric processing in horizontal/vertical directions) integrated with self-attention mechanisms, enhancing perception capability for asymmetric continuous-scale variations. Secondly, an Offset-Frequency Cooperative Module (OFCM) is developed wherein a learnable offset generator dynamically adjusts sampling point distributions to enhance intra-class consistency, while a dual-channel frequency domain filter performs adaptive high-pass filtering to sharpen target boundaries. These components synergistically solve feature consistency degradation and boundary ambiguity under asymmetric changes. Experiments show that this framework significantly improves the segmentation accuracy and boundary clarity of multi-scale targets in off-road scene segmentation tasks: it achieves 71.22% MIoU on the standard RUGD dataset (0.84% higher than the existing optimal method) and 83.05% MIoU on the Freiburg_Forest dataset. Among them, the segmentation accuracy of key obstacle categories is significantly improved to 52.04% (2.7% higher than the sub-optimal model). This framework effectively compensates for the impact of asymmetric deformation through a symmetric computing mechanism. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

29 pages, 3441 KB  
Article
The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products
by Diana Fluerasu (Bălțatu), Christine Neagu, Sylvestre Dossa, Monica Negrea, Călin Jianu, Adina Berbecea, Daniela Stoin, Dacian Lalescu, Diana Brezovan, Liliana Cseh, Mariana Suba, Cătălin Ianasi and Ersilia Alexa
Foods 2025, 14(16), 2911; https://doi.org/10.3390/foods14162911 - 21 Aug 2025
Viewed by 1026
Abstract
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat [...] Read more.
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat flour and whey powder in proportions of 5% (WhWF5), 10% (WhWF10), and 15% (WhWF15). These composite flours were then used to produce bread. The nutritional properties (proximate composition, macro and microelement content) and bioactive compounds (total polyphenols and antioxidant activity) were assessed for both the composite flours and the resulting breads. In addition, the rheological behavior of the dough was evaluated using the Mixolab system, while the microstructural characteristics and physical properties of the composite flours were analyzed using Small/Wide Angle X-ray Scattering (SAXS/WAXS) and Fourier Transform Infrared Spectroscopy (FTIR). Sensory evaluation of the breads was also performed. The results demonstrated a positive effect of the whey powder addition on the nutritional profile of both composite flours and bakery products, particularly through increased protein levels (25.24–37.77% in fortified flours vs. 11.26% in control; 16.64–18.89% in fortified breads vs. 14.12% in control) and enhanced mineral content (11.27–80.45% higher compared to white wheat bread), alongside a reduction in carbohydrate content. Bread fortified with 15% whey powder showed higher monolement with increases of 27.80% for K, 7.01% for Mg, and 28.67% for Ca compared to control bread without whey. The analysis of the Mixolab charts confirmed the progressive influence of whey powder on dough rheology. While water absorption remains high, other functional parameters, such as gluten quality, kneading capacity, and starch viscosity, were negatively affected. Nonetheless, the nutritional advantages and reduced retrogradation tendency may offset these drawbacks in the context of developing functional bakery products. Formulations containing 5–10% whey powder appear to offer an optimal balance between technological performance, nutritional quality, and sensory acceptance. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

19 pages, 1619 KB  
Article
Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking
by Jiahao Zhang, Lei Wang, Zhengguo Cui, Hao Li, Jianlei Chen, Yong Xu, Haixiang Zhao, Zhenming Huang, Keming Qu and Hongwu Cui
Fishes 2025, 10(8), 406; https://doi.org/10.3390/fishes10080406 - 14 Aug 2025
Cited by 1 | Viewed by 621
Abstract
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis [...] Read more.
In factory-controlled recirculating aquaculture systems, precise regulation of water velocity is crucial for optimizing shrimp feeding behavior and improving aquaculture efficiency. However, quantitative analysis of the impact of water velocity on shrimp behavior remains challenging. This study developed an innovative multi-objective behavioral analysis framework integrating detection, tracking, and behavioral interpretation. Specifically, the YOLOv8 model was employed for precise shrimp detection, ByteTrack with a dual-threshold matching strategy ensured continuous individual trajectory tracking in complex water environments, and Kalman filtering corrected coordinate offsets caused by water refraction. Under typical recirculating aquaculture system conditions, three water circulation rates (2.0, 5.0, and 10.0 cycles/day) were established to simulate varying flow velocities. High-frequency imaging (30 fps) was used to simultaneously record and analyze the movement trajectories of Litopenaeus vannamei during feeding and non-feeding periods, from which two-dimensional behavioral parameters—velocity and turning angle—were extracted. Key experimental results indicated that water circulation rates significantly affected shrimp movement velocity but had no significant effect on turning angle. Importantly, under only the moderate circulation rate (5.0 cycles/day), the average movement velocity during feeding was significantly lower than during non-feeding periods (p < 0.05). This finding reveals that moderate water velocity constitutes a critical hydrodynamic window for eliciting specific feeding behavior in shrimp. These results provide core parameters for an intelligent Litopenaeus vannamei feeding intensity assessment model based on spatiotemporal graph convolutional networks and offer theoretically valuable and practically applicable guidance for optimizing hydrodynamics and formulating precision feeding strategies in recirculating aquaculture systems. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Aquaculture)
Show Figures

Figure 1

31 pages, 6857 KB  
Article
Performance Analysis and Experimental Validation of Small-Radius Slope Steering for Mountainous Crawler Tractors
by Luojia Duan, Longhai Zhang, Kaibo Kang, Yuxuan Ji, Xiaodong Mu, Hansong Wang, Junrui Zhou, Zhijie Liu and Fuzeng Yang
Agronomy 2025, 15(8), 1956; https://doi.org/10.3390/agronomy15081956 - 13 Aug 2025
Viewed by 537
Abstract
This study investigates the dynamic performance of mountainous crawler tractors during small-radius slope steering, providing theoretical support for power machinery design in hilly and mountainous regions. Addressing the mechanization demands in complex terrains and existing research gaps, a steering dynamics model is established. [...] Read more.
This study investigates the dynamic performance of mountainous crawler tractors during small-radius slope steering, providing theoretical support for power machinery design in hilly and mountainous regions. Addressing the mechanization demands in complex terrains and existing research gaps, a steering dynamics model is established. The model incorporates an amplitude-varied multi-peak cosine ground pressure distribution, employs position vectors and rotation matrices to characterize 3D pose variations in the tractor’s center of mass, and integrates slope angle, soil parameters, vehicle geometry, center-of-mass shift, bulldozing resistance, and sinkage resistance via d’Alembert’s principle. Numerical simulations using Maple 2024 analyzed variations in longitudinal offset of the instantaneous steering center, bilateral track traction forces, and bulldozing resistance with slope, speed, and acceleration. Variable-gradient steering tests on the “Soil-Machine-Crop” Comprehensive Experimental Platform demonstrated model accuracy, with <8% mean error and <12% maximum relative error between predicted and measured track forces. This research establishes a theoretical foundation for predicting, evaluating, and controlling the steering performance/stability of crawler tractors in complex slope conditions. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

27 pages, 8913 KB  
Article
Laser Radar and Micro-Light Polarization Image Matching and Fusion Research
by Jianling Yin, Gang Li, Bing Zhou and Leilei Cheng
Electronics 2025, 14(15), 3136; https://doi.org/10.3390/electronics14153136 - 6 Aug 2025
Viewed by 577
Abstract
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering [...] Read more.
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering polarized image and a laser LiDAR point cloud, and the corresponding system is constructed. Based on the extraction of pixel coordinates from the 3D LiDAR point cloud, the method adds information on the polarization degree and polarization angle of the micro-light polarization image, as well as on the reflective intensity of each point of the LiDAR. The mapping matrix of the radar point cloud to the pixel coordinates is made to contain depth offset information and show better fitting, thus optimizing the 3D point cloud converted from the micro-light polarization image. On this basis, algorithms such as 3D point cloud fusion and pseudo-color mapping are used to further optimize the matching and fusion procedures for the micro-light polarization image and the radar point cloud, so as to successfully realize the alignment and fusion of the 2D micro-light polarization image and the 3D LiDAR point cloud. The experimental results show that the alignment rate between the 2D micro-light polarization image and the 3D LiDAR point cloud reaches 74.82%, which can effectively detect the target hidden behind the glass under the low illumination condition and fill the blind area of the LiDAR point cloud data acquisition. This study verifies the feasibility and advantages of “polarization + LiDAR” fusion in low-light glass scene reconnaissance, and it provides a new technological means of covert target detection in complex environments. Full article
(This article belongs to the Special Issue Image and Signal Processing Techniques and Applications)
Show Figures

Figure 1

Back to TopTop