Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = oat-base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4843 KiB  
Article
Neural Gas Network Optimization Using Improved OAT Algorithm for Oil Spill Detection in Marine Radar Imagery
by Baozhu Jia, Zekun Guo, Jin Xu, Peng Liu and Bingxin Liu
Remote Sens. 2025, 17(16), 2793; https://doi.org/10.3390/rs17162793 - 12 Aug 2025
Viewed by 151
Abstract
With the increasingly frequent exploitation and transportation of offshore oil, the threat of oil spill accidents to the marine ecological environment has become increasingly serious. It is urgent to develop efficient and reliable oil film monitoring technology. Based on the marine radar oil [...] Read more.
With the increasingly frequent exploitation and transportation of offshore oil, the threat of oil spill accidents to the marine ecological environment has become increasingly serious. It is urgent to develop efficient and reliable oil film monitoring technology. Based on the marine radar oil spill data, an innovative OAT-NGN hybrid strategy segmentation algorithm was proposed. By integrating the local feature learning ability of a Neural Gas Network (NGN) and the global search strategy of the Oat optimization algorithm (OAT), the proposed method effectively meets the challenges of traditional oil film segmentation methods in complex sea conditions. Firstly, the raw data of marine radar were preprocessed by using co-frequency interference and speckle noise suppression. Then, the OAT algorithm guided the updating of neural weights in the NGN on a global scale for the exploration of a more optimal solution space during the optimization process. Finally, the oil spill segmentation results were projected to the polar coordinate system through post-processing technology. The experimental results showed that this method effectively balanced the problem of false detection and missing detection. Compared with existing methods, OAT-NGN shown stronger adaptability in complex scenarios. In order to improve the segmentation performance, its innovative dynamic weight adjustment mechanism and spatial constraint design provide a new technical path. Full article
(This article belongs to the Special Issue Remote Sensing for Marine Environmental Disaster Response)
Show Figures

Graphical abstract

20 pages, 3157 KiB  
Article
Enhancement of Foaming Performance of Oat Globulin by Limited Enzymatic Hydrolysis: A Study from the Viewpoint of the Structural and Functional Properties
by Yahui Zhu, Junlong Zhang, Xuedong Gu, Pengjie Wang, Yang Liu, Yingze Jiao, Lin Yang and Han Chen
Gels 2025, 11(8), 615; https://doi.org/10.3390/gels11080615 - 6 Aug 2025
Viewed by 261
Abstract
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. [...] Read more.
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. The results show that the foaming capacity of oat globulin hydrolysates is negatively correlated with surface hydrophobicity and positively correlated with the degree of hydrolysis. The results of circular dichroism (CD) and size-exclusion chromatography (SEC) indicate that hydrolysis generated smaller, disordered peptides. Under equilibrium conditions at a 2% concentration, a reduction of 1.62 mN/m in surface tension and an increase of 3.82 μm in foam film thickness were observed. These peptides reduce surface tension between air and water, forming larger, thicker, and more stable foams. Compared to untreated oat globulin, the foaming capacity of hydrolyzed ones increased by 87.17%. Under comparable conditions, these findings demonstrate that limited hydrolyzed oat globulin exhibits potential as an effective plant-based foaming agent up to a degree of hydrolysis of 15.06%. Full article
(This article belongs to the Special Issue Gels for Plant-Based Food Applications (2nd Edition))
Show Figures

Graphical abstract

30 pages, 13266 KiB  
Article
Emission of Total Volatile Organic Compounds from the Torrefaction Process: Meadow Hay, Rye, and Oat Straw as Renewable Fuels
by Justyna Czerwinska, Szymon Szufa, Hilal Unyay and Grzegorz Wielgosinski
Energies 2025, 18(15), 4154; https://doi.org/10.3390/en18154154 - 5 Aug 2025
Viewed by 213
Abstract
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat [...] Read more.
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat of combustion of agri-biomass resulting from the torrefaction process. The process was carried out at the following temperatures: 225, 250, 275, and 300 °C. Total VOC emission factors were determined. The reaction kinetics analysis revealed that meadow hay exhibited the most stable thermal behavior with the lowest activation energy. At the same time, rye straw demonstrated higher thermal resistance and complex multi-step degradation characteristics. The authors analyze three types of agricultural biomass: meadow hay, rye straw, and oat straw. The research was divided into five stages: determination of moisture content in the sample, determination of ash content, thermogravimetric analysis, measurement of total VOC emissions from the biomass torrefaction process, and determination of the heat of combustion of the obtained torrefied biomass. Based on the research, it was found that torrefaction of biomass causes the emission of torgas containing VOC in the amount of 2–10 mg/g of torrefied biomass, which can be used energetically, e.g., to support the torrefaction process, and the torrefied biomass shows a higher value of the heat of combustion. Unlike prior studies focused on single feedstocks or limited temperature ranges, this work systematically compares three major crop residues across four torrefaction temperatures and directly couples VOC quantifications. Full article
Show Figures

Figure 1

23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Viewed by 257
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 303
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

21 pages, 570 KiB  
Article
The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages
by Anna Wirkijowska, Piotr Zarzycki, Dorota Teterycz and Danuta Leszczyńska
Appl. Sci. 2025, 15(15), 8428; https://doi.org/10.3390/app15158428 - 29 Jul 2025
Viewed by 334
Abstract
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional [...] Read more.
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional components that affect dough rheology and bread texture. This study examined the effects of substituting water with oat (BO), millet (BM), and spelt (BS) beverages in wheat bread formulations at 25%, 50%, 75%, and 100% levels. Thirteen bread variants were prepared: one control and four substitution levels for each of the three cereal-based beverages, using the straight dough method, with hydration adjusted according to farinograph results. Farinograph tests showed increased water absorption (up to 64.5% in BO100 vs. 56.9% in control) and improved dough stability (10.6 min in BS100). Specific bread volume increased, with BS75 reaching 3.52 cm3/g compared to 3.09 cm3/g in control. Moisture content remained stable during storage, and crumb hardness after 72 h was lowest in BO100 (9.5 N) and BS75 (11.5 N), indicating delayed staling. All bread variants received favorable sensory ratings, with average scores above 3.75 on a 5-point scale. The highest bread yield (149.8%) and lowest baking loss (10.9%) were noted for BS100. Although BO breads had slightly higher fat and energy content, their nutritional profile remained favorable due to unsaturated fatty acids. Overall, oat and spelt beverages demonstrated the greatest potential as functional water substitutes, improving dough handling, shelf-life, and sensory quality while maintaining consumer appeal. Full article
Show Figures

Graphical abstract

25 pages, 1677 KiB  
Article
Effect of Homogenization and Pectin on Chemical, Textural, Antioxidant and Sensory Characteristics of L. bulgaricus-Fermented Oat-Based Product
by Dmitrii V. Khrundin and Elena V. Nikitina
Foods 2025, 14(15), 2615; https://doi.org/10.3390/foods14152615 - 25 Jul 2025
Viewed by 188
Abstract
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the [...] Read more.
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the addition of 1% pectin on oat-based beverages fermented with Lactobacillus delbrueckii subsp. bulgaricus were evaluated in this study. The samples were evaluated for a number of characteristics, including physicochemical, rheological, antioxidant and sensory properties. After 6 h fermentation, pectin-containing samples showed a statistically significant decrease in pH (to 3.91) and an increase in titratable acidity (to 92 °T). Homogenization and the addition of pectin were found to significantly increase viscosity (by 1.5–2 times) and water-holding capacity (by 2 times) while reducing syneresis by 96%. The antioxidant activity of L. bulgaricus-fermented samples increased significantly: the radical scavenging activity (RSA) and OH-radical inhibition increased by 40–60%, depending on the treatment. Extractable polysaccharides (PSs) inhibited lipase and glucosidase by 90% and 85%, respectively; significantly higher inhibition was observed in the fermented and pectin-containing groups. Sensory evaluation showed that the homogenized, pectin-enriched samples (Homog+) scored highest for consistency (4.5 ± 0.2), texture (4.9 ± 0.2), and overall acceptability (4.8 ± 0.2); these scores were all statistically higher than those for the untreated samples. These results suggest that combining enzymatic hydrolysis, homogenization and fermentation with L. bulgaricus significantly improves the structural, functional and sensory properties of oat-based beverages, providing a promising approach to producing high-quality, functional non-dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 423
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 1318 KiB  
Article
Decoding Plant-Based Beverages: An Integrated Study Combining ATR-FTIR Spectroscopy and Microscopic Image Analysis with Chemometrics
by Paris Christodoulou, Stratoniki Athanasopoulou, Georgia Ladika, Spyros J. Konteles, Dionisis Cavouras, Vassilia J. Sinanoglou and Eftichia Kritsi
AppliedChem 2025, 5(3), 16; https://doi.org/10.3390/appliedchem5030016 - 16 Jul 2025
Viewed by 1016
Abstract
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) [...] Read more.
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, protein secondary structure proportions, colorimetry, and microscopic image texture analysis. A total of 26 variables, derived from ATR-FTIR and protein secondary structure assessment, were employed in multivariate models, using partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA) to evaluate classification performance. The results indicated clear group separation, with soy and rice beverages forming distinct clusters while almond and oat samples showing partial overlap. Variable importance in projection (VIP) scores revealed that β-turn and α-helix protein structures, along with carbohydrate-associated spectral bands, were the key features for beverages’ classification. Textural features derived from microscopy images correlated with sugar and carbohydrate content and color parameters were also employed to describe beverages’ differences related to sugar content and visual appearance in terms of homogeneity. These findings demonstrate that combining ATR-FTIR spectral data with protein secondary structure data enables the effective classification of plant-based beverages, while microscopic image textural and color parameters offer additional extended product characterization. Full article
Show Figures

Figure 1

25 pages, 1306 KiB  
Article
Comparative Study on Production Performance of Different Oat (Avena sativa) Varieties and Soil Physicochemical Properties in Qaidam Basin
by Wenqi Wu, Ronglin Ge, Jie Wang, Xiaoli Wei, Yuanyuan Zhao, Xiaojian Pu and Chengti Xu
Plants 2025, 14(13), 1978; https://doi.org/10.3390/plants14131978 - 28 Jun 2025
Viewed by 411
Abstract
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of [...] Read more.
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of the main agronomic traits, quality, and soil physical and chemical properties of different oat varieties at the harvest stage. The hay yield of Molasses (17,933.33 kg·hm−2) was the highest (p < 0.05), the plant height (113.59 cm) and crude fat (3.02%) of Qinghai 444 were the highest (p < 0.05), the fresh-dry ratio (2.62), crude protein (7.43%), and total salt content in plants (68.33 g·kg−1) of Qingtian No. 1 were the highest (p < 0.05), and the Relative forage value (RFV) of Baler (122.96) was the highest (p < 0.05). In the 0–15 cm and 15–30 cm soil layers of different oat varieties, the contents of pH, EC, total salt, Ca2+, Mg2+, and HCO3 showed a decreasing trend at the harvest stage compared to the seedling stage, while the contents of organic matter, total nitrogen, Cl, and SO42− showed an increasing trend. The contents of K+ and Na+ maintained a relatively balanced relationship between the seedling stage and the harvest stage in the two soil layers. Qingtian No. 1, Qingyin No. 1, and Molasses all rank among the top three in terms of production performance and soil physical and chemical properties, and they are the oat varieties suitable for cultivation in the research area. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 2069 KiB  
Article
Natural-Origin Edible Gels as Delivery Systems for Green Tea Extract: Formulation, Physicochemical, and Biopharmaceutic Profile Assessment
by Andreja Poceviciute, Agne Mazurkeviciute and Lina Raudone
Molecules 2025, 30(13), 2789; https://doi.org/10.3390/molecules30132789 - 28 Jun 2025
Viewed by 394
Abstract
Natural-origin edible gels are gaining attention as innovative carriers for bioactive compounds, offering consumer-friendly formats and potential to enhance stability and bioavailability. This study aimed to develop and characterize edible gels incorporating Camellia sinensis (L.) Kuntze extract using different plant-based gelling agents, including [...] Read more.
Natural-origin edible gels are gaining attention as innovative carriers for bioactive compounds, offering consumer-friendly formats and potential to enhance stability and bioavailability. This study aimed to develop and characterize edible gels incorporating Camellia sinensis (L.) Kuntze extract using different plant-based gelling agents, including whole flaxseeds, ground flaxseeds, medium-size oatmeal, and coarse oatmeal. The physical properties of the gels were evaluated by rheological (flow curve) and pH studies. The phytochemical composition of the green tea extract and gels with this extract and the main phenolic compounds, including catechins, gallic acid, and caffeine, were evaluated by high-performance liquid chromatography. The biopharmaceutical properties of the prepared gels were evaluated by dissolution testing. Rheological analysis revealed that oat-based gels exhibited higher viscosity (up to 24.33 Pa·s) compared to flaxseed-based gels. Despite differences in consistency, no statistically significant differences were found in total phenolic release among gel formulations (p > 0.05), except for epigallocatechin, which showed significantly higher release from coarse oatmeal gels (p > 0.05). The findings suggest that both flaxseed- and oatmeal-based gels are promising natural carriers for green tea phytochemicals, offering standardized dosing and potential cognitive health benefits. Further studies are warranted to assess the in vivo bioavailability and long-term stability of these formulations. Full article
Show Figures

Figure 1

18 pages, 1792 KiB  
Article
Towards a More Holistic Comparative Assessment of Plant-Based Alternative Beverages and Dairy Milk: A True Cost Accounting Approach
by Mauricio R. Bellon, Nicholas Benard, Jane E. Coghlan and Kathleen Merrigan
Foods 2025, 14(13), 2196; https://doi.org/10.3390/foods14132196 - 23 Jun 2025
Viewed by 477
Abstract
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific [...] Read more.
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific evidence. A holistic comparison of dairy milk and PBAs is difficult because their prices typically do not reflect their environmental and nutritional health impacts, although PBAs tend to be significantly more expensive than dairy milk. Here, we integrate key results from the scientific literature using a True Cost Accounting (TCA) approach to compare dairy milk and five PBAs based on their market retail price and a quantification—and when possible, monetization—of key environmental, nutritional, and social impacts: Global Warming Potential (GWP), dietary risks, and forced labor, respectively. We compare whole dairy milk with five PBAs: soy, almond, oat, coconut, and pea, which account for 97% of retail market sales in the USA. The results show that while environmental, nutritional, and social benefits attributed to PBAs compared to dairy milk exist and can be significant, they are heterogenous, and for some PBAs, they may not be as significant as commonly perceived, particularly when the price premium they command are considered. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

17 pages, 5500 KiB  
Article
Biocontrol Ability Against Harmful Microbial Contamination of Vegan Mortadella with an Ingredient of Oat Fermented by Lactiplantibacillus plantarum
by Ana Moreno, Alberto Gonçalves, Mario Riolo, Victor Dopazo, Jorge Calpe and Giuseppe Meca
Foods 2025, 14(13), 2195; https://doi.org/10.3390/foods14132195 - 23 Jun 2025
Viewed by 458
Abstract
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus [...] Read more.
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus, Penicillium commune, and Listeria monocytogenes (inhibition zones: 2–5 mm). The enrichment of the oat drink culture medium with additional nutrients enhanced fermentation performance and increased antifungal activity. The fermented culture medium with the highest antimicrobial activity was used to develop a bioactive ingredient for the preservation of vegan mortadella conservation. Adding 3% of this ingredient to vegan mortadella improved microbial stability, reducing mesophilic bacteria by 2.5 Log10 CFU/g and increasing lactic acid bacteria. Lower pH and water activity changes were observed but remained within quality standards. Contamination assays showed a consistent reduction of A. flavus over 7 days, while P. commune and L. monocytogenes dropped below detection within 2 days. In contrast, control samples maintained contamination levels near 3.0 Log10 CFU/g. These findings support the potential of fermented oat-based ingredients as effective, natural preservatives for vegan foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 4949 KiB  
Article
The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate
by Artur Mykhalevych, Galyna Polishchuk, Agata Znamirowska-Piotrowska, Anna Kamińska-Dwórznicka, Maciej Kluz and Magdalena Buniowska-Olejnik
Foods 2025, 14(13), 2184; https://doi.org/10.3390/foods14132184 - 22 Jun 2025
Viewed by 575
Abstract
Improving the texture and shelf-life of whey-based ice cream remains a key challenge in clean-label food formulation. This study investigated the effects of different stabilizing ingredients—including Cremodan SI 320 (0.6%), oat β-glucan (0.25–0.5%), and yeast β-glucan (0.25–0.5%)—on the physicochemical properties and freezing dynamics [...] Read more.
Improving the texture and shelf-life of whey-based ice cream remains a key challenge in clean-label food formulation. This study investigated the effects of different stabilizing ingredients—including Cremodan SI 320 (0.6%), oat β-glucan (0.25–0.5%), and yeast β-glucan (0.25–0.5%)—on the physicochemical properties and freezing dynamics of ice cream made from liquid hydrolyzed demineralized whey concentrate. Compared to Cremodan, oat β-glucan significantly lowered the freezing point, improved overrun, and enhanced melting resistance. Yeast β-glucan led to the smallest initial ice crystals (8.49 ± 0.37 μm) and minimal growth after one month (9.52 ± 0.16 μm), outperforming the control and Cremodan samples in crystal stability. The chemical composition and textural properties of each formulation were also evaluated. These findings demonstrate that oat and yeast β-glucans function as natural stabilizers, offering clean-label potential and improved structural integrity in frozen dairy desserts. Full article
(This article belongs to the Special Issue Nutrients and Functional Ingredients in Dairy Products)
Show Figures

Figure 1

21 pages, 576 KiB  
Article
A Comprehensive Study on the Nutritional Profile and Shelf Life of a Custom-Formulated Protein Bar Versus a Market-Standard Product
by Corina Duda-Seiman, Liliana Mititelu-Tartau, Simona Biriescu, Alexandra-Loredana Almășan, Bianca-Oana Bitu, Adina-Ioana Bucur, Andrei Luca, Bogdan Hoinoiu and Teodora Hoinoiu
Foods 2025, 14(12), 2141; https://doi.org/10.3390/foods14122141 - 19 Jun 2025
Viewed by 2332
Abstract
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient [...] Read more.
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient profile. Method: The protein bar formulation used soy protein extract, a plant-based protein source, known for its complete amino acid profile but limited in methionine, which was complemented by oats to nutritionally balance this deficiency. A database was created to evaluate the cost-effectiveness of commercially available protein bars based on consumer feedback. The experimental bar was tested for nutritional value, shelf life, and physiological impact, using only natural ingredients for texture, flavor, and stability. Results: The experimental protein bar had higher protein and fiber content than a selected commercial bar but a shorter shelf life (7 days vs. 90 days) due to the absence of preservatives. The database helped identify target consumer groups and ensure the product was affordable and nutritionally effective. Conclusion: This study demonstrates that using natural, complementary ingredients can create a protein bar with a more balanced nutrient profile while avoiding harmful additives. The final product supports muscle protein synthesis through its high-quality protein content and promotes glycemic control and satiety via its fiber-rich, low-sugar formulation and metabolic processes, offering a healthier alternative to commercial options, with a focus on consumer health and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Improvement and Fortification of Cereal Food)
Show Figures

Figure 1

Back to TopTop