Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (576)

Search Parameters:
Keywords = nutraceutical approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 976 KiB  
Review
New Perspectives on Nutraceutical Insulin Sensitizing Agents in the Treatment of Psoriasis and Other Dermatological Diseases
by Pietro Morrone, Francesca Caroppo, Alberto De Pedrini, Alessandro Colletti and Germano Baj
Int. J. Mol. Sci. 2025, 26(15), 7538; https://doi.org/10.3390/ijms26157538 (registering DOI) - 4 Aug 2025
Abstract
Insulin resistance (IR) plays a pivotal role in the pathogenesis of several dermatological diseases, including psoriasis, acne, acanthosis nigricans, and hidradenitis suppurativa (HS). These conditions are characterized by chronic inflammation, oxidative stress, and metabolic dysfunction, which are exacerbated by IR. This narrative review [...] Read more.
Insulin resistance (IR) plays a pivotal role in the pathogenesis of several dermatological diseases, including psoriasis, acne, acanthosis nigricans, and hidradenitis suppurativa (HS). These conditions are characterized by chronic inflammation, oxidative stress, and metabolic dysfunction, which are exacerbated by IR. This narrative review examines the emerging role of nutraceutical insulin-sensitizing agents (ISAs), including myo-inositol, alpha-lipoic acid, vitamin D, vitamin C, and folic acid, in managing IR-related dermatological disorders. A comprehensive literature search was conducted across Cochrane Library and MEDLINE (1965–May 2025), focusing on clinical trials involving nutraceutical ISAs in dermatological conditions associated with IR. Only human studies published in English were included. Evidence from randomized controlled trials (RCTs) and observational studies suggests that ISAs improve glycemic control, reduce oxidative stress, and modulate inflammatory pathways in IR-related dermatoses. Notably, myo-inositol combined with magnesium and folic acid has demonstrated significant reductions in acne severity, hirsutism, and quality-of-life impairments in women with polycystic ovary syndrome. Similar benefits have been observed in psoriasis and HS, though data remain limited. Nutraceutical ISAs offer a promising adjunctive approach for the management of IR-associated dermatological diseases, potentially addressing both metabolic dysfunction and skin inflammation. However, robust RCTs with long-term follow-up are needed to confirm these preliminary findings and to establish optimal treatment regimens. Full article
50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 133
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 - 31 Jul 2025
Viewed by 219
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

21 pages, 576 KiB  
Review
Role of Enzyme Technologies and Applied Enzymology in Valorising Seaweed Bioproducts
by Blessing Mabate, Lithalethu Mkabayi, Deandra Rochelle Goddard, Coleen Elizabeth Grobler and Brett Ivan Pletschke
Mar. Drugs 2025, 23(8), 303; https://doi.org/10.3390/md23080303 - 29 Jul 2025
Viewed by 271
Abstract
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest [...] Read more.
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest because of their applications in nutraceuticals, pharmaceuticals, agriculture, and cosmetics. Particularly in the pharmaceutical and nutraceutical fields, algal bioproducts have shown tremendous activity in regulating enzymes involved in human diseases. However, the drawbacks of conventional extraction methods impede the complete exploitation of seaweed biomass. These include low efficiency, high cost, and potential harm to the environment. Enzyme technology developments in recent years present a viable way to overcome these challenges. Enzymatic processes improve product yields and reduce the environmental impact of processing, while facilitating the more effective extraction of valuable bioactive compounds as part of an integrated biorefinery approach. Enzyme-assisted biorefinery techniques can greatly advance the creation of a circular bioeconomy and increase the yield of extracted seaweed bioproducts, thus improving their value. With the potential to scale up to industrial levels, these biotechnological developments in enzymatic extraction are developing rapidly and can advance the sustainable exploitation of seaweed resources. This review emphasises the increasing importance of enzyme technologies in the seaweed biorefinery and their contribution to developing more environmentally friendly, economically feasible, and sustainable methods for valorising products derived from seaweed. In the biorefinery industry, enzyme-assisted methods have enormous potential for large-scale industrial applications with further development, opening the door to a more sustainable, circular bioeconomy. Full article
(This article belongs to the Special Issue Research on Seaweed-Degrading Enzymes)
Show Figures

Figure 1

16 pages, 1424 KiB  
Article
1H-qNMR as a Tool for the Quantitative and Qualitative Evaluation of Abietane-Type Diterpenes in Lamiaceae Species Cultivated in Greece
by Panagiotis Kallimanis, Prokopios Magiatis, Thalia Tsiaka, Panagiotis Zoumpoulakis, Angeliki Panagiotopoulou and Ioanna Chinou
Appl. Sci. 2025, 15(15), 8361; https://doi.org/10.3390/app15158361 - 28 Jul 2025
Viewed by 291
Abstract
This study aimed to quantitatively and qualitatively evaluate the content of carnosic acid (CA), 12-O-methyl-carnosic acid (12MCA), carnosol (CS), rosmanol (RO) and 7-O-methyl-epi-rosmanol (7MER) in 61 Lamiaceae plants growing in Greece, using 1H-qNMR spectroscopy as a [...] Read more.
This study aimed to quantitatively and qualitatively evaluate the content of carnosic acid (CA), 12-O-methyl-carnosic acid (12MCA), carnosol (CS), rosmanol (RO) and 7-O-methyl-epi-rosmanol (7MER) in 61 Lamiaceae plants growing in Greece, using 1H-qNMR spectroscopy as a simple, rapid and direct method without sample deterioration. For this purpose, methanol extracts from 18 genera (e.g., Salvia, Mentha, Melissa, Ocimum) were analyzed using isolated and fully characterized metabolites, previously identified by our group, as standards. At least one of the target compounds was detected in 22 species, predominantly belonging to the genus Salvia. Notably, 7MER and RO were not detected in any extract. CA, CS and 12MCA were exclusively found in Salvia species, with S. somalensis, S. officinalis and S. fruticosa emerging as the richest sources of these diterpenes. Among them, S. somalensis showed the highest concentration of CA (>30 mg/g), while 12MCA was most abundant in S. microphylla. These results highlight Salvia as the most promising genus for the accumulation of bioactive abietane-type diterpenes. The implementation of 1H-qNMR for such chemical profiling provides a reliable approach toward the phytochemical standardization of plant extracts, supporting their further use in nutraceutical or pharmaceutical formulations. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 266
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Viewed by 376
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

24 pages, 2213 KiB  
Article
Triple-Loaded Nanoemulsions Incorporating Coffee Extract for the Photoprotection of Curcumin and Capsaicin: Experimental and Computational Evaluation
by Nuttapol Boonrueang, Siripat Chaichit, Wipawadee Yooin, Siriporn Okonogi, Kanokwan Kiattisin and Chadarat Ampasavate
Pharmaceutics 2025, 17(7), 926; https://doi.org/10.3390/pharmaceutics17070926 - 17 Jul 2025
Viewed by 432
Abstract
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active [...] Read more.
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active components and vitamin E-containing natural oils, was assessed in terms of improving the photostabilizing and antioxidative retention abilities of curcumin and capsaicin. An optimized ratio of the active mixture was then loaded into a nanoformulation. Results: The analysis of active contents with validated high-performance liquid chromatography (HPLC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays confirmed the stabilization enhancement after irradiation with UV and white light for 72,000–84,000 lux hours. The optimized combination of coffee extract with turmeric and chili mixtures loaded into the optimized nanoemulsion enhanced the half-lives (T1/2) of curcumin and capsaicin by 416% and 390%, respectively. The interactions of curcumin and capsaicin with caffeine and chlorogenic acid were elucidated using computational calculations. Interaction energies (Eint), HOMO-LUMO energy gap (HLG) analysis, and global reactivity descriptors revealed hydrogen bonding interactions be-tween capsaicin and chlorogenic acid, as well as between curcumin and caffeine. Conclusions: By leveraging the synergistic antioxidative properties of coffee extract and vitamin E within a nanoemulsion matrix, this study overcomes the intrinsic stability limitations of curcumin and capsaicin, offering a robust platform for future pharmaceutical and nutraceutical applications. Full article
Show Figures

Graphical abstract

19 pages, 733 KiB  
Article
Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations
by Lucía Plana, Javier Marhuenda, Raúl Arcusa, Ana María García-Muñoz, Pura Ballester, Begoña Cerdá, Desirée Victoria-Montesinos and Pilar Zafrilla
Antioxidants 2025, 14(7), 873; https://doi.org/10.3390/antiox14070873 - 17 Jul 2025
Viewed by 504
Abstract
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. [...] Read more.
Ginger (Zingiber officinale Roscoe) has been widely recognized for its antioxidant properties, primarily attributed to its phenolic compounds such as gingerols and shogaols. However, limited data exist regarding how different pharmaceutical forms influence the bioaccessibility and antioxidant efficacy of these compounds. This study aimed to evaluate the antioxidant capacity and bioaccessibility of ginger in different pharmaceutical forms—capsules (20 mg, 40 mg, and 80 mg), a pure powdered extract, and a liquid formulation—standardized to ≥6% gingerols. The phenolic profile of each formulation was characterized using HPLC-DAD (High-Performance Liquid Chromatography with Diode Array Detection), followed by the evaluation of antioxidant capacity through DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ORAC (Oxygen Radical Absorbance Capacity) assays, and the assessment of bioaccessibility via an in vitro digestion model. The results demonstrated that antioxidant activity was positively correlated with extract concentration and was highest in the liquid formulation (426.0 ± 0.05 µmol Trolox equivalents (TE) and 11,336.7 ± 0.20 µmol TE in the DPPH and ORAC assays, respectively). The bioaccessibility of 6-gingerol and 6-shogaol significantly increased in the liquid form, reaching 23.44% and 11.31%, respectively, compared to ≤4% in the pure extract. These findings highlight the influence of the formulation matrix on compound release and support the use of liquid preparations to enhance the functional efficacy of ginger-derived nutraceuticals. This standardized comparative approach, using formulations derived from the same extract, offers new insights into how the delivery matrix influences the functional performance of ginger compounds, providing guidance for the development of more effective nutraceutical strategies. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

29 pages, 3105 KiB  
Review
Uncaria tomentosa as a Promising Natural Source of Molecules with Multiple Activities: Review of Its Ethnomedicinal Uses, Phytochemistry and Pharmacology
by Olinda Marques, Artur Figueirinha, Maria Eugénia Pina and Maria Teresa Batista
Int. J. Mol. Sci. 2025, 26(14), 6758; https://doi.org/10.3390/ijms26146758 - 15 Jul 2025
Viewed by 450
Abstract
Uncaria tomentosa (Ut) is a Rubiaceae widely used in Peru’s traditional medicine. It is mainly known by the vernacular name of Cat’s claw due to its morphological aspects and is found in tropical low mountain forests of Central and South America. [...] Read more.
Uncaria tomentosa (Ut) is a Rubiaceae widely used in Peru’s traditional medicine. It is mainly known by the vernacular name of Cat’s claw due to its morphological aspects and is found in tropical low mountain forests of Central and South America. A decoction of Ut bark, root and leaves is used traditionally for different health problems, including arthritis, weakness, viral infections, skin disorders, abscesses, allergies, asthma, cancer, fevers, gastric ulcers, haemorrhages, inflammations, menstrual irregularity, rheumatism, urinary tract inflammation and wounds, among others, which gave rise to scientific and commercial interest. The present paper reviews research progress relating to the ethnobotany, phytochemistry and pharmacology of Ut, and some promising research routes are also discussed. We highlight the centrality of its different biological activities, such as antioxidant, anti-inflammatory, antiproliferative, antiviral, and antinociceptive, among others. Recently, studies of the health effects of this plant suggest that novel nutraceuticals can be obtained from it and applied as a preventive or prophylaxis strategy before the start of conventional drug therapy, especially for patients who are not prone to conventional pharmacological approaches to diseases. The present work emphasizes the current pharmacological properties of Uncaria tomentosa, evidencing its therapeutic benefits and encouraging further research on this medicinal plant. Full article
(This article belongs to the Special Issue Current Research in Pharmacognosy: A Focus on Biological Activities)
Show Figures

Figure 1

20 pages, 1247 KiB  
Article
Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches
by María Victoria Traffano-Schiffo, Margarita M. Vallejos, Andrea G. Gómez, Beatriz I. Avalos, Belén A. Acevedo and María Victoria Avanza
Agronomy 2025, 15(7), 1681; https://doi.org/10.3390/agronomy15071681 - 11 Jul 2025
Viewed by 508
Abstract
Cowpea (Vigna unguiculata L.) pods are an underexploited by-product of legume production with significant antioxidant potential. Their recovery and characterization support sustainable waste valorization in agri-food systems. This study aimed to optimize the extraction of phenolic compounds (PCs) with antioxidant capacity (AOC) [...] Read more.
Cowpea (Vigna unguiculata L.) pods are an underexploited by-product of legume production with significant antioxidant potential. Their recovery and characterization support sustainable waste valorization in agri-food systems. This study aimed to optimize the extraction of phenolic compounds (PCs) with antioxidant capacity (AOC) from cowpea pods and identify key bioactives through experimental and theoretical approaches. First, high-intensity ultrasound extraction was optimized using response surface methodology with ethanol–water mixtures. Under optimal conditions (20% amplitude, 15 min, 50% ethanol), the ethanolic extract (Eo) showed higher total phenolic content (TPC) and AOC than the aqueous extract (Wo). Subsequently, fractionation by Sephadex LH-20 chromatography yielded fractions E2 and W2 with enhanced TPC and AOC. Phytochemical profiling showed that E2 was enriched in caftaric acid, p-coumaric acid, and morin, while W2 had higher levels of caftaric, p-coumaric, and caffeic acids. Finally, density functional theory was used to assess thermodynamic parameters linked to antioxidant mechanisms (HAT, SET-PT, SPLET), revealing morin as the most effective radical scavenger, followed by caffeic and caftaric acids. These findings show that AOC depends not only on phenolic concentration but also on molecular structure and solvent interactions. Thus, cowpea pod extracts and fractions hold promise for antioxidant-rich formulations in food, nutraceutical, or cosmetic applications. Full article
Show Figures

Figure 1

19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 332
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 506
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

33 pages, 3632 KiB  
Review
Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms
by Dilireba Shataer, Shaohua Chen, Yaodan Wu, Fen Liu, Haipeng Liu, Jing Lu, Bailin Li, Liyun Zhao, Sheng-Xiang Qiu and Aikebaier Jumai
Foods 2025, 14(13), 2344; https://doi.org/10.3390/foods14132344 - 1 Jul 2025
Viewed by 407
Abstract
Metabolic syndrome has emerged as a significant global public health concern worldwide, characterized by a cluster of interrelated risk factors such as hypertension, hyperlipidemia, hyperglycemia, and abdominal obesity. In recent years, functional foods containing bioactive phytochemicals have attracted considerable scientific interest as potential [...] Read more.
Metabolic syndrome has emerged as a significant global public health concern worldwide, characterized by a cluster of interrelated risk factors such as hypertension, hyperlipidemia, hyperglycemia, and abdominal obesity. In recent years, functional foods containing bioactive phytochemicals have attracted considerable scientific interest as potential therapeutic approaches for metabolic syndrome management. Xanthones, a class of naturally occurring tricyclic phenolic compounds abundant in various fruits and medicinal plants, demonstrate diverse biological activities relevant to metabolic health. This comprehensive review examines the dietary sources of xanthones, their bioactivity, and their promising role as functional food components for mitigating metabolic syndrome. The underlying mechanisms of action include modulation of lipid metabolism, improvement of insulin signaling pathways, potent anti-inflammatory and antioxidant effects, and modulation of glucose metabolism. Additionally, we discuss the stability and processing considerations of xanthones in food products. These findings highlight the development of xanthone-enriched functional foods and nutraceuticals as dietary interventions for metabolic syndrome prevention and management. This review comprehensively covers all relevant studies published up to the present without time restrictions. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

26 pages, 1778 KiB  
Systematic Review
Postbiotics Formulation and Therapeutic Effect in Inflammation: A Systematic Review
by Kinga Zdybel, Angelika Śliwka, Magdalena Polak-Berecka, Paweł Polak and Adam Waśko
Nutrients 2025, 17(13), 2187; https://doi.org/10.3390/nu17132187 - 30 Jun 2025
Viewed by 722
Abstract
Background: Postbiotics are bioactive compounds derived from inactivated probiotic microorganisms that show potential for preventing and treating inflammatory diseases. This review aimed to evaluate the evidence on their therapeutic effects in inflammatory conditions. Methods: A search of PubMed, Scopus, and Web [...] Read more.
Background: Postbiotics are bioactive compounds derived from inactivated probiotic microorganisms that show potential for preventing and treating inflammatory diseases. This review aimed to evaluate the evidence on their therapeutic effects in inflammatory conditions. Methods: A search of PubMed, Scopus, and Web of Science databases from 2014 to 2024 identified 39 eligible studies. Article selection was conducted using the Rayyan platform, risk of bias was assessed with the Cochrane ROB 2 tool, and results were visualized with ROBVIS. Bibliometric networks were constructed using VOSviewer. Due to data heterogeneity, a meta-analysis was not performed; therefore, results were described and presented graphically. Results: The most commonly used microorganisms belonged to the Lactobacillaceae and Bifidobacteriaceae families, with heat inactivation as the predominant method. Postbiotics exert multifaceted anti-inflammatory effects by modulating cytokine expression, influencing immune cell signaling pathways, and strengthening epithelial barrier integrity. They regulate immune mechanisms such as the Th1/Th2 and Treg/Th17 balance, indicating their potential in treating inflammatory bowel diseases, autoimmune diseases, and metabolic syndrome. However, the heterogeneity of studies, their limitations, and risk of bias require cautious interpretation. Conclusions: Future research should focus on standardizing postbiotic preparations, conducting long-term clinical trials, and analyzing synergistic effects of different strains. Postbiotics offer a promising approach to managing inflammation, with potential applications in functional foods and nutraceuticals. Full article
Show Figures

Figure 1

Back to TopTop