Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (585)

Search Parameters:
Keywords = nutrient flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1768 KB  
Review
A Review of Phytoplankton Sinking Rates: Mechanisms, Methodologies, and Biogeochemical Implications
by Jie Zhu, Jiahong Cheng, Jiangning Zeng, Wei Zhang, Chenggang Liu, Kokoette Sunday Effiong and Qiang Hao
Biology 2026, 15(2), 130; https://doi.org/10.3390/biology15020130 - 12 Jan 2026
Abstract
Phytoplankton sinking is a pivotal process within the biological carbon pump that drives the vertical transport of organic carbon in the ocean. Its rates and underlying mechanisms directly influence the efficiency of the global carbon cycle and the potential for long-term sequestration. This [...] Read more.
Phytoplankton sinking is a pivotal process within the biological carbon pump that drives the vertical transport of organic carbon in the ocean. Its rates and underlying mechanisms directly influence the efficiency of the global carbon cycle and the potential for long-term sequestration. This review synthesizes current knowledge of phytoplankton sinking, encompassing buoyancy regulation mechanisms, environmental and physiological controls, methodological approaches such as settling column (SETCOL), and comparative evidence from laboratory and field studies. The aim is to elucidate the regulatory processes governing sinking and to provide a foundation for improving ecological models and refining estimates of carbon export. Evidence demonstrates that sinking rates vary considerably among phytoplankton groups, with nutrient limitation and aggregation emerging as critical modulators of export efficiency. By integrating results from experimental and in situ research, this review identifies unresolved questions and highlights priority areas: (1) quantitative coupling between aggregation and carbon flux; (2) mechanistic understanding of group-specific sinking responses; (3) integration of novel technologies, including in situ imaging and high-resolution modeling with established methods; and (4) development of interdisciplinary frameworks. Overall, this review consolidates current knowledge and underscores phytoplankton sinking as a crucial yet insufficiently resolved process within the marine carbon cycle. Full article
(This article belongs to the Special Issue Algal Stress Responses: Molecular and Ecological Perspectives)
Show Figures

Figure 1

15 pages, 761 KB  
Article
Protective Effects of Humic Acid on Intestinal Barrier Dysfunction and Inflammatory Activation in Canine Cell-Based Models
by Alma Virág Móritz, Orsolya Farkas, Ákos Jerzsele and Nikolett Palkovicsné Pézsa
Animals 2026, 16(2), 173; https://doi.org/10.3390/ani16020173 - 7 Jan 2026
Viewed by 135
Abstract
The intestinal barrier is essential for gastrointestinal and systemic homeostasis by enabling nutrient absorption while limiting the translocation of pathogens and toxins. When barrier function is impaired, bacterial components such as lipopolysaccharides (LPSs) may cross the epithelium and promote inflammatory signaling. In dogs, [...] Read more.
The intestinal barrier is essential for gastrointestinal and systemic homeostasis by enabling nutrient absorption while limiting the translocation of pathogens and toxins. When barrier function is impaired, bacterial components such as lipopolysaccharides (LPSs) may cross the epithelium and promote inflammatory signaling. In dogs, chronic inflammatory enteropathies are frequent disorders associated with barrier dysfunction, dysbiosis, and immune dysregulation, and may progress to protein-losing enteropathy or systemic inflammation. Humic substances, particularly humic acid (HA), are natural organic compounds with reported antioxidative, immunomodulatory, and barrier-supporting effects; however, the cellular mechanisms underlying these effects in intestinal and immune models remain insufficiently characterized. This study evaluated the effects of a commercially available HA-based supplement on epithelial barrier integrity and inflammatory responses using an in vitro system combining IPEC-J2 intestinal epithelial cells and primary canine peripheral blood mononuclear cells (PBMCs). Epithelial barrier integrity (FD4 paracellular flux), reactive oxygen species, and cytokine production (TNF-α, IL-6) were assessed under basal and LPS-stimulated conditions. HA treatment preserved epithelial barrier function and reduced LPS-induced pro-inflammatory cytokine production, supporting further investigation of HA as a nutraceutical adjunct for gut health support in dogs with chronic enteropathies. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

24 pages, 1139 KB  
Review
SLC35 Transporters: The Missing Link Between Glycosylation and Type 2 Diabetes
by Xu Zhang, Hafiza Mahreen Mehwish and Pulin Che
Diabetology 2026, 7(1), 7; https://doi.org/10.3390/diabetology7010007 - 1 Jan 2026
Viewed by 237
Abstract
Type 2 diabetes mellitus (T2D) affects hundreds of millions worldwide, with recent estimates indicating approximately 589 million adults living with diabetes, most with type 2 disease. Beyond classical insulin signaling pathways, increasing evidence implicates altered protein glycosylation in metabolic dysfunction. The solute carrier [...] Read more.
Type 2 diabetes mellitus (T2D) affects hundreds of millions worldwide, with recent estimates indicating approximately 589 million adults living with diabetes, most with type 2 disease. Beyond classical insulin signaling pathways, increasing evidence implicates altered protein glycosylation in metabolic dysfunction. The solute carrier 35 (SLC35) family of nucleotide sugar transporters mediates the import of activated sugars into the endoplasmic reticulum and Golgi lumen, thereby influencing global glycosylation patterns. Dysregulation of these transporters can perturb glucose homeostasis, insulin responsiveness, and nutrient-sensing pathways through changes in glycosylation flux. In this review, we dissect the molecular mechanisms by which these transporters modulate glucose homeostasis, insulin signaling pathways, protein O-GlcN acylation, and broader glycosylation processes. We integrate findings from human genetic studies, rodent models, and in vitro functional analyses to characterize how altered SLC35 activity is associated with T2D and metabolic syndrome. Four members demonstrate particularly compelling evidence: SLC35B4 modulates hepatic glucose metabolism, SLC35D3 mutations impair dopaminergic signaling and energy balance, and SLC35F3 variants interact with high-carbohydrate intake to increase metabolic-syndrome risk. SLC35A3, though less studied, may influence glycosylation-dependent insulin signaling through its role in N-glycan biosynthesis. Beyond these characterized transporters, this review identifies potential metabolic roles for understudied family members, suggesting broader implications across the entire SLC35 family. We also discuss how such alterations can lead to disrupted hexosamine flux, impaired glycoprotein processing, aberrant cellular signaling, and micronutrient imbalances. Finally, we evaluate the therapeutic potential of targeting SLC35 transporters, outlining both opportunities and challenges in translating these insights into novel T2D treatments. Full article
(This article belongs to the Special Issue New Perspectives on Diabetes and Stroke Research)
Show Figures

Figure 1

16 pages, 3645 KB  
Article
Foliar-Applied Selenium–Zinc Nanocomposite Drives Synergistic Effects on Se/Zn Accumulation in Brassica chinensis L.
by Mengna Tao, Yusong Yao, Lian Zhang, Jie Zeng, Bingxu Cheng and Chuanxi Wang
Nanomaterials 2026, 16(1), 56; https://doi.org/10.3390/nano16010056 - 31 Dec 2025
Viewed by 244
Abstract
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn [...] Read more.
Micronutrient malnutrition persists as a global health burden, while conventional biofortification approaches suffer from low efficiency and environmental trade-offs. This study aimed to develop and evaluate a foliar-applied selenium–zinc nanocomposite (Nano-ZSe, a mixture of zinc ionic fertilizer and nano selenium) for synergistic Se/Zn co-biofortification in Brassica chinensis L., using a controlled pot experiment that integrated physiological, metabolic, molecular, and rhizosphere analyses. Application of Nano-ZSe at 0.18 mg·kg−1 (Based on soil weight) not only increased shoot biomass by 28.4% but also elevated Se and Zn concentrations in edible tissues by 7.00- and 1.66-fold (within the safe limits established for human consumption), respectively, compared to the control. Mechanistically, Nano-ZSe reprogrammed the ascorbate-glutathione redox system and redirected carbon flux through the tricarboxylic acid cycle, suppressing acetyl-CoA biosynthesis and reducing abscisic acid accumulation. This metabolic rewiring promoted stomatal opening, thereby enhancing foliar nutrient uptake. Simultaneously, Nano-ZSe triggered the coordinated upregulation of BcSultr1;1 (a sulfate/selenium transporter) and BcZIP4 (a Zn2+ transporter), enabling synchronized translocation and the tissue-level co-accumulation of Se and Zn. Beyond plant physiology, Nano-ZSe improved soil physicochemical properties, enriched rhizosphere microbial diversity, and increased crop yield and economic returns. Collectively, this work demonstrates that nano-enabled dual-nutrient delivery systems can bridge nutritional and agronomic objectives through integrated physiological, molecular, and rhizosphere-mediated mechanisms, offering a scalable and environmentally sustainable pathway toward functional food production and the mitigation of hidden hunger. Full article
(This article belongs to the Section Nanotechnology in Agriculture)
Show Figures

Graphical abstract

24 pages, 3339 KB  
Article
Prospective Mapping of Transcriptional Changes Associated with Lipid and Carotenoid Production in Rhodotorula glutinis Using Different Feeding Approaches
by Nora Elfeky, Yongheng Yang, Guoping Zhu and Yongming Bao
Biology 2026, 15(1), 60; https://doi.org/10.3390/biology15010060 - 29 Dec 2025
Viewed by 225
Abstract
The oleaginous yeast Rhodotorula glutinis is a promising industrial host for the simultaneous production of lipids and carotenoids, yet the transcriptional regulation governing carbon flux toward these metabolites is poorly understood. As a foundational step, we performed a comparative transcriptomic analysis on bioreactor [...] Read more.
The oleaginous yeast Rhodotorula glutinis is a promising industrial host for the simultaneous production of lipids and carotenoids, yet the transcriptional regulation governing carbon flux toward these metabolites is poorly understood. As a foundational step, we performed a comparative transcriptomic analysis on bioreactor cultures under optimized fed-batch conditions with varying carbon-to-nitrogen (C/N) ratios and metal supplementation, comparing a nutrient-replete control (C) with conditions favoring high lipid (HLP) or high carotenoid (HCP) production. This study was designed as a preliminary, in-depth case study using single, well-controlled bioreactor runs per condition, with the goal of generating a comprehensive transcriptional map to identify key candidate genes for future validation. The data delineates two distinct presumptive metabolic strategies. The HLP regime was associated with broad transcriptional downregulation, channeling carbon toward lipogenesis via specific upregulation of the fatty acid synthase complex (FAS1/2, Log2FC(HLP/HCP) > 2.99) and concerted suppression of β-oxidation genes (Log2FC < −9.70). Conversely, the HCP condition was characterized by significant upregulation of NADPH-supplying pathways, including the pentose phosphate pathway (e.g., rpiA, Log2FC(HCP/C) = 11.39) and an NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN, Log2FC(HCP/C) = 12.24). Notably, a putative beta-carotene hydroxylase (CrtZ) was uniquely sustained in the HCP condition (Log2FC(HLP/HCP) = −10.65), strongly correlating with torularhodin accumulation and suggesting its novel role in torulene hydroxylation. This exploratory study reveals prospective transcriptional determinants of carbon partitioning in R. glutinis and provides a prioritized genetic blueprint for future hypothesis-driven research with full biological replication. Full article
Show Figures

Figure 1

22 pages, 4047 KB  
Article
Spatiotemporal Dynamics and Budget of Particulate Organic Carbon in China’s Marginal Seas Based on MODIS-Aqua
by Xudong Cui, Guijun Han, Wei Li, Xuan Wang, Haowen Wu, Lige Cao, Gongfu Zhou, Qingyu Zheng, Yang Zhang and Qiang Luo
Remote Sens. 2026, 18(1), 92; https://doi.org/10.3390/rs18010092 - 26 Dec 2025
Viewed by 326
Abstract
Using MODIS-Aqua satellite observations, this study analyzes the spatiotemporal distribution characteristics of particulate organic carbon (POC) in China’s marginal seas from 2003 to 2024. The statistical relationships between various marine environmental variables, including sea surface temperature (SST), nutrients, and primary production (PP), and [...] Read more.
Using MODIS-Aqua satellite observations, this study analyzes the spatiotemporal distribution characteristics of particulate organic carbon (POC) in China’s marginal seas from 2003 to 2024. The statistical relationships between various marine environmental variables, including sea surface temperature (SST), nutrients, and primary production (PP), and POC concentrations are explored using partial least squares path modeling (PLS-PM). Finally, a box model approach is conducted to assess the POC budget in the study area. The results indicate that the POC concentration in the marginal seas of China generally exhibits a characteristic of being high in spring and low in summer. The highest concentration of POC is observed in the Bohai Sea, followed by the Yellow Sea, and the lowest in the East China Sea, with coastal waters exhibiting higher POC concentrations compared to the central areas. The spatial distribution and seasonal changes in POC are jointly influenced by PP, water mass exchange, resuspended sediments, and terrestrial inputs. Large-scale climate modes show statistical associations with POC concentration in the open waters of China’s marginal seas. PP and respiratory consumption are identified as the predominant input and output fluxes, respectively, in China’s marginal seas. This study enriches the understanding of carbon cycling processes and carbon sink mechanisms in marginal seas. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Water and Carbon Cycles)
Show Figures

Figure 1

17 pages, 730 KB  
Review
Exploring the Muco-Microbiotic Interface as a Hub for Microbial Metabolites and Immune Regulation in Gastroenteric Health and Disease
by Adelaide Carista, Melania Ionelia Gratie, Enrico Tornatore, Salvatore Accomando, Giovanni Tomasello, Domiziana Picone, Stefano Burgio and Francesco Cappello
Cells 2026, 15(1), 45; https://doi.org/10.3390/cells15010045 - 25 Dec 2025
Viewed by 411
Abstract
The mucus layer covering the gastrointestinal tract forms a specialised interface where mucins, microbes, and extracellular vesicles create a dynamic, self-regulating ecosystem. Here, we introduce the concept of the muco-microbiotic layer as an integrated eco-physiological system that maintains mucosal homeostasis through coordinated structural, [...] Read more.
The mucus layer covering the gastrointestinal tract forms a specialised interface where mucins, microbes, and extracellular vesicles create a dynamic, self-regulating ecosystem. Here, we introduce the concept of the muco-microbiotic layer as an integrated eco-physiological system that maintains mucosal homeostasis through coordinated structural, metabolic, and immune functions. The MuMi layer varies regionally in its biochemical composition, microbial inhabitants, and environmental parameters—from the acidic stomach to the anaerobic colon—thereby generating distinct niches for microbial colonisation and metabolite production. We summarise current evidence on how mucin glycans, mucus-associated microbiota, and vesicle-mediated signalling sustain barrier integrity, nutrient flux, and immune tolerance. Perturbations in any of these components lead to barrier failure, microbial encroachment, and inflammation, contributing to a broad spectrum of disorders, including gastritis, inflammatory bowel disease, colorectal cancer, and metabolic syndrome. Methodological advances such as organoid and mucus-on-chip models, spatial multi-omics, and vesiculomics are now enabling site-specific analyses of this complex system. Conceptually, defining the mucus, microbiota, and vesicular compartments as a single MuMi layer provides a new framework for understanding mucosal physiology and pathophysiology, emphasising the interdependence between structure and function. Integrating this perspective into experimental and clinical research may open new avenues for diagnostics and therapies targeting mucosal health. Full article
Show Figures

Figure 1

17 pages, 2166 KB  
Article
Submerged Plant Restoration Modulates Carbon-Water Interface Dynamics: Enhanced Carbon Sequestration Coupled with Eutrophication Control
by Ran Tao, Yinfei Wang, Zhiwei Zhang, Ting Chen, Dejian Zhou, Yimin Zhang, Huiyang Qiu and Yuexiang Gao
Water 2026, 18(1), 65; https://doi.org/10.3390/w18010065 - 25 Dec 2025
Viewed by 376
Abstract
This study investigates the dynamics of carbon flux at the water–air interface during the ecological restoration of eutrophic water bodies. A controlled simulation of the eutrophic aquatic environment was carried out. A series of experiments was established, centered on submerged aquatic plants as [...] Read more.
This study investigates the dynamics of carbon flux at the water–air interface during the ecological restoration of eutrophic water bodies. A controlled simulation of the eutrophic aquatic environment was carried out. A series of experiments was established, centered on submerged aquatic plants as key agents for carbon sequestration and enhancement of carbon sink capacity, supplemented by biological manipulation techniques aimed at pollution reduction and algal control. Results show that restoration systems based on submerged plants significantly enhance carbon sequestration, whereas systems relying solely on filter-feeding fish tend to increase the carbon emission burden. The submerged plant-only treatment (HV) exhibited the highest carbon absorption capacity (−72.53 mg·m−2·h−1), followed by submerged plant + fish + snail (HSXB) and submerged plant + fish (HSX) treatments. CH4 emissions were initially higher in the combined biological treatments but were eventually surpassed by the control group as algal cell density increased. Carbon sink potential and CH4 emissions were strongly correlated with algal cell density and chlorophyll a concentration. While combination treatments (HSX and HSXB) effectively suppressed algal proliferation, the submerged plant-only treatment demonstrated superior nutrient removal efficiency. The findings provide theoretical support for ecologically based management strategies that simultaneously address eutrophication control and carbon sequestration in freshwater ecosystems, contributing to both water quality improvement and climate change mitigation. Full article
Show Figures

Figure 1

19 pages, 2839 KB  
Review
Mycorrhizal Fungi, Heavy Metal Contamination, and Greenhouse Gas Fluxes in Forest Soils
by Radoslav Krchnavý, Hana Hudoková, Martin Kubov, Gabriela Jamnická, Sona Grenčíková, Martin Pavlík, Allen Kiiza, Abdul Razzak, Peter Fleischer and Peter Fleischer
Forests 2026, 17(1), 12; https://doi.org/10.3390/f17010012 - 21 Dec 2025
Viewed by 427
Abstract
Heavy metals accumulate in forest soils worldwide, yet their effects on greenhouse gas dynamics remain poorly understood. Mycorrhizal fungi lie at the heart of this issue. These symbiotic organisms regulate carbon and nutrient flow between trees and soil, positioning them to influence fluxes [...] Read more.
Heavy metals accumulate in forest soils worldwide, yet their effects on greenhouse gas dynamics remain poorly understood. Mycorrhizal fungi lie at the heart of this issue. These symbiotic organisms regulate carbon and nutrient flow between trees and soil, positioning them to influence fluxes of CO2, N2O, and CH4. However, research on mycorrhizal ecology, metal toxicology, and greenhouse gas biogeochemistry has proceeded largely in isolation. This review bridges these fields through a conceptual framework built on three contamination scenarios and four mechanistic pathways. Our confidence in these mechanisms varies by gas: well-established for CO2, developing for N2O, and mostly inferential for CH4. Critical gaps remain. Studies measuring mycorrhizal communities, metal availability, and gas emissions simultaneously are rare. Comparisons between ectomycorrhizal and arbuscular mycorrhizal systems are virtually absent. This framework establishes a basis for understanding how metal-contaminated forests regulate greenhouse gas exchange and identifies priority areas for future investigation. Full article
Show Figures

Figure 1

16 pages, 2265 KB  
Article
Concentration-Dependent Effects of Foliar ZnO Nanoparticles on Growth and Nutrient Use in Young Crabapple Plants
by Qi Zhao, Meimei Qin, Suixia Lang, Mengyao Qin, Lizhi Liu, Qian Li, Dehui Zhang and Lei Li
Horticulturae 2025, 11(12), 1535; https://doi.org/10.3390/horticulturae11121535 - 18 Dec 2025
Viewed by 332
Abstract
Zinc oxide nanoparticles (ZnO NPs) have garnered increasing attention in agriculture due to their potential to enhance plant growth and nutrient use. This research investigates the concentration-dependent effects of ZnO NPs on young crabapple (Malus robusta) plants, addressing gaps in understanding [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) have garnered increasing attention in agriculture due to their potential to enhance plant growth and nutrient use. This research investigates the concentration-dependent effects of ZnO NPs on young crabapple (Malus robusta) plants, addressing gaps in understanding how different concentrations influence plant development. A hydroponic experiment was conducted, applying foliar treatments of 200 mg L−1 ZnSO4 (S200) and 200, 500, and 1000 mg L−1 ZnO NPs (N200, N500, N100). The control group (CK) was treated with deionized water (dH2O). Growth parameters, antioxidant enzyme activity, and nutrient contents were measured to evaluate the impact of ZnO NPs on plant development and nutrient uptake. The results showed that N200 enhanced growth, increasing plant height by 22.64%, total dry weight by 49.36%, and root length by 116.07%. In contrast, N500 and N1000 induced oxidative stress, elevating H2O2 and MDA by 32.02~54.43% and inhibiting growth. N200 also improved nutrient uptake, increasing K, Ca, Fe, and Zn uptake fluxes by 84.92%, 112.12%, 185.15%, and 149.92%, respectively, whereas N1000 suppressed overall nutrient uptake but increased root Ca accumulation by 64.59%. These findings suggest that ZnO NPs can enhance plant growth and nutrient utilization at low concentrations, with potential implications for agricultural practices involving nanoparticle (NP)-based fertilizers. Full article
(This article belongs to the Special Issue Nutrient Absorption and Utilization in Horticultural Crops)
Show Figures

Figure 1

15 pages, 1042 KB  
Article
GHG Emissions and Carbon Sequestration in Coastal Bambusa edulis Shelterbelts with Biochar and Organic Fertilizer
by Ying-Pin Huang, Chung-I Chen, Chih-Pei Shen, Jia-Yi Shen, Wei-Chih Chen, Yue-Hua Liou, Shih-Chi Lee, Chuan-Chi Chien, Xu-Chen Yang, Wen-Hung Huang and Ching-Wen Wang
C 2025, 11(4), 93; https://doi.org/10.3390/c11040093 - 15 Dec 2025
Viewed by 425
Abstract
This study evaluated the seasonal greenhouse gas (GHG) emissions and carbon assimilation of Bambusa edulis under four soil amendment treatments—control (C), biochar (B), fertilizer using vermicompost (F), and biochar plus fertilizer (B + F)—in a coastal shelterbelt system in south-western Taiwan. Over a [...] Read more.
This study evaluated the seasonal greenhouse gas (GHG) emissions and carbon assimilation of Bambusa edulis under four soil amendment treatments—control (C), biochar (B), fertilizer using vermicompost (F), and biochar plus fertilizer (B + F)—in a coastal shelterbelt system in south-western Taiwan. Over a 12-month period, CO2 and N2O fluxes and photosynthetic carbon uptake were measured. The control (C) treatment served as the baseline, exhibiting the lowest greenhouse gas (GHG) emissions and carbon assimilation. Its summer N2O emissions were 39.54 ± 20.79 g CO2 e m−2, and its spring carbon assimilation was 13.2 ± 0.84 kg CO2 clump−1. In comparison, the amendment treatments significantly enhanced both emissions and carbon uptake. The fertilizer-only (F) treatment resulted in the highest levels, with peak summer N2O emissions increasing by 306.5% (to 160.73 ± 96.22 g CO2 e m−2) and spring carbon assimilation increasing by 40.2% (to 18.5 ± 0.62 kg CO2 clump−1). An increase in these values was also observed in the combined biochar and fertilizer (B + F) treatment, although the magnitude was less than that of the F treatment alone. In the B + F treatment, summer N2O emissions increased by 130.3% (to 91.1 ± 62.51 g CO2 e m−2), while spring carbon assimilation increased by 17.4% (to 15.5 ± 0.36 kg CO2 clump−1). Soil CO2 flux was significantly correlated with atmosphere temperature (r = 0.63, p < 0.01) and rainfall (r = 0.45, p < 0.05), while N2O flux had a strong positive correlation with rainfall (r = 0.71, p < 0.001). The findings highlight a trade-off between nutrient-driven productivity and GHG intensity and demonstrate that optimized organic and biochar applications can enhance photosynthetic carbon gain while mitigating emissions. The results support bamboo’s role in climate mitigation and carbon offset strategies within nature-based solution frameworks. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

19 pages, 1543 KB  
Review
Engineering Microalgae for Enhanced Astaxanthin Production: Integrating Metabolic Pathways and Nano-Biotechnologies
by Zhongliang Sun, Shuonan Cao, Shoukai Guo, Weixian Cheng, Adamu Yunusa Ugya and Liqin Sun
Mar. Drugs 2025, 23(12), 476; https://doi.org/10.3390/md23120476 - 12 Dec 2025
Viewed by 507
Abstract
Astaxanthin is a high-value metabolite with substantial market demand, owing to its potent antioxidant activity and diverse health benefits. Microalgae are considered the primary producers of esterified astaxanthin, yet their industrial-scale cultivation is constrained by low productivity, stress-dependent induction, and challenges in metabolic [...] Read more.
Astaxanthin is a high-value metabolite with substantial market demand, owing to its potent antioxidant activity and diverse health benefits. Microalgae are considered the primary producers of esterified astaxanthin, yet their industrial-scale cultivation is constrained by low productivity, stress-dependent induction, and challenges in metabolic engineering. This review examines strategies to enhance microalgae-derived esterified astaxanthin production through nanoformulation and modulation of metabolic pathways. We highlight that precise, efficient, and multiplexed genetic modifications of the carotenoid biosynthetic pathway can significantly increase astaxanthin accumulation. Downregulation of competing metabolic routes further improves astaxanthin yields. Additionally, targeted engineering of acyltransferases and lipid metabolism regulators enhances astaxanthin esterification, thereby improving its intracellular stability against oxidative degradation. Modifying lipid metabolism also redirects metabolic fluxes toward altered fatty acid saturation in stored lipids, which increases the bioavailability of esterified astaxanthin. The integration of nanoparticles into cultivation systems represents another promising approach, facilitating improved nutrient delivery and light management, and consequently boosting astaxanthin production. However, the application of genetic engineering and nanotechnology faces challenges such as biosafety legislation, regulatory approval processes, and potential ecological impacts. A synergistic combination of both approaches may help overcome these limitations and maximize astaxanthin production from microalgae. Full article
(This article belongs to the Special Issue Applications of Marine Microalgal Biotechnology)
Show Figures

Figure 1

20 pages, 4787 KB  
Article
Effects of River Input on the Inorganic Nitrogen Components in Estuary–Bay Waters: Zhanjiang Bay, China
by Fei Yue, Zi-Liang Chen, Ying-Ying Zeng, Guo-Huan Yang, Ji-Biao Zhang, Peng Zhang and Miao-Jian Fu
J. Mar. Sci. Eng. 2025, 13(12), 2312; https://doi.org/10.3390/jmse13122312 - 5 Dec 2025
Viewed by 502
Abstract
Rivers discharge a substantial amount of nutrients into the bay, which constitutes a key area of research in water pollution and environmental management. However, research on the influence of river input on various nitrogen components in semi-enclosed bays like the Zhanjiang Bay remains [...] Read more.
Rivers discharge a substantial amount of nutrients into the bay, which constitutes a key area of research in water pollution and environmental management. However, research on the influence of river input on various nitrogen components in semi-enclosed bays like the Zhanjiang Bay remains limited. This study conducted on-site monitoring and cultivation experiments in Zhanjiang Bay. Consequently, a systematic investigation was conducted on the influence of river inputs on the migration and change in different nitrogen components, primarily dissolved inorganic nitrogen (DIN). The results showed that the DIN flux during the rainy season was the greatest input flux, amounting to 9724 t, which accounted for 45.6% of the annual DIN flux. The fluxes of NO2-N and NO3-N were the highest during the rainy season, accounting for 49% and 52% of the total annual flux, respectively. Based on on-site cultivation under different salinity conditions (5, 15, and 25), the DIN content decreased much faster in lower-salinity waters, with the highest average daily change rate of −16.3 μmol/dm3 in a salinity of 5. This indicated that hydrodynamic mixing and exchange processes have a significant impact on the variations in inorganic nitrogen components. Therefore, the results of this study provide valuable insights into the migration and change in inorganic nitrogen components in estuarine water bodies. It also holds significance for guiding the treatment of environmental pollution in estuaries, such as addressing the sewage discharge from the steel industry. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 1672 KB  
Article
Atmospheric Inorganic Nitrogen Deposition and Its Influence on the Coastal Water Nutrients in Xiamen
by Jiehua Hu, Shuhui Zhao, Siying Dai, Rong Tian, Yang Luo, Shanshan Wang, Hanyue Xu, Xiaoke Zhang, Xia Sun, Shiyu Shen, Qisheng Zeng and Jinpei Yan
Atmosphere 2025, 16(12), 1368; https://doi.org/10.3390/atmos16121368 - 2 Dec 2025
Viewed by 433
Abstract
Atmospheric nitrogen deposition in coastal areas has a significant impact on water nutrients, with increasing emission of atmospheric nitrogen-containing pollutants. Clarifying the characteristics, source, and nutrient impact of atmospheric inorganic N deposition is therefore critical for targeted eutrophication control in coastal areas. Dry [...] Read more.
Atmospheric nitrogen deposition in coastal areas has a significant impact on water nutrients, with increasing emission of atmospheric nitrogen-containing pollutants. Clarifying the characteristics, source, and nutrient impact of atmospheric inorganic N deposition is therefore critical for targeted eutrophication control in coastal areas. Dry and wet atmospheric nitrogen deposition samples were collected and integrated into the atmospheric deposition model to analyze the influence of the deposition flux and source on coastal water nutrients. The results showed that inorganic nitrogen in the atmosphere over Xiamen’s coast was mainly composed of NH4+-N and NO3-N. A high concentration of nitrogen was found in the cold season. Source apportionment analysis revealed that NH4+-N mainly originated from agricultural sources, while NO3-N was primarily derived from traffic sources (24%) and secondary sources (25%). The wet deposition flux of NH4+-N and NO3-N was significantly larger than the dry deposition flux. The NO3-N wet deposition flux was elevated during winter and summer, whereas the dry deposition flux peaked in spring and winter. A high NH4+-N wet deposition flux was also found in spring and summer. Spatially, the inorganic nitrogen deposition flux was higher in offshore areas than in the inner bay, which was attributed to the higher wind speed in the offshore region. The atmospheric inorganic nitrogen input accounted for only 0.9% to 1.8% of the inorganic nitrogen input from the Jiulong River to Xiamen Bay; however, the NO3 concentration in Xiamen Bay showed a significant positive correlation with the dry deposition flux of atmospheric nitrogen (p < 0.05). Atmospheric nitrogen deposition directly affects coastal water nutrients without estuarine filtration. This study clarifies the different sources of atmospheric inorganic nitrogen deposition and their contribution to coastal water nutrients, providing an important basis for eutrophication in coastal areas, as well as pollutant control and emission reduction efforts. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 2337 KB  
Article
The Evaluation of Ammonium Sulphate as a Potential Draw Solute in a Hybrid FO-RO Process to Concentrate Nutrients (NPK) from a Simulated Liquid Digestate—Part I: Deionized Water as a Feed Solution
by Marsa Tolouei, Roshan Abraham, Niloofar Abdehagh, Majid Sartaj and Boguslaw Kruczek
Membranes 2025, 15(12), 366; https://doi.org/10.3390/membranes15120366 - 1 Dec 2025
Viewed by 422
Abstract
The ultimate objective of this research is to concentrate nutrients—nitrogen (N), phosphorus (P), and potassium (K)—and produce process water from a chemically pretreated liquid digestate using an FO-RO hybrid process. However, in this manuscript, we assessed the suitability of (NH4)2 [...] Read more.
The ultimate objective of this research is to concentrate nutrients—nitrogen (N), phosphorus (P), and potassium (K)—and produce process water from a chemically pretreated liquid digestate using an FO-RO hybrid process. However, in this manuscript, we assessed the suitability of (NH4)2SO4 and NaCl as draw solutes in a series of FO experiments employing a commercial CTA membrane and DI water as the feed solution. We also examined the regeneration of (NH4)2SO4 in a series of RO experiments at various feed concentrations and pressures using a commercial polyamide (PA) thin-film composite (TFC) membrane, ACM4. Additionally, the RO experiments enabled the experimental determination of the osmotic pressure of (NH4)2SO4 at various feed concentrations, which is crucial for designing the FO part of the hybrid process. The CTA membrane exhibited a significantly greater selectivity for (NH4)2SO4 than for NaCl at any osmotic pressure. The RO experiments demonstrated the possibility of reconcentrating (NH4)2SO4 to 0.5 mol/L, with a corresponding water flux of 60 L h−1 m−2 at 40 bars. The experimentally determined osmotic pressures were lower than those predicted by van’t Hoff’s equation but were consistent with those reported in the literature using an indirect hygrometric method. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop