Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = oat drink

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 949 KB  
Study Protocol
Effect of the Consumption of Milk with Beta-Casein A2A2, Milk with Beta-Casein A1A2 and a Plant-Based Drink on Metabolic Health in Adults: Protocol IMPA-CT Study
by Jadwiga Hamulka, Magdalena Górnicka, Anna Berthold-Pluta, Adam Kalinowski, Marta Habanova and Dawid Madej
Nutrients 2025, 17(24), 3922; https://doi.org/10.3390/nu17243922 - 15 Dec 2025
Viewed by 740
Abstract
Background and Objectives: Milk with A2/A2 β-casein (A2 milk) is currently the subject of numerous studies on the effects of its consumption on health. Commonly consumed milk contains a mixture of β-casein of different genetic variants (most often A1 and A2). In the [...] Read more.
Background and Objectives: Milk with A2/A2 β-casein (A2 milk) is currently the subject of numerous studies on the effects of its consumption on health. Commonly consumed milk contains a mixture of β-casein of different genetic variants (most often A1 and A2). In the polypeptide chain of A2/A2 β-casein, proline occurs at position 67, while in β-casein A1/A2, histidine occurs. The main goal of the dietary intervention was to identify and compare the effects of consuming A2 milk, conventional milk (A1) and oat drink on bone health, cardiometabolic health and immune system function in adults. Methods: The controlled IMPA-CT (Investigating Milk and Plant Alternatives Comparative Trial) Study was a randomized study with three groups (A2 Milk group, A1 Milk group, and Oat Drink group). The study included 162 adults with normal and/or overweight, without coexisting chronic diseases, aged 30–60 years. The intervention study consisted of the consumption of 500 mL of an appropriate product (A2 milk/A1 milk/oat drink) daily for 12 weeks. After qualification of the subjects, before the start of the study (T1′), in the 4th week of the study (T2′), in the 8th week of the study (T3′) and at the end of the study, after 12 weeks (T4’), an assessment of the diet and nutritional status was planned. Body composition, bone mineral density (DEXA) and biochemical tests were done. The primary outcome will be the effect of cow’s milk variants and oat drink consumption on bone health. Secondary outcomes will include changes in nutrient intake and cardiometabolic health as well as the immune system in adults. Expected Results and Contributions: The study design, including extensive follow-up and robust endpoint measures, contributed to understanding the therapeutic potential and safety profile or otherwise of β-casein A2/A2 milk and plant-based drinks. Full article
(This article belongs to the Special Issue Nutritional Surveys and Assessment of Unhealthy Eating Behaviors)
Show Figures

Figure 1

16 pages, 2520 KB  
Article
Analysis of Sensory Attributes and Purchasing Decisions of Plant-Based Beverages of Young Consumers in Poland on a Vegan and Traditional Diet
by Krystyna Szymandera-Buszka, Agata Jankowska, Anna Jędrusek-Golińska, Maciej Jarzębski, Aleksandra Karwik, Jacek Anioła, Marek Wieruszewski, Agnieszka Lasota and Jarosław Pawlicz
Foods 2025, 14(21), 3672; https://doi.org/10.3390/foods14213672 - 28 Oct 2025
Cited by 1 | Viewed by 1173
Abstract
This study aimed to analyse young consumers’ behaviour in Poland toward the consumption of plant-based beverages as milk alternatives. The sensory analysis included oat, buckwheat, cashew, almond, soy, pea, rice, coconut, hazelnut, and macadamia nut beverages and their mixtures. Quantitative analysis of sensory [...] Read more.
This study aimed to analyse young consumers’ behaviour in Poland toward the consumption of plant-based beverages as milk alternatives. The sensory analysis included oat, buckwheat, cashew, almond, soy, pea, rice, coconut, hazelnut, and macadamia nut beverages and their mixtures. Quantitative analysis of sensory desirability and sensory profiling were employed to evaluate plant-based beverages. The study was conducted among young people (aged 18–35) who declared a vegan or omnivorous diet. It was found that the most frequently consumed beverages included oat and soy beverages, both among vegan and traditional (omnivorous) young groups. A significantly lower frequency of plant-based beverage consumption was confirmed in the group of people with an omnivorous diet. The taste characteristics in plant-based beverages are a key factor in driving sensory desirability among young consumers. Analysis of the influence of respondents’ declared diet and gender revealed no significant differences in the desirability of the taste of the plant-based beverages. The consumers rated the coconut, pea, macadamia, oat, and rice–coconut beverages as the most desirable in terms of taste. The lowest taste desirability was confirmed for the soy drink despite its high reported consumption. The importance of this study focused on the local market development in vegan food, as well as its potential due to further consumer expectations. Full article
(This article belongs to the Special Issue The Role of Taste, Smell or Color on Food Intake and Food Choice)
Show Figures

Figure 1

17 pages, 5500 KB  
Article
Biocontrol Ability Against Harmful Microbial Contamination of Vegan Mortadella with an Ingredient of Oat Fermented by Lactiplantibacillus plantarum
by Ana Moreno, Alberto Gonçalves, Mario Riolo, Victor Dopazo, Jorge Calpe and Giuseppe Meca
Foods 2025, 14(13), 2195; https://doi.org/10.3390/foods14132195 - 23 Jun 2025
Viewed by 1061
Abstract
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus [...] Read more.
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus, Penicillium commune, and Listeria monocytogenes (inhibition zones: 2–5 mm). The enrichment of the oat drink culture medium with additional nutrients enhanced fermentation performance and increased antifungal activity. The fermented culture medium with the highest antimicrobial activity was used to develop a bioactive ingredient for the preservation of vegan mortadella conservation. Adding 3% of this ingredient to vegan mortadella improved microbial stability, reducing mesophilic bacteria by 2.5 Log10 CFU/g and increasing lactic acid bacteria. Lower pH and water activity changes were observed but remained within quality standards. Contamination assays showed a consistent reduction of A. flavus over 7 days, while P. commune and L. monocytogenes dropped below detection within 2 days. In contrast, control samples maintained contamination levels near 3.0 Log10 CFU/g. These findings support the potential of fermented oat-based ingredients as effective, natural preservatives for vegan foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 2172 KB  
Article
A Study into the Effects of Chosen Lactic Acid Bacteria Cultures on the Quality Characteristics of Fermented Dairy, Dairy–Oat, and Oat Beverages
by Małgorzata Ziarno, Dorota Zaręba, Ewa Kowalska and Tomasz Florowski
Appl. Sci. 2025, 15(7), 3714; https://doi.org/10.3390/app15073714 - 28 Mar 2025
Cited by 7 | Viewed by 7393
Abstract
The growing demand for plant-based and hybrid dairy–plant beverages has driven interest in optimizing their fermentation processes. This study investigates the effects of selected lactic acid bacteria (LAB) cultures on the quality characteristics of fermented dairy, dairy–oat, and oat beverages. The term ‘dairy-oat [...] Read more.
The growing demand for plant-based and hybrid dairy–plant beverages has driven interest in optimizing their fermentation processes. This study investigates the effects of selected lactic acid bacteria (LAB) cultures on the quality characteristics of fermented dairy, dairy–oat, and oat beverages. The term ‘dairy-oat beverage’ refers to a hybrid product composed of cow’s milk and an oat-based drink in a 1:1 ratio. Cow’s milk, an oat beverage, and a 1:1 mixture of both were inoculated with traditional yogurt cultures (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) and/or probiotic strains (Lactiplantibacillus plantarum 299v and Lactobacillus acidophilus La-5). Fermentation was conducted for 6 h at 37 °C, followed by 28 days of cold storage. pH, texture (hardness and adhesiveness), syneresis, carbohydrate content, and bacterial viability were assessed. The selection of lactic acid bacteria cultures had a significant impact on the quality attributes of the beverages. Both the bacterial culture type and the base material played a crucial role in determining the beverages’ texture, stability, and overall quality. Mixed bacterial cultures exhibited higher hardness, while milk and dairy–oat samples fermented with the yogurt culture demonstrated better structural stability. Fermentation influenced sugar levels, and bacterial viability depended on the beverage type and storage conditions. The selection of lactic acid bacteria cultures significantly impacts the quality of fermented beverages. Further optimization of bacterial culture combinations could improve these products’ stability and sensory properties. Full article
Show Figures

Figure 1

17 pages, 4018 KB  
Article
Isolation and Identification of Novel Non-Dairy Starter Culture Candidates from Plant Matrix Using Backslopping Propagation
by Maret Andreson, Jekaterina Kazantseva, Aili Kallastu, Taaniel Jakobson, Inga Sarand and Mary-Liis Kütt
Fermentation 2024, 10(12), 663; https://doi.org/10.3390/fermentation10120663 - 23 Dec 2024
Cited by 2 | Viewed by 2384
Abstract
The majority of non-dairy starter cultures on the market are originally isolated from milk and therefore do not provide the most optimal fermentation for plant matrices. Developing plant-derived starter cultures is essential for creating high-quality, tasty dairy alternatives. This study aims to isolate [...] Read more.
The majority of non-dairy starter cultures on the market are originally isolated from milk and therefore do not provide the most optimal fermentation for plant matrices. Developing plant-derived starter cultures is essential for creating high-quality, tasty dairy alternatives. This study aims to isolate and characterize bacterial strains with the potential to be used as non-dairy starters from plant sources via backslopping evolution. A natural consortium of macerated plants was inoculated into two oat and two pea commercial drinks and backslopped for seventeen cycles to evolve the bacterial consortium at 25 °C, 34 °C, and 42 °C. The results showed that the initial natural consortium contained less than 1% lactic acid bacteria, and after the seventeenth cycle, lactic acid bacteria dominated in all investigated consortia. Oat Od1-25 and Od2-42 and pea Pd1-34 and Pd1-42 samples were selected for strain isolation based on amplicon-based metagenetic analysis of 16S rRNA gene sequencing and sensory properties. The strain isolation was performed using an out-plating technique, and colonies were identified by MALDI-TOF mass spectrometry. Altogether, eleven lactic acid bacteria species of plant origin were obtained. The strains belonged to the Leuconostoc, Enterococcus, Lactobacillus, and Lactococcus genera. Full article
(This article belongs to the Special Issue Microbiota and Metabolite Changes in Fermented Foods)
Show Figures

Figure 1

24 pages, 2764 KB  
Article
Riboflavin- and Dextran-Producing Weissella confusa FS54 B2: Characterization and Testing for Development of Fermented Plant-Based Beverages
by Malek Lahmar, Norhane Besrour-Aouam, Annel M. Hernández-Alcántara, Iñaki Diez-Ozaeta, Imene Fhoula, Paloma López, Mari Luz Mohedano and Hadda-Imene Ouzari
Foods 2024, 13(24), 4112; https://doi.org/10.3390/foods13244112 - 19 Dec 2024
Cited by 6 | Viewed by 1958
Abstract
The use of lactic acid bacteria for developing functional foods is increasing for their ability to synthesize beneficial metabolites such as vitamin B (riboflavin, RF) and postbiotic compounds. Here, the spontaneous mutant FS54 B2 was isolated by treatment of the dextran-producing Weissella confusa [...] Read more.
The use of lactic acid bacteria for developing functional foods is increasing for their ability to synthesize beneficial metabolites such as vitamin B (riboflavin, RF) and postbiotic compounds. Here, the spontaneous mutant FS54 B2 was isolated by treatment of the dextran-producing Weissella confusa FS54 strain with roseoflavin. FS54 B2 overproduced RF (4.9 mg/L) in synthetic medium. The FMN riboswitch is responsible for the regulation of RF biosynthesis, and sequencing of the coding DNA revealed that FS54 B2 carries the G131U mutation. FS54 B2 retained the capacity of FS54 to synthesize high levels of dextran (3.8 g/L) in synthetic medium. The fermentation capacities of the two Weissella strains was tested in commercial oat-, soy- and rice-based beverages. The best substrate for FS54 B2 was the oat-based drink, in which, after fermentation, the following were detected: RF (2.4 mg/L), dextran (5.3 mg/L), potential prebiotics (oligosaccharides (panose (5.1 g/L), isomaltose (753 mg/L) and isomaltotriose (454 mg/L)) and the antioxidant mannitol (16.3 g/L). pH-lowering ability and cell viability after one month of storage period were confirmed. As far as we know, this is the first time that an RF-overproducing W. confusa strain has been isolated, characterized and tested for its potential use in the development of functional beverages. Full article
(This article belongs to the Special Issue Applications of Biotechnology to Fermented Foods)
Show Figures

Figure 1

33 pages, 4976 KB  
Article
Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling
by Dorsilla A. Katimbwa, Yoonsu Kim, Min Jeong Kim, Minsoo Jeong and Jinkyu Lim
Foods 2024, 13(19), 3102; https://doi.org/10.3390/foods13193102 - 28 Sep 2024
Cited by 3 | Viewed by 2825
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring’s acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including [...] Read more.
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring’s acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 1912 KB  
Article
Chemical, Textural and Antioxidant Properties of Oat-Fermented Beverages with Different Starter Lactic Acid Bacteria and Pectin
by Dmitrii V. Khrundin and Elena V. Nikitina
BioTech 2024, 13(4), 38; https://doi.org/10.3390/biotech13040038 - 25 Sep 2024
Cited by 3 | Viewed by 2449
Abstract
Currently, starter cultures for fermenting plant-based beverages are not widely available commercially, but producers can use starter cultures for dairy products. Therefore, the aim of this study was to determine the physicochemical, rheological, antioxidant and sensory properties of oat beverages with/without pectin fermented [...] Read more.
Currently, starter cultures for fermenting plant-based beverages are not widely available commercially, but producers can use starter cultures for dairy products. Therefore, the aim of this study was to determine the physicochemical, rheological, antioxidant and sensory properties of oat beverages with/without pectin fermented by four different dairy starter cultures. The use of a mono-starter with Lactobacillus bulgaricus or Sreptococcus thermophilus allows for the efficient use of glucose, and more lactic acid is accumulated. The beverage with L. bulgaricus is characterised by high adhesion, syneresis and low cohesiveness, and it has high antioxidant activity and a low sensory profile. Using starter with L. bulgaricus, S. thermophilus and some Lactococcus for fermentation yields a product with high sensory capacity, forming a high-viscosity beverage matrix with low syneresis, high water retention, chewy texture and stickiness. It has been observed that the absence of lactococci and the presence of Lactobacillus casei, L. Rhamnosus and L. paracasei in the starter yields a product with high antioxidant activity, especially in the presence of pectin. The use of pectin significantly improves the viscosity and textural properties of oat yoghurt, enhancing the drink’s flavour and giving it body. For many reasons, the use of different commercial starters in the dairy industry results in different viscosities of oat fermented beverages, forming a matrix with different textural, sensory and antioxidant properties. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

11 pages, 883 KB  
Article
Impact of Lactic Acid Fermentation on the Organic Acids and Sugars of Developed Oat and Buckwheat Beverages
by Kübra Küçükgöz, Anna Franczak, Wiszko Borysewicz, Klaudia Kamińska, Muhammad Salman, Wioletta Mosiej, Marcin Kruk, Danuta Kołożyn-Krajewska and Monika Trząskowska
Fermentation 2024, 10(7), 373; https://doi.org/10.3390/fermentation10070373 - 21 Jul 2024
Cited by 15 | Viewed by 5292
Abstract
In recent years, new plant-based foods and drinks have been developed to meet the growing demand for animal-derived alternatives, particularly dairy products. This study investigates the impact of lactic acid fermentation on the organic acids and sugars in oat and buckwheat beverages developed [...] Read more.
In recent years, new plant-based foods and drinks have been developed to meet the growing demand for animal-derived alternatives, particularly dairy products. This study investigates the impact of lactic acid fermentation on the organic acids and sugars in oat and buckwheat beverages developed using Lactobacillus johnsonii K4 and Lacticaseibacillus rhamnosus K3, which are potential probiotics. The fermented samples were analyzed for pH changes, bacterial viability, and the concentration of organic acids and sugars over 15 days. The results indicated significant variations in bacterial colony counts, with L. johnsonii K4 showing the highest initial growth. Over 15 days, pH levels decreased, with the most acidic conditions observed in buckwheat beverages. Notably, fermentation led to a significant increase in acetic acid concentration and a reduction in malic acid levels, particularly in buckwheat samples. These findings highlight the dynamic nature of fermentation in enhancing the nutritional profile and shelf-life of plant-based beverages. Full article
Show Figures

Figure 1

16 pages, 2289 KB  
Article
Effect of Neutral and Acidic Protease Processing Intervals on Optimising Nutritional Value and Enhancing Physico-Chemical Properties of Oat Drink
by Monica Nabil Gayed Ibrahim, Helena Andreson, Sana Ben-Othman and Ivi Jõudu
Foods 2024, 13(14), 2285; https://doi.org/10.3390/foods13142285 - 20 Jul 2024
Cited by 4 | Viewed by 3652
Abstract
This study aimed to maximise the content of water-soluble protein (WSP) and β-glucan (BG) in oat drink (OD) products by optimising the duration of treatment with neutral (NP) and acidic (AP) proteases. Additionally, it investigated the correlation between changes in the OD’s nutritional [...] Read more.
This study aimed to maximise the content of water-soluble protein (WSP) and β-glucan (BG) in oat drink (OD) products by optimising the duration of treatment with neutral (NP) and acidic (AP) proteases. Additionally, it investigated the correlation between changes in the OD’s nutritional profile and its rheological and sensory properties. After initial treatment with α-amylase, the OD samples were divided into two groups, i.e., one treated with NP and the other with AP for 30, 60, 120, and 180 min. The samples were then analysed for their WSP and BG contents. Samples with an optimised treatment duration were evaluated for their rheological and sensory properties. The OD sample treated with AP for 60 min exhibited the highest β-glucan (0.52 g/100 mL) and WSP (1.56 g/100 mL) contents, improved storage stability, and the lowest sedimentation rate (2.13%/h), compared to the control OD sample. However, sensorially, this sample was characterised by a sticky, gluey mouthfeel and was less acceptable as a drinkable product. This study demonstrated the potential effect of protease treatment on enhancing the nutritional value and stability of OD products, although further studies are necessary to improve the sensory properties of these drinks. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

19 pages, 3350 KB  
Article
Fourier Transform Infrared Spectroscopy Tracking of Fermentation of Oat and Pea Bases for Yoghurt-Type Products
by Olivia Greulich, Lene Duedahl-Olesen, Mette Skau Mikkelsen, Jørn Smedsgaard and Claus Heiner Bang-Berthelsen
Fermentation 2024, 10(4), 189; https://doi.org/10.3390/fermentation10040189 - 29 Mar 2024
Cited by 13 | Viewed by 3714
Abstract
The fermentation process of plant-based yoghurt (PBY)-like products must be followed for consistency by monitoring, e.g., the pH, temperature, and lactic acid concentration. Spectroscopy provides an efficient multivariate in situ quality monitoring method for tracking the process. Therefore, quality monitoring methods for pea- [...] Read more.
The fermentation process of plant-based yoghurt (PBY)-like products must be followed for consistency by monitoring, e.g., the pH, temperature, and lactic acid concentration. Spectroscopy provides an efficient multivariate in situ quality monitoring method for tracking the process. Therefore, quality monitoring methods for pea- and oat-based yoghurt-like products using Fourier transform infrared (FT-IR) spectroscopy and high-performance liquid chromatography (HPLC) were developed and modeled. Plant-based yoghurt (PBY) was formulated by fermenting pea and oat plant drinks with a commercial starter culture based on Lactobacillus and Streptococcus strains. The main variance during fermentation was explained by spectral carbohydrate and protein bands with a notable shift in protein band peaks for the amide II band at 1548 cm−1 to 1576 cm−1. In addition to the identification of changed spectral bands during fermentation, FT-IR efficiently tracked the variation in oat and pea fermentation using pH as the main indicator. Prediction models with an R2 for the predicted value of pH as a fermentation indicator (R2 = 0.941) with a corresponding root-mean-squared error of prediction (RMSEP) of 0.247 was obtained when compared to the traditional pH method. Full article
(This article belongs to the Special Issue Application of Lactobacillus in Fermented Food and Beverages)
Show Figures

Figure 1

14 pages, 1770 KB  
Article
Sustainability Evaluation of Plant-Based Beverages and Semi-Skimmed Milk Incorporating Nutrients, Market Prices, and Environmental Costs
by Peter de Jong, Franciska Woudstra and Anne N. van Wijk
Sustainability 2024, 16(5), 1919; https://doi.org/10.3390/su16051919 - 26 Feb 2024
Cited by 10 | Viewed by 8853
Abstract
Developing a reliable method to compare food sustainability is gaining traction, with efforts like those by the Food and Agriculture Organization (FAO). This research aims to contribute to a comprehensive scientific comparison of food categories based on CO2 emissions linked not to [...] Read more.
Developing a reliable method to compare food sustainability is gaining traction, with efforts like those by the Food and Agriculture Organization (FAO). This research aims to contribute to a comprehensive scientific comparison of food categories based on CO2 emissions linked not to weight but to their primary function: nutrient availability and uptake in the consumer’s body. The study utilizes a multi-criteria evaluation for sustainability, incorporating the Nutrient Rich Food (NRF) score, protein digestibility, and essential amino acid content. A case study compares one serving of semi-skimmed milk (SSM) with various plant-based beverages (oat, soy, rice, coconut, and almond), considering their carbon footprints in relation to nutrient content and environmental costs. The analysis integrates protein quality through essential amino acid proportion and digestibility. Findings reveal that achieving an NRF11.3 score of 50 requires more servings of unfortified plant-based beverages than semi-skimmed milk, resulting in higher carbon footprints, except for soy drink. However, when considering emerging farm management measures, semi-skimmed and soy drinks show comparable carbon footprints for a given NRF score. Fortified plant-based beverages (soy, oat, and almond) exhibit lower footprints relative to the calculated NRF scores. Yet, when converting carbon footprints to euros using the European Union Emissions Trading System and adding them to retail prices per kilogram, semi-skimmed milk emerges as the option with the lowest “societal costs” (environment and consumer costs). The research underscores that understanding a food product’s nutritional value requires more than knowledge of its composition; uptake into the body maintenance and potential synergistic effects of other components in the food matrix play crucial roles. Full article
(This article belongs to the Special Issue Food Processing Technology and Nutrition)
Show Figures

Figure 1

13 pages, 248 KB  
Article
Alterations in Rumination, Eating, Drinking and Locomotion Behavior in Dairy Cows Affected by Subclinical Ketosis and Subclinical Acidosis
by Ramūnas Antanaitis, Karina Džermeikaitė, Justina Krištolaitytė, Ieva Ribelytė, Agnė Bespalovaitė, Deimantė Bulvičiūtė and Arūnas Rutkauskas
Animals 2024, 14(3), 384; https://doi.org/10.3390/ani14030384 - 25 Jan 2024
Cited by 14 | Viewed by 3538
Abstract
This study delves into the effects of subclinical ketosis (SCK) and subclinical acidosis (SCA) on various parameters related to dairy cow rumination, eating, drinking and locomotion behavior. The research hypothesized that these subclinical metabolic disorders could affect behaviors such as rumination, feeding, and [...] Read more.
This study delves into the effects of subclinical ketosis (SCK) and subclinical acidosis (SCA) on various parameters related to dairy cow rumination, eating, drinking and locomotion behavior. The research hypothesized that these subclinical metabolic disorders could affect behaviors such as rumination, feeding, and locomotion. A total of 320 dairy cows, with a focus on those in their second or subsequent lactation, producing an average of 12,000 kg/year milk in their previous lactation, were examined. These cows were classified into three groups: those with SCK, those with SCA, and healthy cows. The health status of the cows was determined based on the milk fat–protein ratio, blood beta-hydroxybutyrate, and the results of clinical examinations performed by a veterinarian. The data collected during the study included parameters from the RumiWatch sensors. The results revealed significant differences between the cows affected by SCK and the healthy cows, with reductions observed in the rumination time (17.47%) and various eating and chewing behaviors. These changes indicated that SCK had a substantial impact on the cows’ behavior. In the context of SCA, the study found significant reductions in Eating Time 2 (ET2) of 36.84% when compared to the healthy cows. Additionally, Eating Chews 2 (EC2) exhibited a significant reduction in the SCA group, with an average of 312.06 units (±17.93), compared to the healthy group’s average of 504.20 units (±18.87). These findings emphasize that SCA influences feeding behaviors and chewing activity, which can have implications for nutrient intake and overall cow health. The study also highlights the considerable impact of SCK on locomotion parameters, as the cows with SCK exhibited a 27.36% reduction in the walking time levels. These cows also displayed reductions in the Walking Time (WT), Other Activity Time (OAT), and Activity Change (AC). In conclusion, this research underscores the critical need for advanced strategies to prevent and manage subclinical metabolic disorders within the dairy farming industry. The study findings have far-reaching implications for enhancing the well-being and performance of dairy cattle. Effective management practices and detection methods are essential to mitigate the impact of SCK and SCA on dairy cow health and productivity, ultimately benefiting the dairy farming sector. Full article
(This article belongs to the Special Issue Second Edition of Dairy Cattle Health Management)
12 pages, 616 KB  
Article
Storage Stability of Plant-Based Drinks Related to Proteolysis and Generation of Free Amino Acids
by Ida Schwartz Roland, Thao T. Le, Tony Chen, Miguel Aguilera-Toro, Søren Drud-Heydary Nielsen, Lotte Bach Larsen and Nina Aagaard Poulsen
Foods 2024, 13(3), 367; https://doi.org/10.3390/foods13030367 - 23 Jan 2024
Cited by 8 | Viewed by 3769
Abstract
The market for plant-based drinks (PBDs) is experiencing a surge in consumer demand, especially in Western societies. PBDs are a highly processed food product, and little is known about this relatively new food product category when compared to bovine milk. In the present [...] Read more.
The market for plant-based drinks (PBDs) is experiencing a surge in consumer demand, especially in Western societies. PBDs are a highly processed food product, and little is known about this relatively new food product category when compared to bovine milk. In the present study, the storage stability, proteolysis and generation of free amino acids were investigated in commercially available PBDs over the course of a one-year storage period. Generally, pH, color and protein solubility were found to be stable in the PBDs during storage, except for the pea-based product, which showed less protein solubility after storage. The pea-based drinks also had higher initial levels of free N-terminals prior to storage compared with levels for the other plant-based drinks, as well as significantly increasing levels of total free, and especially bitter free, amino acids. The development of free amino acids in the oat-based drink indicated that the released amino acids could be involved in various reactions such as the Maillard reaction during the storage period. Full article
Show Figures

Figure 1

23 pages, 615 KB  
Article
The Nutritional Value of Plant Drink against Bovine Milk—Analysis of the Total Concentrations and the Bio-Accessible Fraction of Elements in Cow Milk and Plant-Based Beverages
by Maja Welna, Anna Szymczycha-Madeja, Anna Lesniewicz and Pawel Pohl
Processes 2024, 12(1), 231; https://doi.org/10.3390/pr12010231 - 21 Jan 2024
Cited by 10 | Viewed by 3346
Abstract
Four types of non-dairy (plant) drinks—almond, oat, rice, and soy—as well as cow milk with varying fat contents (1.5%, 2.0%, and 3.2%), were examined and compared in terms of the total concentrations of Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, [...] Read more.
Four types of non-dairy (plant) drinks—almond, oat, rice, and soy—as well as cow milk with varying fat contents (1.5%, 2.0%, and 3.2%), were examined and compared in terms of the total concentrations of Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Na, Mn, Ni, P, Pb, Sb, Se, Sr, and Zn using inductively coupled optical emission spectrometry (ICP OES). Additionally, in vitro gastrointestinal digestion was used to determine the bio-accessible fraction of selected elements, evaluating the nutritional value and risk assessment involved with the consumption of these beverages. A significant difference in the mineral profile was observed depending on the type of plant drink, with the highest content of elements noted in the soy drink and the lowest in the rice drink. Except for Ca and P, the soy drink appears to be a much better source of essential nutrients, including Cu, Fe, and Mn, than cow’s milk. A similar Ca content in plant beverages can be obtained only by adding calcium salt at the stage of its production. Interestingly, by using the multivariate data analysis, the average content of the selected elements (Cu, K, Na, P, and Zn) can be used both to differentiate dairy and non-dairy milk samples according to their type and to distinguish plant drinks from milk of animal origin. The bio-accessibility of essential elements (Ca, Cu, Fe, Mg, Mn, P, Zn) in cow milk was within 8.37–98.2% and increased with an increase in its fat content. Accordingly, by drinking 1 L of this milk daily, it is possible to contribute to the recommended dietary intakes of Ca, P, Cu, Mg, and Zn between 5.6–68%. Although the bio-accessibility of elements in the rice drink was the highest (9.0–90.8%), the soy drink seems to be the best source of nutrients in bioavailable forms; its consumption (1 L/day) covers the requirements of Cu, Mn, Mg, Ca, P, and Zn in 7.0–67%. Unfortunately, both groups of beverages are not important sources of Fe (plant drink) and Mn or Fe (cow milk) in the human diet. On the other hand, potentially toxic elements (Al, B, Ba) were found in them in a relatively inert form. Full article
Show Figures

Graphical abstract

Back to TopTop