Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
- (1)
- Studies published in peer-reviewed journals.
- (2)
- Studies investigating the pharmacological properties and mechanisms of edible plant-derived naturally occurring xanthones in relation to metabolic syndrome.
- (3)
- Studies published in the English language.
2.2. Exclusion Criteria
- (1)
- Studies on synthetic xanthones which are not naturally occurring in plants.
- (2)
- Studies on xanthone extracts without clarifying the components and structure.
- (3)
- Studies published in a language other than English.
- (4)
- Review articles, meta-analyses, case reports, and patents.
3. Xanthones Against Hypertension
3.1. Vasodilatory Effects
3.2. Antiplatelet Aggregation Effects
3.3. Endothelial Protective Effects
3.4. Diuretic Effects
4. Xanthones Against Hyperlipidemia and Obesity
4.1. Promoting Lipid Metabolism
4.2. Inhibiting Fatty Acid Synthesis
4.3. Anti-Atherosclerosis Effect
4.4. Promoting Energy Metabolism
5. Xanthones Against Hyperglycemia
5.1. Increasing Insulin Secretion
5.2. Enhancing Insulin Sensitivity
5.3. Slowing Digestion and Absorption
5.4. Enhancing Glucose Uptake
5.5. Effects Against Inflammation and Oxidative Stress
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADMA | Asymmetric dimethylarginine |
ADP | Adenosine diphosphate |
AGEs | Advanced glycation end-products |
Ang II | Angiotensin II |
cGMP | Cyclic guanosine monophosphate |
DDAH | Dimethylarginine dimethylaminohydrolase |
DGAT | Diacylglycerol acyltransferase |
DGAT-2 | Diacylglycerol acyltransferase |
EMT | Epithelial-to-mesenchymal transition |
eNOS | Endothelial Nitric Oxide Synthase |
ER | Endoplasmic reticulum |
FAS | Fatty acid synthase |
FFA | Free fatty acids |
GLUT4 | Glucose transporter 4 |
HFD | High fat diet |
hMSCs | Human mesenchymal stem cells |
HUVEC | Human umbilical vein endothelial cells |
LPC | Lysophosphatidylcholine |
MetS | Metabolic syndrome |
NAFLD | Non-alcoholic fatty liver disease |
NEFA | Non-esterified fatty acid |
NO | Nitric oxide |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
ox-LDL | Oxidized low-density lipoprotein |
PDGF | Platelet-derived growth factor |
PL | Pancreatic lipase |
PTEN | Phosphatase and tension homologue |
PTP1B | Human Protein Tyrosine Phosphatase 1B |
ROS | Reactive oxygen species |
TG | Triglycerides |
TGF-β | Transforming growth factor-β |
VSMC | Vascular smooth muscle cell |
VASH | Vasohibin |
5-HT | 5-Hydroxytryptamine |
References
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.K.B. Chapter 6—Epidemiology of metabolic syndrome: Global scenario. In Metabolic Syndrome; Mukhopadhyay, S., Mondal, S., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 59–71. [Google Scholar]
- El-Seedi, R.H.; Ibrahim, M.S.H.; Yosri, N.; Ibrahim, A.A.M.; Hegazy, F.M.-E.; Setzer, N.W.; Guo, Z.; Zou, X.; Refaey, S.M.; Salem, E.S.; et al. Naturally Occurring Xanthones; Biological Activities, Chemical Profiles and In Silico Drug Discovery. Curr. Med. Chem. 2024, 31, 62–101. [Google Scholar] [CrossRef]
- Tousian Shandiz, H.; Razavi, B.M.; Hosseinzadeh, H. Review of Garcinia mangostana and its Xanthones in Metabolic Syndrome and Related Complications. Phytother. Res. 2017, 31, 1173–1182. [Google Scholar] [CrossRef]
- Badiali, C.; Petruccelli, V.; Brasili, E.; Pasqua, G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. Plants 2023, 12, 694. [Google Scholar] [CrossRef] [PubMed]
- Gunter, N.V.; Teh, S.S.; Jantan, I.; Law, K.P.; Morita, H.; Mah, S.H. Natural xanthones as modulators of the Nrf2/ARE signaling pathway and potential gastroprotective agents. Phytother. Res. 2025, 39, 1721–1734. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Obolskiy, D.; Pischel, I.; Siriwatanametanon, N.; Heinrich, M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother. Res. 2009, 23, 1047–1065. [Google Scholar] [CrossRef]
- Xiang, G.L.; Guo, S.; Xing, N.; Du, Q.Y.; Qin, J.; Gao, H.M.; Zhang, Y.; Wang, S.H. Mangiferin, a potential supplement to improve metabolic syndrome: Current status and future opportunities. Am. J. Chin. Med. 2024, 52, 355–386. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Timraz, N.Z.; Ibrahim, S.R.M.; El-Halawany, A.M.; Malebari, A.M.; Shehata, I.A.; El-Bassossy, H.M. Nitric-oxide-mediated vasodilation of bioactive compounds isolated from Hypericum revolutum in rat aorta. Biology 2021, 10, 541. [Google Scholar] [CrossRef]
- Timraz, N.; El-Bassossy, H.; Ibrahim, S.; El-Halawany, A.; Shehata, I.A.; Aljohani, O.; Abdallah, H. Vasodilating effect of Hypericum revolutum (Vahl) (Clusiaceae) methanol extract in rats. Trop. J. Pharm. Res. 2021, 20, 1003–1007. [Google Scholar] [CrossRef]
- Capettini, L.S.; Campos, L.V.; Dos Santos, M.H.; Nagem, T.J.; Lemos, V.S.; Cortes, S.F. Vasodilator and antioxidant effect of xanthones isolated from Brazilian medicinal plants. Planta Med. 2009, 75, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Diniz, T.F.; Pereira, A.C.; Capettini, L.S.; Santos, M.H.; Nagem, T.J.; Lemos, V.S.; Cortes, S.F. Mechanism of the vasodilator effect of mono-oxygenated xanthones: A structure-activity relationship study. Planta Med. 2013, 79, 1495–1500. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Kang, J.J. Mechanism of vasorelaxation of thoracic aorta caused by xanthone. Eur. J. Pharmacol. 1997, 336, 23–28. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.-G.; Wang, M.-Z.; Che, C.-T.; Yeung, J.H.K. Mechanisms of the vasorelaxant effect of 1-hydroxy-2, 3, 5-trimethoxy-xanthone, isolated from a Tibetan herb, Halenia elliptica, on rat coronary artery. Life Sci. 2007, 81, 1016–1023. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.-G.; Wang, M.-Z.; Che, C.-T.; Yeung, J.H.K. Mechanisms of the vasorelaxant effect of 1, 5-dihydroxy-2, 3-dimethoxy-xanthone, an active metabolite of 1-hydroxy-2, 3, 5-trimethoxy-xanthone isolated from a Tibetan herb, Halenia elliptica, on rat coronary artery. Life Sci. 2008, 82, 91–98. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.-G.; Wang, M.-Z.; Che, C.-T.; Yeung, J.H.K. Vasodilatory actions of xanthones isolated from a Tibetan herb, Halenia elliptica. Phytomedicine 2009, 16, 1144–1150. [Google Scholar] [CrossRef]
- Câmara, D.V.; Lemos, V.S.; Santos, M.H.; Nagem, T.J.; Cortes, S.F. Mechanism of the vasodilator effect of Euxanthone in rat small mesenteric arteries. Phytomedicine 2010, 17, 690–692. [Google Scholar] [CrossRef]
- Fang, L.H.; Mu, Y.M.; Lin, L.L.; Xiao, P.G.; Du, G.H. Vasorelaxant effect of euxanthone in the rat thoracic aorta. Vasc. Pharmacol. 2006, 45, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Chericoni, S.; Testai, L.; Calderone, V.; Flamini, G.; Nieri, P.; Morelli, I.; Martinotti, E. The xanthones gentiacaulein and gentiakochianin are responsible for the vasodilator action of the roots of Gentiana kochiana. Planta Med. 2003, 69, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Mariano, L.N.B.; da Silva, R.d.C.V.; Niero, R.; Cechinel Filho, V.; da Silva-Santos, J.E.; de Souza, P. Vasodilation and Blood Pressure-Lowering Effect of 3-Demethyl-2-Geranyl-4-Prenylbellidifoline, a Xanthone Obtained from Garcinia achachairu, in Hypertensive Rats. Plants 2024, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Xanthones from the roots of Polygala caudata and their antioxidation and vasodilatation activities in vitro. Planta Med. 2005, 71, 372–375. [Google Scholar] [CrossRef]
- Jiang, M.; Huang, S.; Duan, W.; Liu, Q.; Lei, M. Alpha-mangostin improves endothelial dysfunction in db/db mice through inhibition of aSMase/ceramide pathway. J. Cell. Mol. Med. 2021, 25, 3601–3609. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, J.; Gao, L.; Lin, H.; Yang, Z.; Liu, X.; Niu, Y. α-Mangostin reduces hypertension in spontaneously hypertensive rats and inhibits EMT and fibrosis in Ang II-induced HK-2 cells. Int. J. Med. Sci. 2024, 21, 1681–1688. [Google Scholar] [CrossRef]
- Tep-Areenan, P.; Suksamrarn, S. Mechanisms of vasorelaxation to gamma-mangostin in the rat aorta. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2012, 95 (Suppl. S12), S63–S68. [Google Scholar]
- Shin, J.-H.; Irfan, M.; Rhee, M.H.; Kwon, H.-W. Antiplatelet effect of cudraxanthone B is related to inhibition of calcium mobilization, αIIbβ3 activation, and clot retraction. Appl. Biol. Chem. 2021, 64, 4. [Google Scholar] [CrossRef]
- Jantan, I.; Saputri, F.C. Benzophenones and xanthones from Garcinia cantleyana var. cantleyana and their inhibitory activities on human low-density lipoprotein oxidation and platelet aggregation. Phytochemistry 2012, 80, 58–63. [Google Scholar] [CrossRef]
- Liu, Y.; Park, J.-M.; Chang, K.-H.; Chin, Y.-W.; Lee, M.-Y. α- and γ-mangostin cause shape changes, inhibit aggregation and induce cytolysis of rat platelets. Chem.-Biol. Interact. 2015, 240, 240–248. [Google Scholar] [CrossRef]
- Chairungsrilerd, N.; Furukawa, K.; Ohta, T.; Nozoe, S.; Ohizumi, Y. γ-Mangostin, a novel type of 5-hydroxytryptamine 2A receptor antagonist. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1998, 357, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Jantan, I.; Mohd Yasin, Y.H.; Jalil, J.; Murad, S.; Idris, M.S. Antiplatelet aggregation activity of compounds isolated from Guttiferae species in human whole blood. Pharm. Biol. 2009, 47, 1090–1095. [Google Scholar] [CrossRef]
- Yoo, H.; Ku, S.K.; Lee, W.; Kwak, S.; Baek, Y.D.; Min, B.W.; Jeong, G.S.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch. Pharmacal Res. 2014, 37, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Saputri, F.C.; Jantan, I. Inhibitory Activities of Compounds from the Twigs of Garcinia hombroniana Pierre on Human Low-density Lipoprotein (LDL) Oxidation and Platelet Aggregation. Phytother. Res. 2012, 26, 1845–1850. [Google Scholar] [CrossRef]
- Abdallah, H.M.; El-Bassossy, H.M.; Mohamed, G.A.; El-Halawany, A.M.; Alshali, K.Z.; Banjar, Z.M. Mangostanaxanthones III and IV: Advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana. J. Nat. Med. 2017, 71, 216–226. [Google Scholar] [CrossRef]
- Luo, Y.; Lei, M. α-Mangostin protects against high-glucose induced apoptosis of human umbilical vein endothelial cells. Biosci. Rep. 2017, 37, BSR20170779. [Google Scholar] [CrossRef]
- Jariyapongskul, A.; Areebambud, C.; Suksamrarn, S.; Mekseepralard, C. a-Mangostin attenuation of hyperglycemia-induced ocular hypoperfusion and blood retinal barrier leakage in the early stage of type 2 diabetes rats. BioMed Res. Int. 2015, 2015, 785826. [Google Scholar] [CrossRef]
- Sampath, P.D.; Kannan, V. Mitigation of mitochondrial dysfunction and regulation of eNOS expression during experimental myocardial necrosis by alpha-mangostin, a xanthonic derivative from Garcinia mangostana. Drug Chem. Toxicol. 2009, 32, 344–352. [Google Scholar] [CrossRef]
- Eisvand, F.; Rezvani, K.; Hosseinzadeh, H.; Razavi, B.M. Alpha-mangostin decreases high glucose-induced damage on human umbilical vein endothelial cells by increasing autophagic protein expression. Iran. J. Basic Med. Sci. 2024, 27, 90–96. [Google Scholar] [CrossRef]
- Schmieder, A.; Schwaiger, S.; Csordas, A.; Backovic, A.; Messner, B.; Wick, G.; Stuppner, H.; Bernhard, D. Isogentisin—A novel compound for the prevention of smoking-caused endothelial injury. Atherosclerosis 2007, 194, 317–325. [Google Scholar] [CrossRef]
- Waltenberger, B.; Liu, R.; Atanasov, A.G.; Schwaiger, S.; Heiss, E.H.; Dirsch, V.M.; Stuppner, H. Nonprenylated Xanthones from Gentiana lutea, Frasera caroliniensis, and Centaurium erythraea as Novel Inhibitors of Vascular Smooth Muscle Cell Proliferation. Molecules 2015, 20, 20381–20390. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, W.; Ye, C.; Lin, Y.; Cheang, T.-Y.; Wang, M.; Zhang, H.; Wang, S.; Zhang, L.; Wang, S. Gambogic Acid Induces G0/G1 Cell Cycle Arrest and Cell Migration Inhibition Via Suppressing PDGF Receptor β Tyrosine Phosphorylation and Rac1 Activity in Rat Aortic Smooth Muscle Cells. J. Atheroscler. Thromb. 2010, 17, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, G.; Ji, Y.; Zhua, H.; Lv, C.; Jiang, W. Protective role of gambogic acid in experimental pulmonary fibrosis in vitro and in vivo. Phytomedicine 2016, 23, 350–358. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, J.; Liu, B.; Huang, F.; Li, Y. Exosomes derived from mangiferin-stimulated perivascular adipose tissue ameliorate endothelial dysfunction. Mol. Med. Rep. 2019, 19, 4797–4805. [Google Scholar] [CrossRef]
- Ismail, M.B.; Rajendran, P.; AbuZahra, H.M.; Veeraraghavan, V.P. Mangiferin Inhibits Apoptosis in Doxorubicin-Induced Vascular Endothelial Cells via the Nrf2 Signaling Pathway. Int. J. Mol. Sci. 2021, 22, 4259. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Hou, F.; Wang, X.; Liu, B. Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metab. Clin. Exp. 2015, 64, 428–437. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, D.-L.; Jia, M.; Hao, W.-H.; Li, Y.-J. Mangiferin inhibits high-fat diet induced vascular injury via regulation of PTEN/AKT/eNOS pathway. J. Pharmacol. Sci. 2018, 137, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, R.; Ramkumar, K.M. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway. Eur. J. Pharmacol. 2022, 936, 175359. [Google Scholar] [CrossRef]
- Yang, H.; Bai, W.; Gao, L.; Jiang, J.; Tang, Y.; Niu, Y.; Lin, H.; Li, L. Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases. J. Pharmacol. Sci. 2018, 137, 154–161. [Google Scholar] [CrossRef]
- Jiang, D.-J.; Jiang, J.-L.; Tan, G.-S.; Huang, Z.-Z.; Deng, H.-W.; Li, Y.-J. Demethylbellidifolin Inhibits Adhesion of Monocytes to Endothelial Cells via Reduction of Tumor Necrosis Factor alpha and Endogenous Nitric Oxide Synthase Inhibitor Level. Planta Med. 2003, 69, 1150–1152. [Google Scholar] [CrossRef]
- Jiang, D.J.; Jiang, J.L.; Zhu, H.Q.; Tan, G.S.; Liu, S.Q.; Xu, K.P.; Li, Y.J. Demethylbellidifolin preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. J. Ethnopharmacol. 2004, 93, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.J.; Jiang, J.L.; Tan, G.S.; Du, Y.H.; Xu, K.P.; Li, Y.J. Protective effects of daviditin A against endothelial damage induced by lysophosphatidylcholine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 367, 600–606. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Boeing, T.; da Silva, R.d.C.M.V.d.A.F.; Cechinel-Filho, V.; Niero, R.; da Silva, L.M.; de Souza, P.; de Andrade, S.F. 1,3,5,6-Tetrahydroxyxanthone, a natural xanthone, induces diuresis and saluresis in normotensive and hypertensive rats. Chem. Biol. Interact. 2019, 311, 108778. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Boeing, T.; Cechinel Filho, V.; Niero, R.; Mota da Silva, L.; de Souza, P. 1,3,5,6-tetrahydroxyxanthone promotes diuresis, renal protection and antiurolithic properties in normotensive and hypertensive rats. J. Pharm. Pharmacol. 2021, 73, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Bolda Mariano, L.N.; Boeing, T.; Cechinel-Filho, V.; Niero, R.; Mota da Silva, L.; de Souza, P. The acute diuretic effects with low-doses of natural prenylated xanthones in rats. Eur. J. Pharmacol. 2020, 884, 173432. [Google Scholar] [CrossRef] [PubMed]
- Mariano, L.N.B.; Boeing, T.; Filho, V.C.; Niero, R.; da Silva, L.M.; de Souza, P. 3-Demethyl-2-geranyl-4-prenylbellidifoline, a natural xanthone with diuretic and kidney protective properties. J. Pharm. Pharmacol. 2024, 76, 106–114. [Google Scholar] [CrossRef]
- Ren, K.; Li, H.; Zhou, H.F.; Liang, Y.; Tong, M.; Chen, L.; Zheng, X.L.; Zhao, G.J. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging 2019, 11, 10992–11009. [Google Scholar] [CrossRef]
- Niu, Y.; Li, S.; Na, L.; Feng, R.; Liu, L.; Li, Y.; Sun, C. Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK. PLoS ONE 2012, 7, e30782. [Google Scholar] [CrossRef]
- Yong, Z.; Ruiqi, W.; Hongji, Y.; Ning, M.; Chenzuo, J.; Yu, Z.; Zhixuan, X.; Qiang, L.; Qibing, L.; Weiying, L.; et al. Mangiferin Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 Inflammasome Signal Pathways. J. Immunol. Res. 2021, 2021, 4084566. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.-Y.; Wang, L.; Teng, T.; Zhou, M.; Wang, S.-G.; Tian, Y.-Z.; Du, L.; Yin, X.-X.; Sun, Y. Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed. Pharmacother. 2017, 96, 328–335. [Google Scholar] [CrossRef]
- Guo, F.; Huang, C.; Liao, X.; Wang, Y.; He, Y.; Feng, R.; Li, Y.; Sun, C. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol. Nutr. Food Res. 2011, 55, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Iwamoto, N.; Kato, M.; Ichiki, H.; Kubo, M.; Komatsu, Y.; Ishida, T.; Okada, M.; Tanigawa, K. The suppressive effect of mangiferin with exercise on blood lipids in type 2 diabetes. Biol. Pharm. Bull. 2001, 24, 1091–1092. [Google Scholar] [CrossRef]
- Xing, X.; Li, D.; Chen, D.; Zhou, L.; Chonan, R.; Yamahara, J.; Wang, J.; Li, Y. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: A link to amelioration of fatty liver. Toxicol. Appl. Pharmacol. 2014, 280, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Subash-Babu, P.; Alshatwi, A.A. Evaluation of Antiobesity Effect of Mangiferin in Adipogenesis-Induced Human Mesenchymal Stem Cells by Assessing Adipogenic Genes. J. Food Biochem. 2015, 39, 28–38. [Google Scholar] [CrossRef]
- Mahali, S.K.; Verma, N.; Manna, S.K. Advanced Glycation End Products Induce Lipogenesis: Regulation by Natural Xanthone through Inhibition of ERK and NF-κB. J. Cell. Physiol. 2014, 229, 1972–1980. [Google Scholar] [CrossRef]
- Apontes, P.; Liu, Z.; Su, K.; Benard, O.; Youn, D.Y.; Li, X.; Li, W.; Mirza, R.H.; Bastie, C.C.; Jelicks, L.A.; et al. Mangiferin Stimulates Carbohydrate Oxidation and Protects Against Metabolic Disorders Induced by High-Fat Diets. Diabetes 2014, 63, 3626–3636. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, J.; Han, N.; Liu, Z.; Xiao, B.; Yin, J. Beneficial effects of neomangiferin on high fat diet-induced nonalcoholic fatty liver disease in rats. Int. Immunopharmacol. 2015, 25, 218–228. [Google Scholar] [CrossRef]
- Sim, M.-O.; Lee, H.J.; Jeong, D.E.; Jang, J.-H.; Jung, H.-K.; Cho, H.-W. 6′-O-acetyl mangiferin from Iris rossii Baker inhibits lipid accumulation partly via AMPK activation in adipogenesis. Chem. Biol. Interact. 2019, 311, 108755. [Google Scholar] [CrossRef]
- Shibata, M.-A.; Harada-Shiba, M.; Shibata, E.; Tosa, H.; Matoba, Y.; Hamaoka, H.; Iinuma, M.; Kondo, Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int. J. Mol. Sci. 2019, 20, 1722. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Chung, P.-C.; Owaga, E.E.; Tsai, I.J.; Wang, P.-Y.; Tsai, J.-I.; Yeh, T.-S.; Hsieh, R.-H. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr. Metab. 2016, 13, 88. [Google Scholar] [CrossRef]
- Williams, P.; Ongsakul, M.; Proudfoot, J.; Croft, K.; Beilin, L. Mangostin Inhibits the Oxidative Modification of Human Low Density Lipoprotein. Free Radic. Res. 1995, 23, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Kim, Y.M.; Huh, J.H.; Lee, E.S.; Kwon, M.H.; Lee, B.R.; Ko, H.-J.; Chung, C.H. α-Mangostin ameliorates hepatic steatosis and insulin resistance by inhibition C-C chemokine receptor 2. PLoS ONE 2017, 12, e0179204. [Google Scholar] [CrossRef]
- Choi, Y.H.; Bae, J.K.; Chae, H.-S.; Kim, Y.-M.; Sreymom, Y.; Han, L.; Jang, H.Y.; Chin, Y.-W. α-Mangostin Regulates Hepatic Steatosis and Obesity through SirT1-AMPK and PPARγ Pathways in High-Fat Diet-Induced Obese Mice. J. Agric. Food. Chem. 2015, 63, 8399–8406. [Google Scholar] [CrossRef] [PubMed]
- John, O.D.; Mouatt, P.; Panchal, S.K.; Brown, L. Rind from Purple Mangosteen (Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients 2021, 13, 319. [Google Scholar] [CrossRef]
- Shen, Q.; Chitchumroonchokchai, C.; Thomas, J.L.; Gushchina, L.V.; DiSilvestro, D.; Failla, M.L.; Ziouzenkova, O. Adipocyte reporter assays: Application for identification of anti-inflammatory and antioxidant properties of mangosteen xanthones. Mol. Nutr. Food Res. 2014, 58, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.-S.; Kim, E.-Y.; Han, L.; Kim, N.-R.; Lam, B.; Paik, J.H.; Yoon, K.D.; Choi, Y.H.; Chin, Y.-W. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L. (Guttiferae). Eur. J. Lipid Sci. Technol. 2016, 118, 1416–1421. [Google Scholar] [CrossRef]
- Xiao, H.-B.; Sun, Z.-L.; Lu, X.-Y.; Li, D.-Z.; Xu, J.-P.; Hu, Y.-P. Beneficial effect of 3,4,5,6-tetrahydroxyxanthone on dyslipidemia in apolipoprotein E-deficient mice. Can. J. Physiol. Pharmacol. 2008, 86, 815–826. [Google Scholar] [CrossRef]
- Xiao, H.-B.; Lu, X.-Y.; Li, Y.-J.; Xu, J.-P.; Chao-Tan; Sun, Z.-L. Effect of 3,4,5,6-tetrahydroxyxanthone on erythrocyte deformability in apolipoprotein E-deficient mice. J. Asian Nat. Prod. Res. 2009, 11, 643–651. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, Y.; Feng, T.; Jiang, W.; Li, Z.; Hong, B.; Xie, Z.; Si, S. IMB2026791, a Xanthone, Stimulates Cholesterol Efflux by Increasing the Binding of Apolipoprotein A-I to ATP-Binding Cassette Transporter A1. Molecules 2012, 17, 2833–2854. [Google Scholar] [CrossRef]
- Zhou, Y.; Kim, J.T.; Qiu, S.; Lee, S.B.; Park, H.J.; Soon, M.J.; Lee, H.J. 1,3,5,8-Tetrahydroxyxanthone suppressed adipogenesis via activating Hedgehog signaling in 3T3-L1 adipocytes. Food Sci. Biotechnol. 2022, 31, 1473–1480. [Google Scholar] [CrossRef]
- Jumai, A.; Chen, S.; Wu, Y.; Liu, F.; Li, B.; Zhu, B.; Zhao, L.; Liu, K.; Zhang, Q.; Qiu, S.-X. Bellidifolin, a constituent from edible Mongolic Liver Tea (Swertia diluta), promotes lipid metabolism by regulating intestinal microbiota and bile acid metabolism in mice during high fat diet-induced obesity. Food Biosci. 2025, 68, 106562. [Google Scholar] [CrossRef]
- Na, L.; Zhang, Q.; Jiang, S.; Du, S.; Zhang, W.; Li, Y.; Sun, C.; Niu, Y. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: A double-blind randomized controlled trial. Sci. Rep. 2015, 5, 10344. [Google Scholar] [CrossRef]
- Lim, J.; Liu, Z.; Apontes, P.; Feng, D.; Pessin, J.E.; Sauve, A.A.; Angeletti, R.H.; Chi, Y. Dual Mode Action of Mangiferin in Mouse Liver under High Fat Diet. PLoS ONE 2014, 9, e90137. [Google Scholar] [CrossRef]
- Liang, Y.; Luo, D.; Gao, X.; Wu, H. Inhibitory effects of garcinone E on fatty acid synthase. RSC Adv. 2018, 8, 8112–8117. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Z.; Quan, X.F.; Tian, W.X.; Hu, J.M.; Wang, P.C.; Huang, S.Z.; Cheng, Z.Q.; Liang, W.J.; Zhou, J.; Ma, X.F.; et al. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg. Med. Chem. Lett. 2010, 20, 6045–6047. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.-B.; Moon, D.-O.; Oh, E.S.; Song, Y.N.; Park, J.-Y.; Ryu, H.W.; Kim, D.-Y.; Chin, Y.-W.; Lee, H.-S.; Lee, S.U.; et al. Garcinia mangostana Suppresses Triacylglycerol Synthesis in Hepatocytes and Enterocytes. J. Med. Food 2023, 26, 732–738. [Google Scholar] [CrossRef]
- Quan, X.; Wang, Y.; Ma, X.; Liang, Y.; Tian, W.; Ma, Q.; Jiang, H.; Zhao, Y. α-Mangostin Induces Apoptosis and Suppresses Differentiation of 3T3-L1 Cells via Inhibiting Fatty Acid Synthase. PLoS ONE 2012, 7, e33376. [Google Scholar] [CrossRef]
- Song, M.-C.; Nigussie, F.; Jeong, T.-S.; Lee, C.-Y.; Regassa, F.; Markos, T.; Baek, N.-I. Phenolic Compounds from the Roots of Lindera fruticosa. J. Nat. Prod. 2006, 69, 853–855. [Google Scholar] [CrossRef]
- Kim, T.-J.; Han, H.-J.; Hong, S.-S.; Hwang, J.-H.; Hwang, B.-Y.; Yoo, H.-S.; Jin, Y.-R.; Lee, J.-J.; Yu, J.-Y.; Lee, K.-H.; et al. Cudratricusxanthone A isolated from the root bark of Cudrania tricuspidata inhibits the proliferation of vascular smooth muscle cells through the suppression of PDGF-receptor beta tyrosine kinase. Biol. Pharm. Bull. 2007, 30, 805–809. [Google Scholar] [CrossRef]
- Ferchichi, L.; Derbré, S.; Mahmood, K.; Touré, K.; Guilet, D.; Litaudon, M.; Awang, K.; Hadi, A.H.A.; Le Ray, A.M.; Richomme, P. Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 2012, 78, 98–106. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Liu, J.; Kwek, E.; Ma, K.Y.; Chen, Z.-Y. Mangiferin alleviates trimethylamine-N-oxide (TMAO)-induced atherogenesis and modulates gut microbiota in mice. Food Funct. 2023, 14, 9212–9225. [Google Scholar] [CrossRef]
- Zhao, B.; Shen, H.; Zhang, L.; Shen, Y. Gambogic acid activates AMP-activated protein kinase in mammalian cells. Biochem. Biophys. Res. Commun. 2012, 424, 100–104. [Google Scholar] [CrossRef]
- Ardakanian, A.; Ghasemzadeh Rahbardar, M.; Omidkhoda, F.; Razavi, B.M.; Hosseinzadeh, H. Effect of alpha-mangostin on olanzapine-induced metabolic disorders in rats. Iran. J. Basic Med. Sci. 2022, 25, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kim, Y.-S. Mangiferin induces the expression of a thermogenic signature via AMPK signaling during brown-adipocyte differentiation. Food Chem. Toxicol. 2020, 141, 111415. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kim, Y.-S. PINK1–PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metab. Clin. Exp. 2020, 107, 154228. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, N.; Gamo, K.; Miyachi, H.; Iinuma, M.; Kawada, T.; Takahashi, N.; Akao, Y.; Tosa, H. γ-Mangostin from Garcinia Mangostana Pericarps as a Dual Agonist That Activates Both PPARα and PPARδ. Biosci. Biotechnol. Biochem. 2013, 77, 2430–2435. [Google Scholar] [CrossRef]
- Mekseepralard, C.; Areebambud, C.; Suksamrarn, S.; Jariyapongskul, A. Effects of Long-Term Alpha-mangostin Supplementation on Hyperglycemia and Insulin Resistance in Type 2 Diabetic Rats Induced by High Fat Diet and Low Dose Streptozotocin. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2015, 98, S23–S30. [Google Scholar]
- Lee, D.; Kim, Y.-M.; Jung, K.; Chin, Y.-W.; Kang, K.S. Alpha-Mangostin Improves Insulin Secretion and Protects INS-1 Cells from Streptozotocin-Induced Damage. Int. J. Mol. Sci. 2018, 19, 1484. [Google Scholar] [CrossRef]
- Mahendran, G.; Manoj, M.; Murugesh, E.; Sathish Kumar, R.; Shanmughavel, P.; Rajendra Prasad, K.J.; Narmatha Bai, V. In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-d-xylopyranosyl isolated from Swertia corymbosa. Phytomedicine 2014, 21, 1237–1248. [Google Scholar] [CrossRef]
- Wang, H.-L.; Li, C.-Y.; Zhang, B.; Liu, Y.-D.; Lu, B.-M.; Shi, Z.; An, N.; Zhao, L.-K.; Zhang, J.-J.; Bao, J.-K.; et al. Mangiferin Facilitates Islet Regeneration and β-Cell Proliferation through Upregulation of Cell Cycle and β-Cell Regeneration Regulators. Int. J. Mol. Sci. 2014, 15, 9016–9035. [Google Scholar] [CrossRef]
- Bhargava, S.; Shah, M.B. Evaluation of efficacy of Bombax ceiba extract and its major constituent, mangiferin in streptozotocin (STZ)-induced diabetic rats. J. Complement. Integr. Med. 2021, 18, 311–318. [Google Scholar] [CrossRef]
- Sellamuthu, P.S.; Arulselvan, P.; Muniappan, B.P.; Fakurazi, S.; Kandasamy, M. Mangiferin from Salacia chinensis Prevents Oxidative Stress and Protects Pancreatic β-Cells in Streptozotocin-Induced Diabetic Rats. J. Med. Food 2013, 16, 719–727. [Google Scholar] [CrossRef]
- Hou, J.; Zheng, D.; Fan, K.; Yu, B.; Xiao, W.; Ma, J.; Jin, W.; Tan, Y.; Wu, J. Combination of Mangiferin and Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Improves Impaired Glucose Tolerance in Streptozotocin-Diabetic Rats. Pharmacology 2012, 90, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, X.; Lei, T.; Liu, Y.; Huai, G.; Sun, M.; Deng, S.; Yang, H.; Tong, R.; Wang, Y. Mangiferin induces islet regeneration in aged mice through regulating p16INK4a. Int. J. Mol. Med. 2018, 41, 3231–3242. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.M.; Bajpai, M.B.; Murthy, P.S.R.; Mukherjee, S.K. Mechanism of blood sugar lowering by a swerchirin-containing hexane fraction (SWI) of Swertia chirayita. Indian J. Exp. Biol. 1993, 31, 178–181. [Google Scholar] [PubMed]
- Zhou, L.; Pan, Y.; Chonan, R.; Batey, R.; Rong, X.; Yamahara, J.; Wang, J.; Li, Y. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle. J. Pharmacol. Exp. Ther. 2016, 356, 74–84. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Song, J.; Hou, F.; Ma, X.; Liu, B.; Huang, F. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium. Eur. J. Nutr. 2018, 57, 1563–1575. [Google Scholar] [CrossRef]
- Sha, H.; Zeng, H.; Zhao, J.; Jin, H. Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. Eur. J. Pharmacol. 2019, 859, 172522. [Google Scholar] [CrossRef]
- Miura, T.; Ichiki, H.; Hashimoto, I.; Iwamoto, N.; Kao, M.; Kubo, M.; Ishihara, E.; Komatsu, Y.; Okada, M.; Ishida, T.; et al. Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 2001, 8, 85–87. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, X.; Yuan, H.; Guan, H.; Li, Y.; Niu, Y. Mangiferin Improved Palmitate-Induced-Insulin Resistance by Promoting Free Fatty Acid Metabolism in HepG2 and C2C12 Cells via PPARα: Mangiferin Improved Insulin Resistance. J. Diabetes Res. 2019, 2019, 2052675. [Google Scholar] [CrossRef]
- Yang, C.Q.; Xu, J.H.; Yan, D.D.; Liu, B.L.; Liu, K.; Huang, F. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition. Chin. J. Nat. Med. 2017, 15, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Pu, Z.; Gao, J.; Liu, C.; Xing, J.; Lang, W.; Chen, J.; Yuan, C.; Zhou, C. “Multiomics” Analyses Combined with Systems Pharmacology Reveal the Renoprotection of Mangiferin Monosodium Salt in Rats with Diabetic Nephropathy: Focus on Improvements in Renal Ferroptosis, Renal Inflammation, and Podocyte Insulin Resistance. J. Agric. Food. Chem. 2023, 71, 358–381. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, Y.; Tan, Y.; Zhang, X.; Wang, R.; Chen, D.; Wang, Z.; Zhong, X. Lipidomics of the erythrocyte membrane and network pharmacology to explore the mechanism of mangiferin from Anemarrhenae rhizoma in treating type 2 diabetes mellitus rats. J. Pharm. Biomed. Anal. 2023, 230, 115386. [Google Scholar] [CrossRef]
- Saleh, S.; El-Maraghy, N.; Reda, E.; Barakat, W. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: Role of adiponectin and TNF-α. An. Acad. Bras. Cienc. 2014, 86, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Sekar, V.; Mani, S.; Malarvizhi, R.; Nithya, P.; Vasanthi, H.R. Antidiabetic effect of mangiferin in combination with oral hypoglycemic agents metformin and gliclazide. Phytomedicine 2019, 59, 152901. [Google Scholar] [CrossRef]
- Ichiki, H.; Miura, T.; Kubo, M.; Ishihara, E.; Komatsu, Y.; Tanigawa, K.; Okada, M. New antidiabetic compounds, mangiferin and its glucoside. Biol. Pharm. Bull. 1998, 21, 1389–1390. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Kalpravidh, R.W.; Chitchumroonchokchai, C.; Chuang, C.-C.; West, T.; Kennedy, A.; McIntosh, M. Xanthones from Mangosteen Prevent Lipopolysaccharide-Mediated Inflammation and Insulin Resistance in Primary Cultures of Human Adipocytes12. J. Nutr. 2009, 139, 1185–1191. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Kalpravidh, R.W.; Chuang, C.-C.; Overman, A.; Martinez, K.; Kennedy, A.; McIntosh, M. Xanthones from Mangosteen Inhibit Inflammation in Human Macrophages and in Human Adipocytes Exposed to Macrophage-Conditioned Media1,2. J. Nutr. 2010, 140, 842–847. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.Y.; Lu, X.Q.; Li, Z.Q.; Wang, C.M.; Leung, C.H.; Wang, Y.T.; Peng, C.; Lin, L.G. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging 2019, 11, 11084–11110. [Google Scholar] [CrossRef]
- Quang, T.H.; Ngan, N.T.; Yoon, C.-S.; Cho, K.-H.; Kang, D.G.; Lee, H.S.; Kim, Y.-C.; Oh, H. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Molecules 2015, 20, 11173–11183. [Google Scholar] [CrossRef]
- Li, Z.P.; Song, Y.H.; Uddin, Z.; Wang, Y.; Park, K.H. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization. Bioorg. Med. Chem. 2018, 26, 737–746. [Google Scholar] [CrossRef]
- Li, Z.P.; Lee, H.-H.; Uddin, Z.; Song, Y.H.; Park, K.H. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense. Bioorg. Chem. 2018, 78, 39–45. [Google Scholar] [CrossRef]
- Tan, X.F.; Uddin, Z.; Park, C.; Song, Y.H.; Son, M.; Lee, K.W.; Park, K.H. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism. Bioorg. Med. Chem. 2017, 25, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, S.; Tian, S.-T.; Hu, X.; Xu, J.; Yang, G.-Z.; Wang, C.-Y. 12b-hydroxy-des-D-garcigerin A enhances glucose metabolism in insulin-resistant HepG2 cells via the IRS-1/PI3-K/Akt cell signaling pathway. J. Asian Nat. Prod. Res. 2016, 18, 1091–1100. [Google Scholar] [CrossRef]
- Li, D.; Liu, Q.; Sun, W.; Chen, X.; Wang, Y.; Sun, Y.; Lin, L. 1,3,6,7-Tetrahydroxy-8-prenylxanthone ameliorates inflammatory responses resulting from the paracrine interaction of adipocytes and macrophages. Br. J. Pharmacol. 2018, 175, 1590–1606. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.Y.; Bai, X.; Chen, X.H.; Fang, J.B.; Liu, S.H.; Chen, J.C. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine 2010, 17, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Basnet, P.; Kadota, S.; Shimizu, M.; Takata, Y.; Kobayashi, M.; Namba, T. Bellidifolin Stimulates Glucose Uptake in Rat 1 Fibroblasts and Ameliorates Hyperglycemia in Streptozotocin (STZ)-Induced Diabetic Rats. Planta Med. 1995, 61, 402–405. [Google Scholar] [CrossRef]
- Zheng, H.-H.; Luo, C.-T.; Chen, H.; Lin, J.-N.; Ye, C.-L.; Mao, S.-S.; Li, Y.-L. Xanthones from Swertia mussotii as Multitarget-Directed Antidiabetic Agents. ChemMedChem 2014, 9, 1374–1377. [Google Scholar] [CrossRef]
- Ryu, H.W.; Cho, J.K.; Curtis-Long, M.J.; Yuk, H.J.; Kim, Y.S.; Jung, S.; Kim, Y.S.; Lee, B.W.; Park, K.H. α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 2011, 72, 2148–2154. [Google Scholar] [CrossRef]
- Phukhatmuen, P.; Raksat, A.; Laphookhieo, S.; Charoensup, R.; Duangyod, T.; Maneerat, W. Bioassay-guided isolation and identification of antidiabetic compounds from Garcinia cowa leaf extract. Heliyon 2020, 6, e03625. [Google Scholar] [CrossRef]
- Charoensup, R.; Betangah, M.E.; Suthiphasilp, V.; Phukhatmuen, P.; Maneerat, T.; Duangyod, T.; Laphookhieo, S. Antidiabetic properties of garciniacowone L, a new xanthone with an unusual 5,5,8a-trimethyloctahydro-2H-1-benzopyran moiety, and other xanthones from the twig extract of Garcinia cowa Roxb. ex Choisy. J. King Saud Univ.-Sci. 2022, 34, 102201. [Google Scholar] [CrossRef]
- An, N.T.K.; Van Hien, N.; Thi Thuy, N.; Lan Phuong, D.; Gia Bach, H.; Tra, N.T.; Quang Tung, N.; Tham, P.T.; Tai, B.H.; Thu Thuy, T.T. Garcicowanones C-E, three new hydrated-geranylated xanthones from the roots of Garcinia cowa Roxb. ex Choisy, and their α-glucosidase inhibition activities. Nat. Prod. Res. 2023, 37, 3668–3676. [Google Scholar] [CrossRef]
- Miura, T.; Ichiki, H.; Iwamoto, N.; Kato, M.; Kubo, M.; Sasaki, H.; Okada, M.; Ishida, T.; Seino, Y.; Tanigawa, K. Antidiabetic activity of the rhizoma of anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol. Pharm. Bull. 2001, 24, 1009–1011. [Google Scholar] [CrossRef]
- Sekar, V.; Chakraborty, S.; Mani, S.; Sali, V.K.; Vasanthi, H.R. Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. S. Afr. J. Bot. 2019, 120, 129–134. [Google Scholar] [CrossRef]
- Sekar, V.; Mani, S.; Malarvizhi, R.; Barathidasan, R.; Vasanthi, H.R. Positive interaction of mangiferin with selected oral hypoglycemic drugs: A therapeutic strategy to alleviate diabetic nephropathy in experimental rats. Mol. Biol. Rep. 2020, 47, 4465–4475. [Google Scholar] [CrossRef] [PubMed]
- Phoboo, S.; Pinto, M.D.S.; Barbosa, A.C.L.; Sarkar, D.; Bhowmik, P.C.; Jha, P.K.; Shetty, K. Phenolic-Linked Biochemical Rationale for the Anti-Diabetic Properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytother. Res. 2013, 27, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Tokunaga, M.; Hirata, N.; Iwahashi, H.; Naruto, S.; Kubo, M. Studies on palauan medicinal herbs. I. Antidiabetic effect of Ongael, leaves of Phaleria cumingii (MEISN.) F. VILL. Nat. Med. 2004, 58, 278–283. [Google Scholar]
- Miller, N.; Malherbe, C.J.; Joubert, E. In vitro α-glucosidase inhibition by honeybush (Cyclopia genistoides) food ingredient extract—Potential for dose reduction of acarbose through synergism. Food Funct. 2020, 11, 6476–6486. [Google Scholar] [CrossRef]
- Zuo, J.; Ji, C.-L.; Xia, Y.; Li, X.; Chen, J.-W. Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharm. Biol. 2014, 52, 898–903. [Google Scholar] [CrossRef]
- Jia, C.; Han, T.; Xu, J.; Li, S.; Sun, Y.; Li, D.; Li, Z.; Hua, H. A new biflavonoid and a new triterpene from the leaves of Garcinia paucinervis and their biological activities. J. Nat. Med. 2017, 71, 642–649. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Li, N.; Jia, Y.; Wang, Y.; Chen, Y.; Panichayupakaranant, P.; Chen, H. The antioxidant activities, inhibitory effects, kinetics, and mechanisms of artocarpin and α-mangostin on α-glucosidase and α-amylase. Int. J. Biol. Macromol. 2022, 213, 880–891. [Google Scholar] [CrossRef]
- Chen, S.-P.; Lin, S.-R.; Chen, T.-H.; Ng, H.-S.; Yim, H.-S.; Leong, M.K.; Weng, C.-F. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed. Pharmacother. 2021, 144, 112333. [Google Scholar] [CrossRef] [PubMed]
- Cardozo-Muñoz, J.; Cuca-Suárez, L.E.; Prieto-Rodríguez, J.A.; Lopez-Vallejo, F.; Patiño-Ladino, O.J. Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Molecules 2022, 27, 3283. [Google Scholar] [CrossRef]
- Wairata, J.; Sukandar, E.R.; Fadlan, A.; Purnomo, A.S.; Taher, M.; Ersam, T. Evaluation of the Antioxidant, Antidiabetic, and Antiplasmodial Activities of Xanthones Isolated from Garcinia forbesii and Their In Silico Studies. Biomedicines 2021, 9, 1380. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Mohamed, G.A.; Khayat, M.T.; Ahmed, S.; Abo-Haded, H.; Alshali, K.Z. Mangostanaxanthone VIIII, a new xanthone from Garcinia mangostana pericarps, α-amylase inhibitory activity, and molecular docking studies. Rev. Bras. Farmacogn. 2019, 29, 206–212. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Chang, A.K.; Li, Y.; Tao, X.; Liu, W.; Wang, Z.; Su, W.; Li, Z.; Liang, X. Screening and tissue distribution of protein tyrosine phosphatase 1B inhibitors in mice following oral administration of Garcinia mangostana L. ethanolic extract. Food Chem. 2021, 357, 129759. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Mohamed, G.A.; Khayat, M.T.A.; Ahmed, S.; Abo-Haded, H. Garcixanthone D, a New Xanthone, and Other Xanthone Derivatives From Garcinia mangostana Pericarps: Their α-Amylase Inhibitory Potential and Molecular Docking Studies. Starch-Stärke 2019, 71, 1800354. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Mohamed, G.A.; Khayat, M.T.A.; Ahmed, S.; Abo-Haded, H. α-Amylase inhibition of xanthones from Garcinia mangostana pericarps and their possible use for the treatment of diabetes with molecular docking studies. J. Food Biochem. 2019, 43, e12844. [Google Scholar] [CrossRef]
- Phukhatmuen, P.; Suthiphasilp, V.; Rujanapan, N.; Duangyod, T.; Maneerat, T.; Charoensup, R.; Laphookhieo, S. Xanthones from the latex and twig extracts of Garcinia nigrolineata Planch. ex T. Anderson (Clusiaceae) and their antidiabetic and cytotoxic activities. Nat. Prod. Res. 2023, 37, 702–712. [Google Scholar] [CrossRef]
- Trinh, B.T.D.; Quach, T.T.T.; Bui, D.N.; Staerk, D.; Nguyen, L.-H.D.; Jäger, A.K. Xanthones from the twigs of Garcinia oblongifolia and their antidiabetic activity. Fitoterapia 2017, 118, 126–131. [Google Scholar] [CrossRef]
- Bui, D.N.; Nguyen, L.T.T.; Nguyen, L.-T.T.; Ngo, N.T.N.; Tran, P.T.; Nguyen, H.T.; Dang, L.T.N.; Nguyen, L.-H.D.; Trinh, B.T.D. Two new antidiabetic xanthones from the twigs of Garcinia oblongifolia. Nat. Prod. Res. 2023, 37, 2541–2550. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Trinh, B.T.D.; Tran, T.B.; Nguyen, L.-T.T.; Jäger, A.K.; Nguyen, L.-H.D. Anti-diabetic xanthones from the bark of Garcinia xanthochymus. Bioorg. Med. Chem. Lett. 2017, 27, 3301–3304. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Raj, V.; Keshari, A.K.; Rai, A.; Kumar, P.; Rawat, A.; Maity, B.; Kumar, D.; Prakash, A.; De, A.; et al. Isolated mangiferin and naringenin exert antidiabetic effect via PPARγ/GLUT4 dual agonistic action with strong metabolic regulation. Chem. Biol. Interact. 2018, 280, 33–44. [Google Scholar] [CrossRef]
- Girón, M.D.; Sevillano, N.; Salto, R.; Haidour, A.; Manzano, M.; Jiménez, M.L.; Rueda, R.; López-Pedrosa, J.M. Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: Role of mangiferin. Clin. Nutr. 2009, 28, 565–574. [Google Scholar] [CrossRef]
- Muruganandan, S.; Srinivasan, K.; Gupta, S.; Gupta, P.K.; Lal, J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J. Ethnopharmacol. 2005, 97, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Apontes, P.; Fomenko, E.V.; Chi, N.; Schuster, V.L.; Kurland, I.J.; Pessin, J.E.; Chi, Y. Mangiferin Accelerates Glycolysis and Enhances Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2018, 19, 201. [Google Scholar] [CrossRef]
- Sellamuthu, P.S.; Arulselvan, P.; Fakurazi, S.; Kandasamy, M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes. Pak. J. Pharm. Sci. 2014, 27, 161–167. [Google Scholar] [PubMed]
- Wang, F.; Yan, J.; Niu, Y.; Li, Y.; Lin, H.; Liu, X.; Liu, J.; Li, L. Mangiferin and its aglycone, norathyriol, improve glucose metabolism by activation of AMP-activated protein kinase. Pharm. Biol. 2014, 52, 68–73. [Google Scholar] [CrossRef]
- Taher, M.; Amiroudine, M.; Zakaria, T.; Susanti, D.; Ichwan, S.J.A.; Kaderi, M.A.; Ahmed, Q.U.; Zakaria, Z.A. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions. Evid.-Based Complement. Altern. Med. 2015, 2015, 740238. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, P.; Chen, Y.; Fu, Y.; Shi, K.; Liu, L.; Liu, H.; Xiong, M.; Liu, Q.-H.; Yang, G.; et al. Depsidone and xanthones from Garcinia xanthochymus with hypoglycemic activity and the mechanism of promoting glucose uptake in L6 myotubes. Bioorg. Med. Chem. 2017, 25, 6605–6613. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, Z.; Ling, Y.; Luo, W. LncRNA-H19 acts as a ceRNA to regulate HE4 expression by sponging miR-140 in human umbilical vein endothelial cells under hyperglycemia with or without α-Mangostin. Biomed. Pharmacother. 2019, 118, 109256. [Google Scholar] [CrossRef]
- Karunanayake, E.H.; Sirimanne, S.R. Mangiferin from the root bark of Salacia reticulata. J. Ethnopharmacol. 1985, 13, 227–228. [Google Scholar] [CrossRef]
- Hou, J.; Zheng, D.; Fung, G.; Deng, H.; Chen, L.; Liang, J.; Jiang, Y.; Hu, Y. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Can. J. Physiol. Pharmacol. 2015, 94, 332–340. [Google Scholar] [CrossRef]
- Suchal, K.; Malik, S.; Khan, S.I.; Malhotra, R.K.; Goyal, S.N.; Bhatia, J.; Kumari, S.; Ojha, S.; Arya, D.S. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: Role of AGE-RAGE/MAPK pathways. Sci. Rep. 2017, 7, 42027. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Zhu, X.; Zhang, L.; Lu, Q.; Wang, J.-Y.; Zhang, F.; Guo, H.; Yin, J.-L.; Yin, X.-X. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2013, 721, 355–364. [Google Scholar] [CrossRef]
- Pokorski, M.; Poździk, M.; Mazzatenta, A. Antioxidant treatment for impaired hypoxic ventilatory responses in experimental diabetes in the rat. Respir. Physiol. Neurobiol. 2018, 255, 30–38. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.J.; Su, X.L.; Xu, T.H. Predicting the Targets of Mangiferin in the Treatment of Diabetes Mellitus on Network Pharmacology and Analysis of its Metabolites in vivo. Pharmacogn. Mag. 2022, 18, 1137–1145. [Google Scholar]
- Liu, Y.-W.; Zhu, X.; Yang, Q.-Q.; Lu, Q.; Wang, J.-Y.; Li, H.-P.; Wei, Y.-Q.; Yin, J.-L.; Yin, X.-X. Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats. Psychopharmacology 2013, 228, 585–594. [Google Scholar] [CrossRef]
- Li, X.; Cui, X.; Sun, X.; Li, X.; Zhu, Q.; Li, W. Mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Phytother. Res. 2010, 24, 893–899. [Google Scholar] [CrossRef]
- Muruganandan, S.; Gupta, S.; Kataria, M.; Lal, J.; Gupta, P.K. Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 2002, 176, 165–173. [Google Scholar] [CrossRef]
- Pal, P.B.; Sinha, K.; Sil, P.C. Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNFα Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats. PLoS ONE 2014, 9, e107220. [Google Scholar] [CrossRef]
- Guan, W.; Liu, Y.; Liu, Y.; Wang, Q.; Ye, H.-L.; Cheng, Y.-G.; Kuang, H.-X.; Jiang, X.-C.; Yang, B.-Y. Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H2O2. Molecules 2019, 24, 1911. [Google Scholar] [CrossRef]
- Basnet, P.; Kadota, S.; Shimizu, M.; Namba, T. Bellidifolin: A Potent Hypoglycemic Agent in Streptozotocin (STZ)-Induced Diabetic Rats from Swertia japonica. Planta Med. 1994, 60, 507–511. [Google Scholar] [CrossRef]
- Bajpai, M.B.; Asthana, R.K.; Sharma, N.K.; Chatterjee, S.K.; Mukherjee, S.K. Hypoglycemic Effect of Swerchirin from the Hexane Fraction of Swertia chirayita. Planta Med. 1991, 57, 102–104. [Google Scholar] [CrossRef]
- Husen, S.A.; Winarni, D.; Salamun; Ansori, A.N.M.; Susilo, R.J.K.; Hayaza, S. Hepatoprotective Effect of Gamma-mangostin for Amelioration of Impaired Liver Structure and Function in Streptozotocin-induced Diabetic Mice. IOP Conf. Ser. Earth Environ. Sci. 2018, 217, 012031. [Google Scholar] [CrossRef]
Mechanism Category | Key Mechanisms | Xanthones | References |
---|---|---|---|
Anti-hypertension | |||
Vasodilation | NO-dependent vasodilation | Euxanthone, 2,3,4-trimethoxyxanthone, 1-hydroxy-2,3,5-trimethoxyxanthone, 3-demethyl-2-geranyl-4-prenylbellidifoline, α-mangostin, γ-mangostin | [13,14,18,24,26,28] |
Concentration-dependent vasorelaxant | 9-Xanthenone, 1-hydroxyxanthone, 4-hydroxyxanthone, 1-hydroxy-8-methoxyxanthone, 1,3-dihydroxy-7-methoxyxanthone, 2,6,8-trihydroxy-1-methoxyxanthone, 4-methoxyxanthone, 1-hydroxy-2,3,4,7-tetramethoxyxanthone, 1-hydroxy-2,3,4,5-tetramethoxyxanthone, 1,7-dihydroxy–2,3,4,5-tetramethoxyxanthone, 1,7-dihydroxy-2,3-dimethoxyxanthone, gentiacaulein, gentiakochianin, 2,7-dihydroxy-1-methoxyxanthone, 1-methoxy-2,3-methylenedioxyxanthone, 7-hydroxy-1-methoxyxanthone | [15,16,17,20] | |
Ca2+ channel inhibition | 1-Hydroxy-2,3,5-trimethoxyxanthone | [18] | |
K+ channel modulation | 1,5-Dihydroxy-2,3-dimethoxyxanthone, 3-demethyl-2-geranyl-4-prenylbellidifoline, γ-mangostin | [19,28] | |
Anti-platelet aggregation | Inhibitory activity against collagen, thrombin, and ADP | Cudraxanthone B, 1,3,5-trihydroxyxanthone, 1,3,5,7-tetrahydroxyxanthone, α/γ-mangostin, 4-hydroxyxanthone, 1,3,7-trihydroxyxanthone, 1,3,6,7-tetrahydroxyxanthone, 6-deoxyjacareubin, 2-(3-Methylbut-2-enyl)-1-,3,5-trihydroxyxanthone, 2-(3-Methylbut-2-enyl)-1,3,5,6-tetrahydroxyxanthone, 2-(3-hydroxy-3-methylbutyl)-1,3,5,6-tetrahydroxyxanthone, macluraxanthone, rubraxanthone, cudratricusxanthone A, euxanthone | [29,30,31,32,33,34,35] |
Endothelial protection | Inhibit protein glycation | mangostanaxanthones III, mangostanaxanthones IV, β-mangostin, garcinone E, rubraxanthone, α-mangostin, garcinone C, 9-hydroxycalabaxanthone | [36,37,38,39,40] |
Activates cellular repair functions | Isogentisin | [41] | |
Inhibit VSMC proliferation | Gentisin, 1-hydroxy-2,3,4,5-tetramethoxyxanthone, swerchirin, methylswertianin, gambogic acid | [42,43,44] | |
PVAT exosomes mitigate stress via NF-κB, Nrf2 | Mangiferin | [45,46,47,48,49,50] | |
Reduces monocyte adhesion, oxidative stress, and improves vasodilation | Demethylbellidifolin | [51,52] | |
Preserves relaxation, reduces oxidative damage, boosts NO | Daviditin A | [53] | |
Diuretic effects | Enhances diuresis, spares Ca2+, reduces crystals | 1,3,5,6-Tetrahydroxyxanthone | [54,55] |
Induces diuresis, increases sodium, chloride, calcium, protective against calcium oxalate crystals | 3-Demethyl-2-geranyl-4-prenylbellidypholine | [56,57] | |
Potassium-sparing, diuretic, prolongs kidney protection, promotes natriuresis, Ca2+ sparing, antioxidant | 1,5,8-Trihydroxy-4′,5′-dimethyl-2H-pyrano (2,3:3,2)-4-(3-methylbut-2-enyl) xanthone | [56] | |
Anti-hyperlipidemia and obesity | |||
Promoting lipid metabolism | Activating the PPARγ-LXRα-ABCA1/G1 pathway Activating AMPK pathway | Mangiferin | [58,59,60,61,62,63,64,65,66,67] |
Upregulation of PPARα and CPT1a, and downregulation of FATP2 and ACSL1 | Neomangiferin | [68] | |
Activating AMPK | 6′-O-acetyl mangiferin | [69] | |
Activates AMPK, Sirt1, and PPARγ, reducing inflammation and enhancing lipid catabolism. | α-Mangostin | [70,71,72,73,74] | |
Inhibitory activities against pancreatic lipase | α/β/γ-mangostin, 1-isomangostin, gartanin, garcinone D, 9-hydroxycalabaxanthone, smeathxanthone A, tovophyllin A, 8-deoxygartanin, mangostanin, 1,7-dihydroxy-3-methoxy-2-(3-methylbut-2-enyl) xanthen-9-one | [75,76,77] | |
Modulates Angptl3 and LPL | 3,4,5,6-Tetrahydroxyxanthone | [78,79] | |
Activates ABCA1, reduce PPARγ and C/EBPα expression | 1,3,5,8-Tetrahydroxyxanthone | [80,81] | |
Gut microbiota modulation, enhances bile acid synthesis and excretion | Bellidifolin | [82] | |
Inhibiting fatty acid synthesis | Activates mitochondrial biogenesis and oxidative pathways | Mangiferin | [83,84] |
Competing with acetyl-CoA and malonyl-CoA | Garcinone E | [85] | |
Inhibit fatty acid synthase enzyme | α/β/γ-Mangostin, 9-hydroxycalabaxanthone, 1,3,7-trihydroxyxanthone, 2,4,6,7-tetrahydroxyxanthone, gartanin, 8-deoxygartanin | [86,87,88] | |
Anti-atherosclerosis effect | Reducing oxidative modification of LDL cholesterol | 1-Methoxy-2,5,7-trihydroxyxanthone | [89] |
Blocking DNA synthesis, PDGFRβ activation, and downstream PLCγ1, Ras, and ERK1/2 signaling pathways | Cudratricusxanthone A | [90] | |
Anti-AGEs activity | 3-Methoxy-2-hydroxyxanthone | [91] | |
Modulating gut microbiota | Mangiferin | [92] | |
Promoting energy metabolism | Activates AMPK | Gambogic acid, α-mangostin | [93,94] |
Activates PKA-p38 MAPK-CREB signaling | Mangiferin (47) | [95,96] | |
Activates PPARδ and PPARα | γ-Mangostin | [97] | |
Anti-hyperglycemia | |||
Increasing insulin secretion | Activating IR, Pdx1, PI3K, Akt, ERK pathways, inhibiting IRS-1 phosphorylation | α-Mangostin | [98,99] |
Restore insulin secretion, improve pancreatic function | Gentiakochianin, 1,2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl | [100] | |
Protecting pancreatic β-cells, promoting their proliferation, reducing apoptosis | Mangiferin | [101,102,103,104,105] | |
Enhanced insulin release from pancreatic islets | Swerchirin | [106] | |
Enhancing insulin sensitivity | Activation of the Akt, AMPK signaling pathway Suppression of ER stress and NLRP3 inflammasome activation Inhibition of HIF-1α Modulation of the MAPK/NF-κB axis | Mangiferin | [107,108,109,110,111,112,113,114,115,116,117] |
Inhibiting the MAPK, NF-κB, and AP-1 signaling pathways | α/γ-Mangostin | [118,119,120] | |
PTP1B inhibition | Cudratricusxanthone N, 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone, cudratricusxanthone L, cudratricusxanthone A, cudraxanthone L, macluraxanthone B, cudracuspixanthone A, cudraxanthone D, cudraxanthone M cratoxanthone E, cratoxanthone F, cratoxanthone A, α/γ-mangostin, cratoxylone, cochinchinone Q, 7-geranyloxy-1,3-dihydroxyxanthone, pruniflorone S, cochinxanthone A, cochinchinoxanthone A/B/C/D, gambogic acid, moreollic acid, morellic acid, 10-methoxygambogenic acid, gambogenic acid, gambogoic acid, morellinol, 10-methoxygambogin | [121,122,123,124] | |
UpregulatingInsR, IRS-1, p-PI3K, and p-AKT, increasing the activities of hexokinase and pyruvate kinase | 12b-Hydroxy-des-D-garcigerin A | [125] | |
Activating MAPKs and NF-κB pathways | 1,3,6,7-Tetrahydroxy-8-prenylxanthone | [126] | |
Upregulating InsR-α, IRS-1, and PI3K expression | Methylswertianin, bellidifolin | [127,128] | |
Slowing digestion and absorption | α-glucosidase inhibition | 1,3,7,8-Tetrahydroxyxanthone, 1,3,5,8-tetrahydroxyxanthone, 2,3,6,8-tetrahydroxyxanthone-7C-(β-D-glucoside), 9-hydroxycalabaxanthone, mangostanol, mangostenone F, allanxanthone E, mangostingone, garcinone D, mangosenone G, cudraxanthone, 1,5,8-trihydroxy-3-methoxy-2-(3-methylbut-2-enyl)xanthone, 8-deoxygartanin, gartanin, smeathxanthone A, oxoethylmangostine, cowanol, garciniacowone L, 2-geranyl-1,3,7-trihydroxy-4-(3,3-dimethylallyl)-xanthone, mangostinone, cochinchinone G, 1-hydroxy-7-methoxyxanthone, forbexanthone, garcicowanones C, cowanol, norcowanin, mangiferin, neomangiferin, isomangiferin, cowagarcinone E, 1,3,7-trihydroxylxanthone, 1,3,7-trihydroxyl-2-methoxylxanthone, 1,5-dihydroxyl-2,6,8-trimethoxylxanthone, 1,3,7-trihydroxyl-4-methoxylxanthone, 1,7-dihydroxyl-3,4-dimethoxylxanthone, 1,7-dihydroxyl-4-methoxylxanthone, euxanthone, 1,3,7-trihydroxyl-2,8-dimethoxylxanthone, 2-hydroxyl-1,7-dimethoxylxanthone, 1,3,6-trihydroxyl-2,7-dimethoxylxanthone, 7-hydroxyl-1,2-dimethoxylxanthone, Garceduxanthone, 7-prenyljacareubin | [129,130,131,132,133,134,135,136,137,138,139,140,141] |
Inhibition of α-amylase and α-glucosidase enzymes | α/β/γ-Mangostin, 8-deoxygartanin, subelliptenone H, 12b-hydroxy-des-D-garcigerin A, garciniaxanthone B, garcigerin A | [142,143,144,145] | |
α-amylase inhibition | Mangostanaxanthone VIIII, mangostanaxanthone I, mangostanaxanthone II, mangostanaxanthone VII, garcixanthone D, garcinone C/E, garcimangostin A, garcixanthone A, gartanin, mangostanin, fuscaxanthone A | [146,147,148,149,150] | |
α-glucosidase and PTP1B inhibition | Oblongixanthone C/F/G/H, 1,3,6-trihydroxy-7-methoxy-2,5-bis(3-methylbut-2-enyl) xanthon, isocowanin, cowanin, cowanol, rubraxanthone, cowagarcinone E, norcowanin, oblongixanthones I/J, subelliptenone F, xanthochymusxanthone B | [151,152,153] | |
Enhancing glucose uptake | Activates PPARγ/GLUT4 and AMPK pathways | Mangiferin | [154,155,156,157,158] |
Upregulating AMPK phosphorylation | Norathyriol | [159] | |
Modulates expression of PPARγ, GLUT4, and leptin genes | α-Mangostin | [160] | |
Activating of PI3K/Akt and AMPK pathways | 12b-Hydroxy-des-d-garcigerrin, 1,2,5,6-tretrahydroxy-4-(1,1-dimethyl-2-propenyl)-7-(3-methyl-2-butenyl) xanthone, 1,5,6-trihydroxy-7,8-di(3-methyl-2-butenyl)-6′,6′-dimethylpyrano (2′,3′:3,4) xanthone | [161] | |
Anti-inflammation and oxidative stress related to hyperglycemia | Modulate H19/miR-140/HE4 pathway | α-Mangostin | [162] |
Inhibited AGE/RAGE pathway and NF-κB nuclear translocation; modulates the AGE-RAGE/MAPK pathways | Mangiferin | [163,164,165,166,167,168,169,170,171,172,173] | |
Others | dose depended hypoglycemic activity | Bellidifolin, swerchirin | [174,175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shataer, D.; Chen, S.; Wu, Y.; Liu, F.; Liu, H.; Lu, J.; Li, B.; Zhao, L.; Qiu, S.-X.; Jumai, A. Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms. Foods 2025, 14, 2344. https://doi.org/10.3390/foods14132344
Shataer D, Chen S, Wu Y, Liu F, Liu H, Lu J, Li B, Zhao L, Qiu S-X, Jumai A. Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms. Foods. 2025; 14(13):2344. https://doi.org/10.3390/foods14132344
Chicago/Turabian StyleShataer, Dilireba, Shaohua Chen, Yaodan Wu, Fen Liu, Haipeng Liu, Jing Lu, Bailin Li, Liyun Zhao, Sheng-Xiang Qiu, and Aikebaier Jumai. 2025. "Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms" Foods 14, no. 13: 2344. https://doi.org/10.3390/foods14132344
APA StyleShataer, D., Chen, S., Wu, Y., Liu, F., Liu, H., Lu, J., Li, B., Zhao, L., Qiu, S.-X., & Jumai, A. (2025). Edible Plant-Derived Xanthones as Functional Food Components for Metabolic Syndrome Mitigation: Bioactivities and Mechanisms. Foods, 14(13), 2344. https://doi.org/10.3390/foods14132344