Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Extracts: Obtention and Optimization
2.2.1. Aqueous Cowpea Pod Extract (Wo) Obtention
2.2.2. Ethanolic Cowpea Pod Extract (Eo) Optimization
Dependent Variables
2.3. Fractionation Using Sephadex LH-20
2.4. Analysis of Phenolic Compounds (PCs)
2.4.1. Total Phenolic Content (TPC)
2.4.2. Total Ortho-Diphenol Content (TODC)
2.4.3. Total Flavonoids Content (TFC)
2.4.4. Antioxidant Capacity (AOC) Assays
DPPH Radical Scavenging
Ferric Reducing Antioxidant Power (FRAP)
2.5. Analysis of Phenolic Compounds by LC-DAD-FLD
2.6. Statistical Analyses
2.7. Computational Methods
3. Results and Discussion
3.1. Extraction Optimization Using HIU and Ethanol/H2O by RSM
3.2. Fractionation of the Extracts
3.3. Characterization of Extracts and Their Corresponding Fractions
3.3.1. Yield Evaluation of Extracts and Their Fractions
3.3.2. Phenolic Compound Content
Total Phenolic Content
Total Ortho-Diphenol Content
Total Flavonoid Content
3.3.3. Antioxidant Capacity
3.4. Quantitative RP-HPLC Analysis
3.5. Computational Chemistry Calculation
3.5.1. BDE: HAT Pathway Indicator
3.5.2. IP and PDE: SET-PT Pathway Indicators
3.5.3. PA and ETE: SPLET Pathway Indicators
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abebe, B.K.; Alemayehu, M.T. A Review of the Nutritional Use of Cowpea (Vigna unguiculata L. Walp) for Human and Animal Diets. J. Agric. Food Chem. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Dietz, R.M.; Traffano-Schiffo, M.V.; Maiocchi, M.G.; León, A.E.; Avanza, M.V. Effect of High-Intensity Ultrasound on Cowpea Flours Optimized by Response Surface Methodology and the Impact on Their Techno-Functional Properties. Food Biosci. 2025, 68, 106469. [Google Scholar] [CrossRef]
- Moyo, A.A.; Luanda, A.; Ripanda, A.; Nyigo, V.A.; Marealle, A.I. Recent Trend on Phytochemistry, Nutraceutical and Therapeutic Potential of Underutilized Vegetable Cowpea (Vigna unguiculata L.) (Walp) in Healthcare Domains. Pharmacol. Res. Nat. Prod. 2024, 5, 100109. [Google Scholar] [CrossRef]
- Lazaridi, E.; Ntatsi, G.; Fernández, J.A.; Karapanos, I.; Carnide, V.; Savvas, D.; Bebeli, P.J. Phenotypic Diversity and Evaluation of Fresh Pods of Cowpea Landraces from Southern Europe. J. Sci. Food Agric. 2017, 97, 4326–4333. [Google Scholar] [CrossRef] [PubMed]
- Avanza, M.V.; Chaves, M.G.; Acevedo, B.A.; Añón, M.C. Functional Properties and Microstructure of Cowpea Cultivated in North-East Argentina. LWT 2012, 49, 123–130. [Google Scholar] [CrossRef]
- Karapanos, I.; Papandreou, A.; Skouloudi, M.; Makrogianni, D.; Fernández, J.A.; Rosa, E.; Ntatsi, G.; Bebeli, P.J.; Savvas, D. Cowpea Fresh Pods—A New Legume for the Market: Assessment of Their Quality and Dietary Characteristics of 37 Cowpea Accessions Grown in Southern Europe. J. Sci. Food Agric. 2017, 97, 4343–4352. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry by-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Onyelucheya, C.M.; Nwabanne, T.J.; Onyelucheya, O.E.; Onuoha, O.E. Dilute Acid Hydrolysis of Cowpea Hulls: A Kinetic Study. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 451–455. [Google Scholar] [CrossRef]
- Avanza, M.V.; Álvarez-Rivera, G.; Cifuentes, A.; Mendiola, J.A.; Ibáñez, E. Phytochemical and Functional Characterization of Phenolic Compounds from Cowpea (Vigna unguiculata (L.) Walp.) Obtained by Green Extraction Technologies. Agronomy 2021, 11, 162. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Sarma, L.; Patra, F.; Borah, P.K.; Meena, S.; Duary, R.K. Comparative Modeling of Microwave and Ultrasound Assisted Extraction of Phenolics and Berberine from Coptis Teeta Wall. Rhizomes. Sustain. Food Technol. 2025, 3, 570–581. [Google Scholar] [CrossRef]
- Bui, A.H.; Cozzolino, D.; Zisu, B.; Chandrapala, J. Effects of High and Low Frequency Ultrasound on the Production of Volatile Compounds in Milk and Milk Products—A Review. J. Dairy Res. 2020, 87, 501–512. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, H.; Huang, J.; Chen, Q.; Li, X.; Chen, X.; Liang, J.; Wang, L. Ultrasound-Assisted Extraction of Polyphenols from Pine Needles (Pinus elliottii): Comprehensive Insights from RSM Optimization, Antioxidant Activity, UHPLC-Q-Exactive Orbitrap MS/MS Analysis and Kinetic Model. Ultrason. Sonochem. 2024, 102, 106742. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Liu, Z.; Liu, Y.; Dong, B.; Yang, C.; Li, H. Ultrasound-Assisted Extraction, Optimization, and Purification of Total Flavonoids from Daphnegenkwa and Analysis of Their Antioxidant, Anti-Inflammatory, and Analgesic Activities. Ultrason. Sonochem. 2024, 111, 107079. [Google Scholar] [CrossRef] [PubMed]
- Traffano-Schiffo, M.V.; Aguirre Calvo, T.R.; Avanza, M.V.; Santagapita, P.R. High-Intensity Ultrasound-Assisted Extraction of Phenolic Compounds from Cowpea Pods and Its Encapsulation in Hydrogels. Heliyon 2020, 6, e04410. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Aguirre-Calvo, T.R.; Navajas-Porras, B.; Avanza, M.V.; Rufián-Henares, J.Á.; Santagapita, P.R. In Vitro Digestion and Fermentation of Cowpea Pod Extracts and Proteins Loaded in Ca(Ii)-Alginate Hydrogels. Foods 2024, 13, 3071. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus Creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Zampar, G.G.; Zampar, I.C.; Beserra da Silva de Souza, S.; da Silva, C.; Bolanho Barros, B.C. Effect of Solvent Mixtures on the Ultrasound-Assisted Extraction of Compounds from Pineapple by-Product. Food Biosci. 2022, 50, 102098. [Google Scholar] [CrossRef]
- Hwong, C.S.; Leong, K.H.; Aziz, A.A.; Kong, K.W. Separation of Antioxidant-Rich Alternanthera Sessilis Red Extracts by Sephadex LH-20 and Identification of Polyphenols Using HPLC-QToF-MS/MS. Chem. Biodivers. 2023, 20, e202300215. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic Fractions from Vaccinium Vitis-Idaea L. And Their Antioxidant and Anticancer Activities Assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Li, Z.; Moalin, M.; Hartog, G.J.M.d.; Zhang, M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids—An Overview. Molecules 2024, 29, 2627. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-Q.; Qin, S.; Li, J. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study. Molecules 2023, 28, 5039. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, C.; Pei, H.; Sun, B. Separation and Identification of Polyphenols in Apple Pomace by High-Speed Counter-Current Chromatography and High-Performance Liquid Chromatography Coupled with Mass Spectrometry. J. Chromatogr. A. 2009, 1216, 4268–4274. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Kong, K.-W.; Li, H.-B.; Wu, K.; Ge, Y.-Y.; Chan, C.-L.; Shi, X.-M.; Corke, H. Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia gladiata) Coats. Front. Chem. 2018, 6, 39. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical Perspective and Criticism on Selected Analytical Methods Used to Estimate the Total Content of Phenolic Compounds in Food Matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (Frap) as a Measure of “Antioxidant Power”: The Frap Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ferreyra, S.; Bottini, R.; Fontana, A. Tandem Absorbance and Fluorescence Detection Following Liquid Chromatography for the Profiling of Multiclass Phenolic Compounds in Different Winemaking Products. Food Chem. 2021, 338, 128030. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. (2016). InfoStat versión 2017. (Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 2017). Available online: http://www.infostat.com.ar (accessed on 10 June 2024).
- Leopoldini, M.; Russo, N.; Toscano, M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; London Oxford Science Publications; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Zhou, Y.; Xu, X.-Y.; Gan, R.-Y.; Zheng, J.; Li, Y.; Zhang, J.-J.; Xu, D.-P.; Li, H.-B. Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.). Antioxidants 2019, 8, 200. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Gan, R.-Y.; Ge, Y.-Y.; Zhang, D.; Corke, H. Ultrasonic Treatment Increases Extraction Rate of Common Bean (Phaseolus vulgaris L.) Antioxidants. Antioxidants 2019, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liimatainen, J.; Puganen, A.; Alakomi, H.-L.; Sinkkonen, J.; Yang, B. Sephadex LH-20 Fractionation and Bioactivities of Phenolic Compounds from Extracts of Finnish Berry Plants. Food Res. Int. 2018, 113, 115–130. [Google Scholar] [CrossRef]
- Ozdemir, M.; Gungor, V.; Melikoglu, M.; Aydiner, C. Solvent Selection and Effect of Extraction Conditions on Ultrasound-Assisted Extraction of Phenolic Compounds from Galangal (Alpinia officinarum). J. Appl. Res. Med. Aromat. Plants 2024, 38, 100525. [Google Scholar] [CrossRef]
- Rabelo, R.S.; Machado, M.T.C.; Martínez, J.; Hubinger, M.D. Ultrasound Assisted Extraction and Nanofiltration of Phenolic Compounds from Artichoke Solid Wastes. J. Food Eng. 2016, 178, 170–180. [Google Scholar] [CrossRef]
- Singh, L.; Singh, B.; Kewlani, P.; Belwal, T.; Bhatt, I.D.; Nandi, S.K.; Bisht, A.K. Process Optimization and Bioactive Compounds Quantification from Dactylorhiza hatagirea Tuber for Alleviating Glycemic and Oxidative Stress. Appl. Res. Med. Aromat. Plants 2022, 26, 100352. [Google Scholar] [CrossRef]
- Vella, F.M.; Cautela, D.; Laratta, B. Characterization of Polyphenolic Compounds in Cantaloupe Melon by-Products. Foods 2019, 8, 196. [Google Scholar] [CrossRef]
- Avalos, B.I.; Ojeda, G.A.; Spinnenhirn, E.D.; Acevedo, B.A.; Vallejos, M.M. Evaluation of Phenolic Compounds and Antioxidant Capacity in Mucuna Pruriens and Cajanus Cajan Pods Extracts. Food Chem. Adv. 2023, 3, 100503. [Google Scholar] [CrossRef]
- Mota, F.L.; Queimada, A.J.; Pinho, S.P.; Macedo, E.A. Aqueous Solubility of Some Natural Phenolic Compounds. Ind. Eng. Chem. Res. 2008, 47, 5182–5189. [Google Scholar] [CrossRef]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, H.; Xu, B.; Wang, Y.; Zhang, C.; Cao, Y.; Xing, X. Research Progress on Classification, Sources and Functions of Dietary Polyphenols for Prevention and Treatment of Chronic Diseases. J. Future Foods 2023, 3, 289–305. [Google Scholar] [CrossRef]
- Cipollone, M.A.; Abraham, A.G.; Fontana, A.; Tironi, V.A. Autochthonous Fermentation as a Means to Improve the Bioaccessibility and Antioxidant Activity of Proteins and Phenolic Compounds of Yellow Pea Flour. Foods 2024, 13, 659. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, S.; Torres-Palazzolo, C.; Bottini, R.; Camargo, A.; Fontana, A. Assessment of in-Vitro Bioaccessibility and Antioxidant Capacity of Phenolic Compounds Extracts Recovered from Grapevine Bunch Stem and Cane by-Products. Food Chem. 2021, 348, 129063. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.; Gay, C.; Tironi, V.; Avanza, M.V. Structural and Antioxidant Properties of Cowpea Protein Hydrolysates. Food Biosci. 2021, 41, 101074. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Deng, G.; Chen, D.-F.; Guo, R.; Lai, R.-C. The Influence of C2=C3 Double Bond on the Antiradical Activity of Flavonoid: Different Mechanisms Analysis. Phytochemistry 2019, 157, 1–7. [Google Scholar] [CrossRef]
- Świderski, G.; Gołębiewska, E.; Kalinowska, M.; Świsłocka, R.; Kowalczyk, N.; Jabłońska-Trypuć, A.; Lewandowski, W. Comparison of Physicochemical, Antioxidant, and Cytotoxic Properties of Caffeic Acid Conjugates. Materials 2024, 17, 2575. [Google Scholar] [CrossRef]
- Farrokhnia, M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS Omega 2020, 5, 20382–20390. [Google Scholar] [CrossRef]
- Shang, Y.; Li, X.; Li, Z.; Zhou, J.; Qu, L.; Chen, K. Theoretical Study on the Radical Scavenging Activity and Mechanism of Four Kinds of Gnetin Molecule. Food Chem. 2022, 378, 131975. [Google Scholar] [CrossRef]
Sum of Squares | df * | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Total Phenolic Content (mg GAE/g) (R2 = 0.9354) | ||||||
Model | 1107.21 | 6 | 184.53 | 19.31 | 0.0002 | significant |
—Ethanol Concentration | 636.07 | 1 | 636.07 | 66.56 | <0.0001 | |
—HIU amplitude | 0.2227 | 1 | 0.2227 | 0.0233 | 0.8825 | |
—Treatment time | 0.0754 | 1 | 0.0754 | 0.0079 | 0.9314 | |
63.25 | 1 | 63.25 | 6.62 | 0.0330 | ||
237.66 | 1 | 237.66 | 24.87 | 0.0011 | ||
169.93 | 1 | 169.93 | 17.78 | 0.0029 | ||
Residual | 76.45 | 8 | 9.56 | |||
Lack of Fit | 70.16 | 6 | 11.69 | 3.71 | 0.2273 | not significant |
Pure Error | 6.30 | 2 | 3.15 | |||
Antioxidant Capacity ABTS*+ (mmol TE/g) (R2 = 0.8642) | ||||||
Model | 0.6126 | 5 | 0.1225 | 11.45 | 0.0011 | significant |
—Ethanol Concentration | 0.4396 | 1 | 0.4396 | 41.09 | 0.0001 | |
—HIU amplitude | 0.0025 | 1 | 0.0025 | 0.2379 | 0.6374 | |
—Treatment time | 0.0195 | 1 | 0.0195 | 1.83 | 0.2096 | |
0.0624 | 1 | 0.0624 | 5.83 | 0.0390 | ||
0.0886 | 1 | 0.0886 | 8.28 | 0.0183 | ||
Residual | 0.0963 | 9 | 0.0107 | |||
Lack of Fit | 0.0678 | 7 | 0.0097 | 0.6790 | 0.7075 | not significant |
Pure Error | 0.0285 | 2 | 0.0143 |
Run | Factors | Total Phenolic Content (mg GAE/g) | Antioxidant Capacity ABTS*+ (mmol TE/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (min) | TPC (mg GAE/g) Model | TPC (mg GAE/g) Experimental | TPC Error % | AOC (mmol TE/g) Model | AOC (mmol TE/g) Experimental | AOC Error % | |
1 | 50 | 20 | 15 | 57 | 58.82 | 4 | 1.34 | 1.21 | 9 |
Samples | Yield (%) | TPC (mg GAE/g) | TODC (mg CAE/g) | TFC (mg QE/g) | DPPH (mmol TE/g) | FRAP (mmol TE/g) |
---|---|---|---|---|---|---|
Eo | 6.5 ± 0.5 A | 127 ± 5 Ab | 75 ± 8 Ab | 16 ± 1 Aab | 56 ± 1 Ab | 1.79 ± 0.07 Ab |
E1 | 47.80 | 78 ± 3 d | 48 ± 4 c | 9.1 ± 0.1 c | 30 ± 1 d | 1.35 ± 0.06 c |
E2 | 11.11 | 165.9 ± 0.5 a | 107 ± 3 a | 12.6 ± 0.5 bc | 68 ± 2 a | 2.06 ± 0.06 a |
E3 | 24.29 | 106 ± 5 c | 78 ± 3 b | 18 ± 3 a | 43 ± 2 c | 1.52 ± 0.01 b |
E4 | 2.09 | 29 ± 2 e | 28.7 ± 0.1 d | nd | 22 ± 1 d | 0.91 ± 0.01 d |
85.29 (14.71) | ||||||
Wo | 6.1 ± 0.4 A | 87 ± 3 Bb | 67 ± 6 Aa | 14.41 ± 0.09 Aa | 27 ± 1 Bb | 1.27 ± 0.05 Bb |
W1 | 59.03 | 85 ± 7 b | 37 ± 2 bc | 7 ± 2 bc | 24 ± 1 c | 0.83 ± 0.05 c |
W2 | 7.19 | 130 ± 5 a | 74 ± 8 a | 10 ± 1 b | 47.9 ± 0.3 a | 1.52 ± 0.03 a |
W3 | 17.18 | 56.2 ± 0.6 c | 43.54 ± 0.07 b | 13 ± 1 ba | 19 ± 1 c | 1.54 ± 0.07 Ab |
W4 | 3.52 | 13 ± 2 d | 12.4 ± 0.2 c | nd | 12.6 ± 0.6 d | 0.68 ± 0.06 c |
86.92 (13.08) |
Analyte | Eo | E2 | Wo | W2 |
---|---|---|---|---|
Tyrosol | ND | 2.9 ± 0.3 f | ND | 10 ± 1 b |
Phenolic acids | ||||
Cinnamic acid | 3139 ± 51 b | ND | ND | ND |
Caftaric acid | 1243 ± 8 d | 4425 ± 260 a | 3912 ± 155 b | 7630 ± 1108 a |
Caffeic acid | 6841 ± 297 a | 518 ± 16 d | 55 ± 13 d | 669 ± 95 b |
p-coumaric acid | 110 ± 13 f,g | 3379 ± 105 b | 4229 ± 1 a | 8006 ± 925 a |
Ferulic acid | ND | ND | 67 ± 2 | ND |
Ellagic acid | 166 ± 3 f,g | ND | ND | ND |
Syringic acid | ND | ND | 71 ± 4 d | ND |
Flavonoids | ||||
Quercetin | 109 ± 12 f,g | 13.6 ± 0.8 f | 111 ± 11 d | ND |
Myricetin | 148 ± 9 f,g | 26.2 ± 0.8 f | ND | 22 ± 1 b |
Morin | 2250 ± 95 c | 2910 ± 80 c | 72.5 ± 0.4 d | 108 ± 9 b |
Isorhamnetin | ND | 32 ± 1f | ND | 2.8 ± 0.4 b |
Rutin | 157.4 ± 0.1 f,g | ND | 50.7 ± 3 d | ND |
Quercetin-3-glucoside | 26 ± 10 g | ND | 66 ± 6 d | ND |
Kaempferol-3-glucoside | 793 ± 14 e | 68.5 ± 1 f | 54 ± 2 d | ND |
Astilbin | ND | 190 ± 6 e,f | ND | 111 ± 23 b |
(+)-catechin | 64 ± 3 g | 73 ± 2 f | 23 ± 3 d | 79 ± 12 b |
(-)-gallocatechin gallate | 323.8 ± 0.9 f | ND | 264 ± 27 c | ND |
Naringin | 198 ± 3 f,g | ND | 75 ± 1 d | ND |
Genistin | 17 ± 1 g | ND | 12.5 ± 0.2 d | ND |
Genistein | 221 ± 7 f,g | 57 ± 1 f | 8 ± 2 d | ND |
Procyanidin B1 | ND | 11.45 ± 0.07 f | ND | 7.7 ± 0.6 b |
Procyanidin B2 | 66 ± 2 g | 362 ± 2 d,e | 42 ± 2 d | 424 ± 67 b |
Sum Phenolic acids | 11499 ± 372 | 8322 ± 382 | 8334 ± 175 | 16305 ± 2128 |
Sum Flavonoids | 4374 ± 159 | 3743 ± 95 | 779 ± 58 | 756 ± 114 |
Total sum | 15873 ± 531 | 12067 ± 477 | 9113 ± 234 | 17070 ± 2244 |
Compound | Medium | Position of Radical | HAT | SET-PT | SPLET | ||
---|---|---|---|---|---|---|---|
BDE | IP | PDE | PA | ETE | |||
pCoA | Gas | 4-OH | 81.2 | 185.1 | 212.1 | 326.5 | 70.6 |
Ethanol | 83.0 | 117.4 | 5.8 | 30.3 | 89.9 | ||
Water | 83.3 | 111.0 | 9.4 | 33.0 | 87.4 | ||
CA | Gas | 4-OH | 73.0 | 182.7 | 206.4 | 318.6 | 70.3 |
Ethanol | 76.5 | 114.0 | 2.5 | 28.7 | 87.9 | ||
Water | 77.4 | 108.1 | 6.5 | 29.3 | 85.2 | ||
CfA | Gas | 4-OH | 72.6 | 179.3 | 209.2 | 317.2 | 71.3 |
Ethanol | 76.4 | 113.7 | 3.1 | 29.6 | 87.2 | ||
Water | 76.9 | 107.3 | 6.8 | 29.5 | 84.5 | ||
Mo | Gas | 3-OH | 75.5 | 171.3 | 220.1 | 320.4 | 71.1 |
Ethanol | 73.7 | 111.6 | 2.4 | 26.0 | 88.0 | ||
Water | 74.5 | 106.1 | 5.5 | 26.1 | 85.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traffano-Schiffo, M.V.; Vallejos, M.M.; Gómez, A.G.; Avalos, B.I.; Acevedo, B.A.; Avanza, M.V. Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches. Agronomy 2025, 15, 1681. https://doi.org/10.3390/agronomy15071681
Traffano-Schiffo MV, Vallejos MM, Gómez AG, Avalos BI, Acevedo BA, Avanza MV. Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches. Agronomy. 2025; 15(7):1681. https://doi.org/10.3390/agronomy15071681
Chicago/Turabian StyleTraffano-Schiffo, María Victoria, Margarita M. Vallejos, Andrea G. Gómez, Beatriz I. Avalos, Belén A. Acevedo, and María Victoria Avanza. 2025. "Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches" Agronomy 15, no. 7: 1681. https://doi.org/10.3390/agronomy15071681
APA StyleTraffano-Schiffo, M. V., Vallejos, M. M., Gómez, A. G., Avalos, B. I., Acevedo, B. A., & Avanza, M. V. (2025). Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches. Agronomy, 15(7), 1681. https://doi.org/10.3390/agronomy15071681