Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,855)

Search Parameters:
Keywords = observational mission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 5251 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 (registering DOI) - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
26 pages, 3314 KiB  
Article
Antenna Model with Pattern Optimization Based on Genetic Algorithm for Satellite-Based SAR Mission
by Saray Sánchez-Sevilleja, Marcos García-Rodríguez, José Luis Masa-Campos and Juan Manuel Cuerda-Muñoz
Sensors 2025, 25(15), 4835; https://doi.org/10.3390/s25154835 - 6 Aug 2025
Abstract
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process [...] Read more.
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process is the antenna model, which serves as a fundamental reference for characterizing the radiation pattern, gain, and overall performance of SAR systems. The present paper sets out to describe the implementation and validation of a phased-array antenna model for Synthetic Aperture Radar Systems (SARAS) in MATLAB R2024a. The antenna model was developed for utilization in the Spanish Earth observation missions PAZ and PRECURSOR-ECO. The antenna model incorporates a number of functions, which are divided into two primary modules: the first of these is the antenna pattern generation (APG) module, and the second is the antenna excitation generation (AEG) module. The present document focuses on the AEG, the function of which is to generate patterns for all required beams. These patterns are optimized and matched to specific calculated masks using an ad hoc genetic algorithm (GA). In consideration of the aforementioned factors, the AEG module generates a set of complex excitations corresponding to the required beam from different satellite operational beams, based on several radiometrically defined parameters.  Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
20 pages, 6555 KiB  
Article
Statistical Study of Whistler-Mode Waves in the Magnetospheric Magnetic Ducts
by Salman A. Nejad and Anatoly V. Streltsov
Universe 2025, 11(8), 260; https://doi.org/10.3390/universe11080260 - 6 Aug 2025
Abstract
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of [...] Read more.
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of the magnetosphere and 183 in the nightside magnetotail, to investigate the spatial distribution and underlying mechanisms of wave–particle interactions. We identify distinct differences between these regions by examining key parameters such as event width, frequency, plasma density, and magnetic field extrema within B-ducts. Using an independent two-sample t-test, we assess the statistical significance of variations in these parameters between different observation periods. This study provides valuable insights into the magnetospheric conditions influencing B-duct formation and wave propagation, offering a framework for understanding ELF/VLF wave dynamics in Earth’s space environment. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

28 pages, 15022 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4799 KiB  
Article
An Adaptive CNN-Based Approach for Improving SWOT-Derived Sea-Level Observations Using Drifter Velocities
by Sarah Asdar and Bruno Buongiorno Nardelli
Remote Sens. 2025, 17(15), 2681; https://doi.org/10.3390/rs17152681 - 3 Aug 2025
Viewed by 86
Abstract
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. [...] Read more.
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. To address these limitations, we developed an adaptive convolutional neural network (CNN)-based filtering technique that refines SWOT-derived sea-level observations. The network includes multi-head attention layers to exploit information on concurrent wind fields and standard altimetry interpolation errors. We train the model with a custom loss function that accounts for the differences between geostrophic velocities computed from SWOT sea-surface topography and simultaneous in-situ drifter velocities. We compare our method to existing filtering techniques, including a U-Net-based model and a variational noise-reduction filter. Our adaptive-filtering CNN produces accurate velocity estimates while preserving small-scale features and achieving a substantial noise reduction in the spectral domain. By combining satellite and in-situ data with machine learning, this work demonstrates the potential of an adaptive CNN-based filtering approach to enhance the accuracy and reliability of SWOT-derived sea-level and velocity estimates, providing a valuable tool for global oceanographic applications. Full article
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
Precise Tracking Control of Unmanned Surface Vehicles for Maritime Sports Course Teaching Assistance
by Wanting Tan, Lei Liu and Jiabao Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1482; https://doi.org/10.3390/jmse13081482 - 31 Jul 2025
Viewed by 160
Abstract
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents [...] Read more.
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents a novel high-precision trajectory tracking control algorithm designed to ensure stable navigation of the USVs along predefined competition boundaries, thereby facilitating the reliable execution of buoy placement and escort missions. First, the paper proposes an improved adaptive fractional-order nonsingular fast terminal sliding mode control (AFONFTSMC) algorithm to achieve precise trajectory tracking of the reference path. To address the challenges posed by unknown environmental disturbances and unmodeled dynamics in marine environments, a nonlinear lumped disturbance observer (NLDO) with exponential convergence properties is proposed, ensuring robust and continuous navigation performance. Additionally, an artificial potential field (APF) method is integrated to dynamically mitigate collision risks from both static and dynamic obstacles during trajectory tracking. The efficacy and practical applicability of the proposed control framework are rigorously validated through comprehensive numerical simulations. Experimental results demonstrate that the developed algorithm achieves superior trajectory tracking accuracy under complex sea conditions, thereby offering a reliable and efficient solution for maritime sports education and related applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

34 pages, 3521 KiB  
Review
Overview of Water-Ice in Asteroids—Targets of a Revolution by LSST and JWST
by Ákos Kereszturi, Mohamed Ramy El-Maarry, Anny-Chantal Levasseur-Regourd, Imre Tóth, Bernadett D. Pál and Csaba Kiss
Universe 2025, 11(8), 253; https://doi.org/10.3390/universe11080253 - 30 Jul 2025
Viewed by 169
Abstract
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There [...] Read more.
Water-ice occurs inside many minor bodies almost throughout the Solar System. To have an overview of the inventory of water-ice in asteroids, beside the general characteristics of their activity, examples are presented with details, including the Hilda zone and among the Trojans. There might be several extinct comets among the asteroids with only internal ice content, demonstrating the complex evolution of such bodies. To evaluate the formation of ice-hosting small objects, their migration and retention capacity by a surface covering dust layer are also overviewed to provide a complex picture of volatile occurrences. This review aims to support further work and search for sublimation-induced activity of asteroids by future missions and telescopic surveys. Based on the observed and hypothesized occurrence and characteristics of icy asteroids, future observation-related estimations were made regarding the low limiting magnitude future survey of LSST/Vera Rubin and also the infrared ice identification by the James Webb space telescope. According to these estimations, there is a high probability of mapping the distribution of ice in the asteroid belt over the next decade. Full article
(This article belongs to the Special Issue The Hidden Stories of Small Planetary Bodies)
Show Figures

Figure 1

17 pages, 3393 KiB  
Article
Research on Distributed Collaborative Task Planning and Countermeasure Strategies for Satellites Based on Game Theory Driven Approach
by Huayu Gao, Junqi Wang, Xusheng Xu, Qiufan Yuan, Pei Wang and Daming Zhou
Remote Sens. 2025, 17(15), 2640; https://doi.org/10.3390/rs17152640 - 30 Jul 2025
Viewed by 257
Abstract
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge [...] Read more.
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge in the current aerospace domain. This paper integrates the concepts of game theory and proposes a distributed collaborative task model suitable for on-orbit satellite mission planning. A two-player impulsive maneuver game model is constructed using differential game theory. Based on the ideas of Nash equilibrium and distributed collaboration, multi-agent technology is applied to the distributed collaborative task planning, achieving collaborative allocation and countermeasure strategies for multi-objective and multi-satellite scenarios. Experimental results demonstrate that the method proposed in this paper exhibits good adaptability and robustness in multiple impulse scheduling, maneuver strategy iteration, and heterogeneous resource utilization, providing a feasible technical approach for mission planning and game confrontation in satellite clusters. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

25 pages, 1343 KiB  
Article
Low-Latency Edge-Enabled Digital Twin System for Multi-Robot Collision Avoidance and Remote Control
by Daniel Poul Mtowe, Lika Long and Dong Min Kim
Sensors 2025, 25(15), 4666; https://doi.org/10.3390/s25154666 - 28 Jul 2025
Viewed by 369
Abstract
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently [...] Read more.
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently limited by excessive network latency, bandwidth bottlenecks, and a lack of predictive decision-making, thus constraining their effectiveness in real-time multi-agent systems. To overcome these limitations, we propose a novel framework that seamlessly integrates edge computing with digital twin (DT) technology. By performing localized preprocessing at the edge, the system extracts semantically rich features from raw sensor data streams, reducing the transmission overhead of the original data. This shift from raw data to feature-based communication significantly alleviates network congestion and enhances system responsiveness. The DT layer leverages these extracted features to maintain high-fidelity synchronization with physical robots and to execute predictive models for proactive collision avoidance. To empirically validate the framework, a real-world testbed was developed, and extensive experiments were conducted with multiple mobile robots. The results revealed a substantial reduction in collision rates when DT was deployed, and further improvements were observed with E-DTNCS integration due to significantly reduced latency. These findings confirm the system’s enhanced responsiveness and its effectiveness in handling real-time control tasks. The proposed framework demonstrates the potential of combining edge intelligence with DT-driven control in advancing the reliability, scalability, and real-time performance of multi-robot systems for industrial automation and mission-critical cyber-physical applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 290
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

21 pages, 11032 KiB  
Article
Convective–Stratiform Identification Neural Network (CONSTRAINN) for the WIVERN Mission
by Federico Mustich, Alessandro Battaglia, Francesco Manconi, Pavlos Kollias and Antonio Parodi
Remote Sens. 2025, 17(15), 2590; https://doi.org/10.3390/rs17152590 - 25 Jul 2025
Viewed by 447
Abstract
The WIVERN mission promises to deliver the first global observations of the three-dimensional wind field and the associated cloud and precipitation structure in a wide range of atmospheric phenomena, including isolated thunderstorms, tropical cyclones, mid-latitude frontal systems, and polar lows. A critical element [...] Read more.
The WIVERN mission promises to deliver the first global observations of the three-dimensional wind field and the associated cloud and precipitation structure in a wide range of atmospheric phenomena, including isolated thunderstorms, tropical cyclones, mid-latitude frontal systems, and polar lows. A critical element in the development of the mission’s wind products is the differentiation between stratiform and convective regions. Convective regions are defined as those where vertical wind velocities exceed 1 m/s. This work introduces CONSTRAINN, a family of U-Net-based neural network models that utilise all of WIVERN observables—including vertical profiles of reflectivity and Doppler velocity, as well as brightness temperatures—to reconstruct convective wind activity within the Earth’s atmosphere. Results show that the retrieved convective/stratiform masks are well reconstructed, with an equitable threat score exceeding 0.6. Ablation experiments further reveal that Doppler velocity signals are the most informative for the reconstruction task. Full article
Show Figures

Figure 1

25 pages, 15938 KiB  
Article
Coastal Eddy Detection in the Balearic Sea: SWOT Capabilities
by Laura Fortunato, Laura Gómez-Navarro, Vincent Combes, Yuri Cotroneo, Giuseppe Aulicino and Ananda Pascual
Remote Sens. 2025, 17(15), 2552; https://doi.org/10.3390/rs17152552 - 23 Jul 2025
Viewed by 476
Abstract
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of [...] Read more.
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of these features, especially in coastal regions where conventional altimetry is limited. In this study, we investigate a mesoscale anticyclonic coastal eddy observed southwest of Mallorca Island, in the Balearic Sea, to assess the impact of SWOT-enhanced altimetry in resolving its structure and dynamics. Initial eddy identification is performed using satellite ocean color imagery, followed by a qualitative and quantitative comparison of multiple altimetric datasets, ranging from conventional nadir altimetry to wide-swath products derived from SWOT. We analyze multiple altimetric variables—Sea Level Anomaly, Absolute Dynamic Topography, Velocity Magnitude, Eddy Kinetic Energy, and Relative Vorticity—highlighting substantial differences in spatial detail and intensity. Our results show that SWOT-enhanced observations significantly improve the spatial characterization and dynamical depiction of the eddy. Furthermore, Lagrangian transport simulations reveal how altimetric resolution influences modeled transport pathways and retention patterns. These findings underline the critical role of SWOT in advancing the monitoring of coastal mesoscale processes and improving our ability to model oceanic transport mechanisms. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Graphical abstract

20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 249
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

20 pages, 29094 KiB  
Article
Retrieval of Cloud, Atmospheric, and Surface Properties from Far-Infrared Spectral Radiances Measured by FIRMOS-B During the 2022 HEMERA Stratospheric Balloon Campaign
by Gianluca Di Natale, Claudio Belotti, Marco Barucci, Marco Ridolfi, Silvia Viciani, Francesco D’Amato, Samuele Del Bianco, Bianca Maria Dinelli and Luca Palchetti
Remote Sens. 2025, 17(14), 2458; https://doi.org/10.3390/rs17142458 - 16 Jul 2025
Viewed by 266
Abstract
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric [...] Read more.
The knowledge of the radiative properties of clouds and the atmospheric state is of fundamental importance in modelling phenomena in numerical weather predictions and climate models. In this study, we show the results of the retrieval of cloud properties, along with the atmospheric state and the surface temperature, from far-infrared spectral radiances, in the 100–1000 cm−1 range, measured by the Far-Infrared Radiation Mobile Observation System-Balloon version (FIRMOS-B) spectroradiometer from a stratospheric balloon launched from Timmins (Canada) in August 2022 within the HEMERA 3 programme. The retrieval study is performed with the Optimal Estimation inversion approach, using three different forward models and retrieval codes to compare the results. Cloud optical depth, particle effective size, and cloud top height are retrieved with good accuracy, despite the relatively high measurement noise of the FIRMOS-B observations used for this study. The retrieved atmospheric profiles, computed simultaneously with cloud parameters, are in good agreement with both co-located radiosonde measurements and ERA-5 profiles, under all-sky conditions. The findings are very promising for the development of an optimised retrieval procedure to analyse the high-precision FIR spectral measurements, which will be delivered by the ESA FORUM mission. Full article
Show Figures

Figure 1

58 pages, 38117 KiB  
Article
Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design
by Janani Priyadharshini Veeraperumal Senthil Nathan, Martin Navamani Chellapandian, Vijayanandh Raja, Parvathy Rajendran, It Ee Lee, Naveen Kumar Kulandaiyappan, Beena Stanislaus Arputharaj, Subhav Singh and Deekshant Varshney
Machines 2025, 13(7), 604; https://doi.org/10.3390/machines13070604 - 14 Jul 2025
Viewed by 422
Abstract
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The [...] Read more.
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The proposed design method includes distinct calculations of the UAV and modelling using 3D experience. The created innovative models are simulated with the help of computational fluid dynamics techniques in ANSYS Fluent to obtain the aerodynamic parameters such as forces, pressure and velocity. The optimization process continues to add more desired modifications to the model, to finalize the best design of flying wing frame for the chosen application and mission profile. In total, nine models are developed starting with the base model, then leading to the conventional, advanced and nature inspired configurations such as the falcon and dragonfly models, as it has an added advantage of producing high maneuverability and lift. Following this, fluid structure interaction analysis has been performed for the best performing configurations, resulting in the determination of variations in the structural behavior with the imposition of advanced composite materials, namely, boron, Kevlar, glass and carbon fiber-reinforced polymers. In addition to this, a hybrid material is designed by combining two composites that resulted in superior material performance when imposed. Control dynamic study is performed for the maneuvers planned as per mission profile, to ensure stability during flight. All the resulting parameters obtained are compared with one another to choose the best frame of the flying wing body, along with the optimum material to be utilized for future analysis and development. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

Back to TopTop