Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Daily Management
2.2. Dataset Collection and Annotation
2.3. Experimental System Configuration
2.4. ByteTrack Algorithm Overview
2.4.1. Algorithm Execution Flow
- The YOLOv8 model is utilized to perform object detection on the fish school in the culture tank. Based on confidence scores, detection boxes are categorized into high-confidence and low-confidence classes.
- Initial trajectory matching is performed on high-confidence detections. This involves calculating their Intersection over Union (IoU) with existing trajectories and applying the Hungarian algorithm for matching. Successfully matched trajectories are updated via Kalman filtering and added to the current frame’s trajectory set. Unmatched trajectories and detection boxes are respectively stored in the set of unmatched trajectories for further processing.
- A second round of IoU matching is conducted between low-confidence detections and the previously unmatched trajectories. Successfully matched trajectories are reactivated and updated. Unmatched low-confidence detections are considered background noise and are deleted. During trajectory management, new trajectories are created and added to the current frame’s trajectory set for detection boxes with confidence scores above the tracking threshold. Additionally, trajectories that remain unmatched for 30 consecutive frames are deleted. Finally, the current frame’s trajectory set is passed to the next frame for Kalman filtering to predict new positions. Through these steps, the ByteTrack algorithm achieves an efficient combination of detection and tracking, significantly improving the accuracy and stability of trajectories (the flow of the ByteTrack algorithm is illustrated in Figure 2).
2.4.2. Kalman Filtering
2.4.3. Hungarian Algorithm
2.4.4. Technical Features of the Integrated MOA Framework
3. Results
3.1. Model Performance Evaluation Results
3.2. Spatial Distribution Characteristics of Water Flow Velocity in Ponds Under Different Water Circulation Rate Gradients
3.3. Response Characteristics of Shrimp Feeding Behavior to Water Circulation Rate
4. Discussion
4.1. Analysis of Model Performance Evaluation Results
4.2. Analysis of the Spatial Distribution Characteristics of Flow Velocity in the Culture Tank
4.3. Analysis of the Response Characteristics of Shrimp Feeding Behavior to Water Circulation Rate
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics. Statistical Communiqué of the People’s Republic of China on the 2024 National Economic and Social Development; People’s Daily: Beijing, China, 2025. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, C.Y.; Shu, K.H.; Xu, S.L.; Wang, D.L. Comparative analysis of the growth performance, vitality, body chemical composition and economic efficiency of the main cultivated strains of Pacific white shrimp (Litopenaeus vannamei) in coastal areas of China. Aquaculture 2024, 587, 740856. [Google Scholar] [CrossRef]
- Shi, M.; Jiang, S.; Shi, J.; Yang, Q.; Huang, J.; Li, Y.; Yang, L.; Zhou, F. Evaluation of Genetic Parameters and Comparison of Stress Tolerance Traits in Different Strains of Litopenaeus vannamei. Animals 2024, 14, 600. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-Y.; Wang, B.-J.; Liu, M.; Wang, M.-Q.; Jiang, K.-Y.; Liu, X.-W.; Wang, L. Adaptation of the white shrimp Litopenaeus vannamei to gradual changes to a low-pH environment. Ecotoxicol. Environ. Saf. 2018, 149, 203–210. [Google Scholar] [CrossRef]
- Xiao, R.; Wei, Y.; An, D.; Li, D.; Ta, X.; Wu, Y.; Ren, Q. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Rev. Aquac. 2019, 11, 863–895. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Cui, H.; Bai, Y.; Yin, Z.; Qu, K. Hazardous substances and their removal in recirculating aquaculture systems: A review. Aquaculture 2023, 569, 739399. [Google Scholar] [CrossRef]
- Das, S.K.; Mondal, B.; Sarkar, U.K.; Das, B.K.; Borah, S. Understanding and approaches towards circular bio-economy of wastewater reuse in fisheries and aquaculture in India: An overview. Rev. Aquac. 2023, 15, 1100–1114. [Google Scholar] [CrossRef]
- Ende, S.S.W.; Larceva, E.; Bögner, M.; Lugert, V.; Slater, M.J.; Henjes, J. Low turbidity in recirculating aquaculture systems (RAS) reduces feeding behavior and increases stress-related physiological parameters in pikeperch (Sander lucioperca) during growout. Transl. Anim. Sci. 2021, 5, txab223. [Google Scholar] [CrossRef]
- Santos, A.D.A.; López-Olmeda, J.F.; Sánchez-Vázquez, F.J.; Fortes-Silva, R. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 199, 54–61. [Google Scholar] [CrossRef]
- Pontes, C.S.; Arruda, M.d.F.; Santana, V.G.d.S.; dos Santos, D.B. Animal performance and welfare of giant freshwater prawn (Macrobrachium rosenbergii) subjected to feed restriction. Rev. Bras. Zootec. 2020, 49, e20190128. [Google Scholar] [CrossRef]
- Cao, T.; Zhao, X.; Yang, Y.; Zhu, C.; Xu, Z. Adaptive Recognition of Bioacoustic Signals in Smart Aquaculture Engineering Based on r-Sigmoid and Higher-Order Cumulants. Sensors 2022, 22, 2277. [Google Scholar] [CrossRef]
- Bardera, G.; Usman, N.; Owen, M.; Pountney, D.; Sloman, K.A.; Alexander, M.E. The importance of behaviour in improving the production of shrimp in aquaculture. Rev. Aquac. 2019, 11, 1104–1132. [Google Scholar] [CrossRef]
- Rubio-Gracia, F.; Galobart, C.; Benejam, L.; Martí, B.; Rubio, A.; Vila-Gispert, A. Oxygen consumption in relation to current velocity and morphology in the highly invasive crayfish Procambarus clarkii. Hydrobiologia 2022, 849, 2845–2857. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, Z.; Zhang, L.; Jiang, Y.; Ge, H.; Song, X.; Chen, S.; Zhao, F.; Li, J. Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei). BMC Microbiol. 2019, 19, 192. [Google Scholar] [CrossRef] [PubMed]
- Mulya, M.B.; Yunasfi. Abundance and Ponderal Index of White Shrimp (Penaeus merguiensis) in Estuary Water. J. Phys. Conf. Ser. 2018, 1116, 052042. [Google Scholar] [CrossRef]
- Thawinwan, W.; Salin, K.R.; Rahi, M.L.; Yakupitiyage, A. Growth Performance of Giant Freshwater Prawn (Macrobrachium Rosenbergii, De Man, 1879) in a Vertical Compartment Farming System with Different Biofilters and Varying Flow Rates. Pol. J. Environ. Stud. 2022, 31, 4885–4892. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Xue, B.; Ma, Z.; Ren, X. Hydrodynamic mechanisms enhancing convective diffusion of dissolved oxygen in aquaculture tanks. Comput. Electron. Agric. 2025, 230, 109939. [Google Scholar] [CrossRef]
- Li, X.; Ji, L.; Wu, L.; Gao, X.; Li, X.; Li, J.; Liu, Y. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish Shellfish Immunol. 2019, 86, 1169–1176. [Google Scholar] [CrossRef]
- Stockman, G.; Shapiro, L.G. Computer Vision; Prentice Hall PTR: Hoboken, NJ, USA, 2001. [Google Scholar]
- Yang, L.; Liu, Y.; Yu, H.; Fang, X.; Song, L.; Li, D.; Chen, Y. Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: A review. Arch. Comput. Methods Eng. 2021, 28, 2785–2816. [Google Scholar] [CrossRef]
- Martinez-Alpiste, I.; de Tailly, J.-B.; Alcaraz-Calero, J.M.; Sloman, K.A.; Alexander, M.E.; Wang, Q. Machine learning-based understanding of aquatic animal behaviour in high-turbidity waters. Expert Syst. Appl. 2024, 255, 124804. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Y.; Qu, K.; Cui, Z.; Zhu, J.; Li, H.; Cui, H. Vision-based dual network using spatial-temporal geometric features for effective resolution of fish behavior recognition with fish overlap. Aquac. Eng. 2024, 105, 102409. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, H.; Qu, K.; Zhu, J.; Li, H.; Cui, Z.; Wu, Y. A fish appetite assessment method based on improved ByteTrack and spatiotemporal graph convolutional network. Biosyst. Eng. 2024, 240, 46–55. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, H.; Cui, Z.; Wang, L.; Li, H.; Qu, K.; Cui, H. Early warning system for nocardiosis in largemouth bass (Micropterus salmoides) based on multimodal information fusion. Comput. Electron. Agric. 2024, 226, 109393. [Google Scholar] [CrossRef]
- Nandyala, N.R.; Sanodiya, R.K. Underwater object detection using synthetic data. In Proceedings of the 11th International Symposium on Electronic Systems Devices and Computing (ESDC), Sri City, India, 4–6 May 2023; pp. 1–6. [Google Scholar]
- Asyraf, M.S.; Isa, I.S.; Marzuki, M.I.F.; Sulaiman, S.N.; Hung, C.C. CNN-based YOLOv3 comparison for underwater object detection. J. Electr. Electron. Syst. Res. 2021, 18, 30–37. [Google Scholar] [CrossRef]
- Khan, A.; Fouda, M.M.; Do, D.-T.; Almaleh, A.; Alqahtani, A.M.; Rahman, A.U. Underwater target detection using deep learning: Methodologies, challenges, applications, and future evolution. IEEE Access 2024, 12, 12618–12635. [Google Scholar] [CrossRef]
- Li, Q.; Er, M.J.; Li, L.; Chen, J.; Wu, J. Underwater object detection based on improved SSD with convolutional block attention. In Proceedings of the 5th International Conference on Intelligent Autonomous Systems (ICoIAS), Dalian, China, 23–25 September 2022; pp. 37–42. [Google Scholar]
- Oca, J.; Masalo, I. Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features. Aquac. Eng. 2013, 52, 65–72. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Chen, C.; Wang, F.; Zhang, N.; Cao, S.; Liu, X.; Hu, Q.; Zhang, Z. Effect of combined water-jet inlets on the hydrodynamic performances in square arc-corner aquaculture tanks. Ocean. Eng. 2023, 289, 116234. [Google Scholar] [CrossRef]
- Liu, H.; Xue, B.; Ren, X.; Ye, Z.; Yu, L.; Zhang, Q. Influence of inlet placement on the hydrodynamics of the dual-drain arc angle tank for fish growth. Aquac. Eng. 2023, 101, 102327. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, Y.; Bi, C.; Cheng, Y.; Ren, X.; Liu, Y. Investigation of flow field and pollutant particle distribution in the aquaculture tank for fish farming based on computational fluid dynamics. Comput. Electron. Agric. 2022, 200, 107243. [Google Scholar] [CrossRef]
- Dollet, B.; Boulogne, F. Natural convection above circular disks of evaporating liquids. Phys. Rev. Fluids 2017, 2, 053501. [Google Scholar] [CrossRef]
- Gorle, J.; Terjesen, B.; Summerfelt, S. Hydrodynamics of Atlantic salmon culture tank: Effect of inlet nozzle angle on the velocity field. Comput. Electron. Agric. 2019, 158, 79–91. [Google Scholar] [CrossRef]
- Timmons, M.B.; Summerfelt, S.T.; Vinci, B.J. Review of circular tank technology and management. Aquac. Eng. 1998, 18, 51–69. [Google Scholar] [CrossRef]
- Gorle, J.M.R.; Terjesen, B.F.; Mota, V.C.; Summerfelt, S. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production. Aquac. Eng. 2018, 81, 89–100. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Liang, Q.; Jiang, T.; Yue, L.; Wang, F.; Liu, D. The effects of water flow velocity and odor release frequency on the odor-tracking behavior of swimming crabs (Portunus trituberculatus). Aquaculture 2025, 596, 741817. [Google Scholar] [CrossRef]
- Summerfelt, S.T.; Mathisen, F.; Holan, A.B.; Terjesen, B.F. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites. Aquac. Eng. 2016, 74, 105–110. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, Z.; Ji, M.; Zhou, F.; Ding, X.; Zhu, S.; Zhao, J. Effects of flow velocity on growth and physiology of juvenile largemouth bass (Micropterus salmoides) in recirculating aquaculture systems. Aquac. Res. 2021, 52, 3093–3100. [Google Scholar] [CrossRef]
- Bórquez-Lopez, R.A.; Casillas-Hernandez, R.; Lopez-Elias, J.; Barraza-Guardado, R.; Martinez-Cordova, L. Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters. Aquac. Eng. 2018, 81, 38–45. [Google Scholar] [CrossRef]
Model | Precision (%) | Recall (%) | mAP50 (%) | F1-Score (%) |
---|---|---|---|---|
YOLOv8 | 90.0 | 87.6 | 92.8 | 88.3 |
Faster R-CNN | 67.6 | 64.3 | 78.3 | 55.9 |
YOLOv5 | 84.8 | 75.6 | 83.1 | 79.9 |
Test Point | Low Recirculation (m/s) | Medium Recirculation (m/s) | High Recirculation (m/s) |
---|---|---|---|
1 | 0.018 | 0.023 | 0.037 |
2 | 0.021 | 0.026 | 0.034 |
3 | 0.020 | 0.024 | 0.032 |
Test Point | Low Recirculation (m/s) | Medium Recirculation (m/s) | High Recirculation (m/s) |
---|---|---|---|
1 | 0.025 | 0.045 | 0.078 |
2 | 0.030 | 0.044 | 0.072 |
3 | 0.025 | 0.043 | 0.070 |
4 | 0.029 | 0.041 | 0.057 |
5 | 0.028 | 0.039 | 0.056 |
6 | 0.025 | 0.039 | 0.076 |
Recirculation Volume | Average Speed (pixel/s) | Standard Deviation | Maximum Speed (pixel/s) | Maximum Speed (pixel/s) | |
---|---|---|---|---|---|
2 | Feeding | 15.58 | 4.77 | 24.43 | 10.15 |
Non-feeding | 16.02 | 5.84 | 33.27 | 10.88 | |
5 | Feeding | 13.58 | 3.17 | 22.36 | 10.17 |
Non-feeding | 23.57 | 2.87 | 27.56 | 17.38 | |
10 | Feeding | 12.34 | 2.56 | 17.73 | 9.17 |
Non-feeding | 13.99 | 5.61 | 30.55 | 7.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, L.; Cui, Z.; Li, H.; Chen, J.; Xu, Y.; Zhao, H.; Huang, Z.; Qu, K.; Cui, H. Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking. Fishes 2025, 10, 406. https://doi.org/10.3390/fishes10080406
Zhang J, Wang L, Cui Z, Li H, Chen J, Xu Y, Zhao H, Huang Z, Qu K, Cui H. Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking. Fishes. 2025; 10(8):406. https://doi.org/10.3390/fishes10080406
Chicago/Turabian StyleZhang, Jiahao, Lei Wang, Zhengguo Cui, Hao Li, Jianlei Chen, Yong Xu, Haixiang Zhao, Zhenming Huang, Keming Qu, and Hongwu Cui. 2025. "Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking" Fishes 10, no. 8: 406. https://doi.org/10.3390/fishes10080406
APA StyleZhang, J., Wang, L., Cui, Z., Li, H., Chen, J., Xu, Y., Zhao, H., Huang, Z., Qu, K., & Cui, H. (2025). Impact of Water Velocity on Litopenaeus vannamei Behavior Using ByteTrack-Based Multi-Object Tracking. Fishes, 10(8), 406. https://doi.org/10.3390/fishes10080406