Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6316 KB  
Article
L-Quebrachitol Attenuates RANKL-Induced Osteoclastogenesis and Bone Resorption in Ovariectomized Rat Model
by Purithat Rattajak, Aratee Aroonkesorn, Thanintorn Yodthong, Acharaporn Issuriya, Siriluk Maskaew, Carl Smythe, Rapepun Wititsuwannakul and Thanawat Pitakpornpreecha
Biomolecules 2026, 16(1), 168; https://doi.org/10.3390/biom16010168 - 20 Jan 2026
Viewed by 163
Abstract
Inositol is a natural carbocyclic sugar that plays an essential role in regulating the vital cellular functions of plants and animals. Existing research has explored methyl derivatives of inositol, reporting on their various biological activities, including antitumor, anti-inflammatory, and anti-osteoporosis activities. Our previous [...] Read more.
Inositol is a natural carbocyclic sugar that plays an essential role in regulating the vital cellular functions of plants and animals. Existing research has explored methyl derivatives of inositol, reporting on their various biological activities, including antitumor, anti-inflammatory, and anti-osteoporosis activities. Our previous study demonstrated that L-quebrachitol, a methyl derivative of inositol, enhances osteoblastogenesis and bone formation; however, its effect on osteoclastogenesis remains unclear. Consequently, we aimed to investigate the effect of L-quebrachitol on receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells, and bone resorption in an ovariectomized rat model. The results revealed that L-quebrachitol suppressed RANK-mediated signaling, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Fos proto-oncogene (cFOS) pathways, at both the gene and protein levels. Moreover, the critical transcription factor for osteoclastogenesis, nuclear factor of activated T cells c1 (NFATc1), was downregulated. Inhibition of osteoclast-associated marker genes encoding proteolytic enzymes, such as tartrate-resistant acid phosphatase (TRAP), matrix metallopeptidase 9 (MMP-9), and cathepsin K, led to reduced formation of TRAP-positive multinucleated cells and resorption pits. In addition, proteasome subunit alpha type-5 (PSMA5), which is involved in the degradation of the NF-κB inhibitor, was also suppressed. In particular, the animal study clearly supported the bone homeostasis property of the agent by increasing the BV/TV (bone volume/total volume) and Tb.Th (trabecular thickness) in ovariectomized rats. These findings demonstrate the dose-dependent inhibitory effect of L-quebrachitol on osteoclastogenesis through the modulation of RANK-mediated signaling pathways and prevention of bone loss in an animal model. However, further exploration of the potential of L-quebrachitol as an effective approach for osteoporosis is required. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

17 pages, 2992 KB  
Article
Farnesol, a Dietary Sesquiterpene, Attenuates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Oxidative Stress, Inflammation, and Apoptosis via Mediation of Cell Signaling Pathways in Rats
by Lujain Bader Eddin, Seenipandi Arunachalam, Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Mouza Ali Hasan AlQaishi Alshehhi, Amar Mahgoub, Rami Beiram and Shreesh Ojha
Int. J. Mol. Sci. 2026, 27(2), 811; https://doi.org/10.3390/ijms27020811 - 14 Jan 2026
Viewed by 175
Abstract
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory [...] Read more.
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory properties reported in various in vivo models. To evaluate the efficacy of FSL in the management of PD, Wistar rats were injected with ROT (2.5 mg/kg, i.p) and pretreated with FSL. Immunohistochemical staining measured tyrosine hydroxylase-positive cells in the substantia nigra and striatum. Western blotting was employed to determine protein expression of inflammatory, apoptotic, and autophagic markers. Our results indicate that FSL significantly protected against ROT-induced inflammation by suppressing microglial and astrocytic activation through the downregulation of Toll-Like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inhibitor of kappa B (IkB), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX), matrix metalloproteinase-9 (MMP-9) expression. FSL has also demonstrated an antioxidant effect by enhancing the activity of superoxide dismutase and catalase while reducing the level of Malondialdehyde and nitric oxide. Moreover, it restored homeostasis in ROT-induced imbalance between pro- and anti-apoptotic proteins. Impaired autophagy observed in ROT-injected rats was corrected by FSL treatment, which upregulated phosphorylated mammalian target of rapamycin (p-mTOR) expression and downregulated P62, an autophagosome marker. The protective effect of FSL was further supported by preserving the brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase in the brain. These findings demonstrate the neuroprotective ability of FSL and its potential to be developed as a pharmaceutical or nutraceutical agent for the prevention and treatment of PD by mitigating neuropathological changes observed in dopaminergic neurodegeneration. Full article
Show Figures

Figure 1

24 pages, 2708 KB  
Review
Berberine: A Negentropic Modulator for Multi-System Coordination
by Xiaolian Tian, Qingbo Chen, Yingying He, Yangyang Cheng, Mengyu Zhao, Yuanbin Li, Meng Yu, Jiandong Jiang and Lulu Wang
Int. J. Mol. Sci. 2026, 27(2), 747; https://doi.org/10.3390/ijms27020747 - 12 Jan 2026
Viewed by 303
Abstract
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity [...] Read more.
Berberine (BBR), a protoberberine alkaloid with a long history of medicinal use, has consistently demonstrated benefits in glucose–lipid metabolism and inflammatory balance across both preclinical and human studies. These diverse effects are not mediated by a single molecular target but by BBR’s capacity to restore network coordination among metabolic, immune, and microbial systems. At the core of this regulation is an AMP-activated Protein Kinase (AMPK)-centered mechanistic hub, integrating signals from insulin and nutrient sensing, Sirtuin 1/3 (SIRT1/3)-mediated mitochondrial adaptation, and inflammatory pathways such as nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-κB) and NOD-, LRR- and Pyrin Domain-containing Protein 3 (NLRP3). This hub is dynamically regulated by system-level inputs from the gut, mitochondria, and epigenome, which in turn strengthen intestinal barrier function, reshape microbial and bile-acid metabolites, improve redox balance, and potentially reverse the epigenetic imprint of metabolic stress. These interactions propagate through multi-organ axes, linking the gut, liver, adipose, and vascular systems, thus aligning local metabolic adjustments with systemic homeostasis. Within this framework, BBR functions as a negentropic modulator, reducing metabolic entropy by fostering a coordinated balance among these interconnected systems, thereby restoring physiological order. Combination strategies, such as pairing BBR with metformin, Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors, and agents targeting the microbiome or inflammation, have shown enhanced efficacy and substantial translational potential. Berberine ursodeoxycholate (HTD1801), an ionic-salt derivative of BBR currently in Phase III trials and directly compared with dapagliflozin, exemplifies the therapeutic promise of such approaches. Within the hub–axis paradigm, BBR emerges as a systems-level modulator that recouples energy, immune, and microbial circuits to drive multi-organ remodeling. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

20 pages, 4347 KB  
Article
Integrated ceRNA Network Analysis in Silica-Induced Pulmonary Fibrosis and Discovery of miRNA Biomarkers
by Jia Wang, Yuting Jin, Qianwei Chen, Fenglin Zhu and Min Mu
Toxics 2026, 14(1), 63; https://doi.org/10.3390/toxics14010063 - 9 Jan 2026
Viewed by 331
Abstract
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse [...] Read more.
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse model and transcriptomic sequencing to identify 2950 mRNAs, 461 lncRNAs, 81 miRNAs, and 44 circRNAs that were differentially expressed in lung tissue. Enrichment analysis revealed that these differentially expressed genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (Akt) signaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway, and tumor necrosis factor (TNF) signaling pathway. The constructed competing endogenous RNA (ceRNA) network highlighted extensive regulatory interactions among lncRNAs/circRNAs, miRNAs, and mRNAs. Human validation showed that the expression levels of hsa-miR-215-5p and hsa-miR-146b-5p were significantly upregulated in the peripheral blood of early-stage pneumoconiosis patients, while hsa-miR-485-5p was downregulated. Logistic regression analysis revealed that hsa-miR-215-5p (OR = 1.966, 95% CI: 1.6938–2.2796, p < 0.001) and hsa-miR-146b-5p (OR = 1.9367, 95% CI: 1.697–2.201, p < 0.001) were independent risk factors for pneumoconiosis (p < 0.001). ROC curve analysis showed that both miRNAs demonstrated good diagnostic efficacy for pneumoconiosis, with AUC values of 0.9563 and 0.8876, respectively. These results provide novel insights into the complex ceRNA regulatory network involved in silicosis pathogenesis and suggest potential early, non-invasive diagnostic biomarkers. Full article
(This article belongs to the Special Issue Effects of Air Pollutants on Cardiorespiratory Health)
Show Figures

Figure 1

30 pages, 2720 KB  
Review
Nutritional Regulation of Cardiac Metabolism and Function: Molecular and Epigenetic Mechanisms and Their Role in Cardiovascular Disease Prevention
by Lucia Capasso, Donato Mele, Rosaria Casalino, Gregorio Favale, Giulia Rollo, Giulia Verrilli, Mariarosaria Conte, Paola Bontempo, Vincenzo Carafa, Lucia Altucci and Angela Nebbioso
Nutrients 2026, 18(1), 93; https://doi.org/10.3390/nu18010093 - 27 Dec 2025
Viewed by 653
Abstract
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize [...] Read more.
Background: Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and are strongly influenced by dietary habits. Beyond caloric intake, nutrients act as molecular signals that regulate cardiac metabolism, mitochondrial function, inflammation, and epigenetic remodeling. Objectives: This review aims to synthesize current evidence on how dietary patterns and specific nutritional interventions regulate cardiac metabolism and function through interconnected molecular and epigenetic mechanisms, highlighting their relevance for cardiovascular disease prevention. Methods: A narrative review of the literature was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2006 and 2025. Experimental, translational, and clinical studies addressing diet-induced modulation of cardiac metabolic pathways, oxidative and inflammatory signaling, epigenetic regulation, and gut microbiota-derived metabolites were included. Results: The analyzed literature consistently shows that unbalanced diets rich in saturated fats and refined carbohydrates impair cardiac metabolic flexibility by disrupting key nutrient-sensing pathways, including AMP-activated protein kinase (AMPK), proliferator-activated receptor alpha (PPARα), mammalian target of rapamycin (mTOR), and sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (SIRT1/PGC-1α), leading to mitochondrial dysfunction, oxidative stress, chronic inflammation, and maladaptive remodeling. In contrast, cardioprotective dietary patterns, such as caloric restriction (CR), intermittent fasting (IF), and Mediterranean and plant-based diets, enhance mitochondrial efficiency, redox balance, and metabolic adaptability. These effects are mediated by coordinated activation of AMPK-SIRT1 signaling, suppression of mTOR over-activation, modulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, and favorable epigenetic remodeling involving DNA methylation, histone modifications, and non-coding RNAs. Emerging evidence also highlights the central role of gut microbiota-derived metabolites, particularly short-chain fatty acids, in linking diet to epigenetic and metabolic regulation of cardiac function. Conclusions: Diet quality emerges as a key determinant of cardiac metabolic health, acting through integrated molecular, epigenetic, and microbiota-mediated mechanisms. Targeted nutritional strategies can induce long-lasting cardioprotective metabolic and epigenetic adaptations, supporting the concept of diet as a modifiable molecular intervention. These findings provide a mechanistic rationale for integrating personalized nutrition into cardiovascular prevention and precision cardiology, complementing standard pharmacological therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Diet-Associated Cardiac Metabolism)
Show Figures

Figure 1

16 pages, 2307 KB  
Article
IL-1β Controls Proliferation, Apoptosis, and Necroptosis Through the PI3K/AKT/Src/NF-κB Pathway in Leukaemic Lymphoblasts
by Zitlal-Lin Victoria-Avila, Elba Reyes-Maldonado, María Lilia Domínguez-López, Jorge Vela-Ojeda, Aranza Lozada-Ruiz, Omar Rafael Alemán and Ruth Angélica Lezama
Biomedicines 2026, 14(1), 41; https://doi.org/10.3390/biomedicines14010041 - 24 Dec 2025
Viewed by 417
Abstract
Background: Chronic inflammation and the development of cancer are closely linked, with components that comprise the tumour microenvironment—including proinflammatory cytokines—exerting essential tumourigenic effects. These proinflammatory cytokines include IL-1β, which has been reported to be overexpressed in several cancers and shown to activate several [...] Read more.
Background: Chronic inflammation and the development of cancer are closely linked, with components that comprise the tumour microenvironment—including proinflammatory cytokines—exerting essential tumourigenic effects. These proinflammatory cytokines include IL-1β, which has been reported to be overexpressed in several cancers and shown to activate several signalling pathways. These pathways may involve kinases such as AKT (serine/threonine kinase) and Src (Proto-oncogene tyrosine-protein kinase), and have a broad capacity to activate nuclear factors, including NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells), which can regulate the transcription of genes encoding proteins such as cIAP1 (Cellular Inhibitor of Apoptosis Protein 1), Bcl-2 (B-cell lymphoma 2), and cyclin D1, thereby regulating processes like apoptosis and cell cycle inhibition. Objectives: The aim of this study was to investigate the role of IL-1β (Interleukin-1 beta) in regulating cell death and proliferation in RS4:11 leukaemic lymphoblasts via the PI3K (Phosphoinositide 3-kinase)/AKT/Src/NF-κB pathway using an in vitro experimental approach. Methods: We employed flow cytometry to determine the expression levels and phosphorylation status of various proteins; proliferation was assessed using the CCK-8 kit, and apoptosis was evaluated with the Annexin V kit. Results: Our findings indicate that the IL-1β-activated signalling pathway modulates these cellular processes in leukaemic lymphoblasts. Conclusions: We therefore conclude that IL-1β exerts significant effects on cell death and proliferation in leukaemic lymphoblasts through the PI3K/AKT/NF-κB pathway, with the study’s findings indicating that an inflammatory environment may promote such lymphoblasts to acquire neoplastic characteristics. As such, the proteins involved in the effects evaluated in this work could be considered as potential therapeutic targets for the treatment of Acute Lymphoblastic Leukaemia (ALL). Full article
Show Figures

Graphical abstract

29 pages, 3722 KB  
Review
Glial Cells in the Early Stages of Neurodegeneration: Pathogenesis and Therapeutic Targets
by Eugenia Ahremenko, Alexander Andreev, Danila Apushkin and Eduard Korkotian
Int. J. Mol. Sci. 2025, 26(24), 11995; https://doi.org/10.3390/ijms262411995 - 12 Dec 2025
Viewed by 1172
Abstract
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns [...] Read more.
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns (PAMPs)/damage-associated molecular patterns (DAMPs), toll-like receptor 4 (TLR4) activation, and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling. Crucially, many of these phenotypic transitions arise during the earliest stages of neurodegeneration, when glial dysfunction precedes overt neuronal loss and may act as a primary driver of disease onset. This review critically examines glial-centered hypotheses of neurodegeneration, with emphasis on their roles in early disease phases: (i) microglial polarization from an M2 neuroprotective state to an M1 proinflammatory state; (ii) NLRP3 inflammasome assembly via P2X purinergic receptor 7 (P2X7R)-mediated K+ efflux; (iii) a self-amplifying astrocyte–microglia–neuron inflammatory feedback loop; (iv) impaired microglial phagocytosis and extracellular-vesicle–mediated propagation of β-amyloid (Aβ) and tau; (v) astrocytic scar formation driven by aquaporin-4 (AQP4), matrix metalloproteinase-9 (MMP-9), glial fibrillary acidic protein (GFAP)/vimentin, connexins, and janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling; (vi) cellular reprogramming of astrocytes and NG2 glia into functional neurons; and (vii) mitochondrial dysfunction in glia, including Dynamin-related protein 1/Mitochondrial fission protein 1 (Drp1/Fis1) fission imbalance and dysregulation of the sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Sirt1/PGC-1α) axis. Promising therapeutic strategies target pattern-recognition receptors (TLR4, NLRP3/caspase-1), cytokine modulators (interleukin-4 (IL-4), interleukin-10 (IL-10)), signaling cascades (JAK2–STAT, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase–protein kinase B (PI3K–AKT), adenosine monophosphate-activated protein kinase (AMPK)), microglial receptors (triggering receptor expressed on myeloid cells 2 (TREM2)/spleen tyrosine kinase (SYK)/ DNAX-activating protein 10 (DAP10), siglec-3 (CD33), chemokine C-X3-C motif ligand 1/ CX3C motif chemokine receptor 1 (CX3CL1/CX3CR1), Cluster of Differentiation 200/ Cluster of Differentiation 200 receptor 1 (CD200/CD200R), P2X7R), and mitochondrial biogenesis pathways, with a focus on normalizing glial phenotypes rather than simply suppressing pathology. Interventions that restore neuroglial homeostasis at the earliest stages of disease may hold the greatest potential to delay or prevent progression. Given the complexity of glial phenotypes and molecular isoform diversity, a comprehensive, multitargeted approach is essential for mitigating Alzheimer’s disease and related neurodegenerative disorders. This review not only synthesizes pathogenesis but also highlights therapeutic opportunities, offering what we believe to be the first concise overview of the principal hypotheses implicating glial cells in neurodegeneration. Rather than focusing on isolated mechanisms, our goal is a holistic perspective—integrating diverse glial processes to enable comparison across interconnected pathological conditions. Full article
(This article belongs to the Special Issue Early Molecular Markers of Neurodegeneration)
Show Figures

Graphical abstract

15 pages, 797 KB  
Review
A Comprehensive Review: The Bidirectional Role of Sebum in Skin Health
by Dan Li, Ziyan Zhou, Xiaobin Yang, Qirong Zhang, Jiaming Xu, Christos C. Zouboulis, Qi Xiang and Shu Zhang
Bioengineering 2025, 12(12), 1333; https://doi.org/10.3390/bioengineering12121333 - 6 Dec 2025
Viewed by 2132
Abstract
Sebum plays a dual role in skin homeostasis, maintaining barrier function and providing antimicrobial defense. However, its dysregulation drives the pathophysiology of common skin diseases. This review explains that abnormal sebum secretion promotes acne vulgaris by inducing follicular occlusion and Cutibacterium acnes ( [...] Read more.
Sebum plays a dual role in skin homeostasis, maintaining barrier function and providing antimicrobial defense. However, its dysregulation drives the pathophysiology of common skin diseases. This review explains that abnormal sebum secretion promotes acne vulgaris by inducing follicular occlusion and Cutibacterium acnes (C. acnes) proliferation, while altered composition impairs the epidermal barrier. Key factors such as high-glycemic diets, androgen fluctuations, and environmental conditions significantly influence sebaceous gland activity. The underlying molecular mechanisms involve inflammatory and hormonal pathways, including dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. We conducted a systematic literature search using keywords related to sebum physiology and pathology. This review also discusses emerging therapeutic targets and the potential of advanced sebaceous gland models for future research. This synthesis provides a theoretical foundation for developing targeted interventions in dermatology and cosmetics. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

53 pages, 4688 KB  
Review
Integrative Neuroimmune Role of the Parasympathetic Nervous System, Vagus Nerve and Gut Microbiota in Stress Modulation: A Narrative Review
by Natalia Kurhaluk, Renata Kołodziejska, Piotr Kamiński and Halina Tkaczenko
Int. J. Mol. Sci. 2025, 26(23), 11706; https://doi.org/10.3390/ijms262311706 - 3 Dec 2025
Viewed by 3442
Abstract
It has been demonstrated that prolonged exposure to stress engenders a plethora of neuropsychiatric, immune and metabolic disorders. However, its pathophysiology transcends the conventional hypothalamic–pituitary–adrenal (HPA) axis. This review addresses the central question of how integrated neural and microbial pathways regulate stress responses [...] Read more.
It has been demonstrated that prolonged exposure to stress engenders a plethora of neuropsychiatric, immune and metabolic disorders. However, its pathophysiology transcends the conventional hypothalamic–pituitary–adrenal (HPA) axis. This review addresses the central question of how integrated neural and microbial pathways regulate stress responses and resilience. We present a model in which the parasympathetic nervous system (particularly the vagus nerve) and the gut microbiota interact to form a bidirectional neuroimmune network that modulates the HPA axis, immune function, neurotransmitter balance, and metabolic adaptation. Key molecular pathways include nitric oxide synthesis via the classical nitric oxide synthase (NOS)-dependent and microbiota-mediated nitrate–nitrite routes, inducible nitric oxide synthase (iNOS) regulation, nuclear factor erythroid 2-related factor 2 (Nrf2) signalling, lysosomal function, autophagy and the cholinergic anti-inflammatory reflex. Other pathways include the gamma-aminobutyric acid (GABA) and serotonin (5-HT) systems, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signalling, polyamine metabolism and peroxisome proliferator-activated receptor gamma (PPARγ). Intermittent hypoxia training (IHT) enhances mitochondrial function, oxidative stress responses, autonomic balance and gut microbiota composition. This promotes parasympathetic activity and stress resilience that is tailored to the individual. These adaptations support the concept of personalised stress response profiles based on hypoxic adaptability. Clinical implications include combining IHT with vagus nerve stimulation, probiotics, dietary strategies, and stress reduction techniques. Monitoring vagal tone and microbiota composition could also serve as predictive biomarkers for personalised interventions in stress-related disorders. This integrative framework highlights the therapeutic potential of targeting the parasympathetic system and the gut microbiota to modulate stress. Full article
Show Figures

Figure 1

31 pages, 1080 KB  
Review
Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging?
by Corina Andrei, Ciprian Pușcașu, George Mihai Nitulescu and Anca Zanfirescu
Int. J. Mol. Sci. 2025, 26(23), 11305; https://doi.org/10.3390/ijms262311305 - 22 Nov 2025
Viewed by 856
Abstract
Chronic low-grade inflammation, or “inflammaging,” is a defining feature of aging and a key driver of functional decline. Among innate immune sensors, Toll-like receptors (TLRs) are central mediators linking cellular stress to sterile inflammation, yet their modulation in physiological aging remains largely overlooked. [...] Read more.
Chronic low-grade inflammation, or “inflammaging,” is a defining feature of aging and a key driver of functional decline. Among innate immune sensors, Toll-like receptors (TLRs) are central mediators linking cellular stress to sterile inflammation, yet their modulation in physiological aging remains largely overlooked. This review bridges that gap by integrating molecular and clinical evidence on age-associated TLR remodeling and summarizing preclinical data on natural compounds that suppress TLR signaling. Across diverse inflammatory models, phytochemicals such as curcumin, quercetin, resveratrol, baicalin, and glycyrrhizin consistently downregulate Toll-like receptor 2- (TLR2-), Toll-like receptor 4- (TLR4-), and Toll-like receptor 9- (TLR9-) dependent myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) pathways, lowering interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF-α) while enhancing IL-10. These mechanisms mirror the molecular signature of inflammaging, supporting TLRs as actionable targets for restoring immune balance. Collectively, the evidence positions natural TLR modulators as a promising, yet untapped, avenue for promoting healthy aging and extending healthspan. Full article
(This article belongs to the Special Issue Anti-Inflammatory and Anti-Oxidant Effects of Extracts from Plants)
Show Figures

Graphical abstract

29 pages, 1818 KB  
Review
Fungal Polysaccharides as Modulators of Molecular Pathways in Liver Health
by Rafał Szelenberger and Magdalena Więckowska
Molecules 2025, 30(22), 4384; https://doi.org/10.3390/molecules30224384 - 13 Nov 2025
Viewed by 1090
Abstract
Fungal polysaccharides represent a structurally diverse group of bioactive compounds with increasing recognition for their hepatoprotective potential. This review synthesizes current evidence on their roles in the prevention and treatment of liver diseases, including alcohol-related liver disease (ALD), metabolic dysfunction-associated fatty liver disease [...] Read more.
Fungal polysaccharides represent a structurally diverse group of bioactive compounds with increasing recognition for their hepatoprotective potential. This review synthesizes current evidence on their roles in the prevention and treatment of liver diseases, including alcohol-related liver disease (ALD), metabolic dysfunction-associated fatty liver disease (MAFLD), or toxin-induced injury. The analyzed studies demonstrate that polysaccharides isolated from species such as Lentinula edodes, Grifola frondosa, Ganoderma lucidum, Coriolus versicolor, and Cordyceps militaris exert beneficial effects by reducing oxidative stress, attenuating inflammation, and improving metabolic homeostasis. Mechanistically, these effects are mediated through the regulation of multiple signaling pathways, including Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nuclear factor erythroid 2–related factor 2 (Nrf2), and NOD-like receptor protein 3 (NLRP3) inflammasome, as well as modulation of gut microbiota. Fungal polysaccharides were also shown to improve hepatic function by lowering serum biomarkers of liver injury and ameliorating histopathological damage. Presented evidence indicates that fungal polysaccharides possess considerable potential as multifunctional hepatoprotective agents, highlighting the need for further mechanistic insight and clinical validation. Full article
Show Figures

Figure 1

21 pages, 524 KB  
Review
Mechanistic Insights into the Anti-Inflammatory and Anti-Proliferative Effects of Selected Medicinal Plants in Endometriosis
by Oliwia Burdan, Natalia Picheta, Julia Piekarz, Karolina Daniłowska, Filip Gajewski, Krzysztof Kułak and Rafał Tarkowski
Int. J. Mol. Sci. 2025, 26(22), 10947; https://doi.org/10.3390/ijms262210947 - 12 Nov 2025
Viewed by 1674
Abstract
Endometriosis involves oestrogen-dependent chronic inflammation and the abnormal proliferation of ectopic endometrial tissue. Conventional hormonal therapies suppress systemic oestrogen, but do not fully address local oxidative and inflammatory signalling. This review provides a mechanistic synthesis of recent molecular evidence. This evidence is on [...] Read more.
Endometriosis involves oestrogen-dependent chronic inflammation and the abnormal proliferation of ectopic endometrial tissue. Conventional hormonal therapies suppress systemic oestrogen, but do not fully address local oxidative and inflammatory signalling. This review provides a mechanistic synthesis of recent molecular evidence. This evidence is on four FDA-recognized (Food and Drug Administration) medicinal plants. These are Curcuma longa, Zingiber officinale, Glycyrrhiza glabra, and Silybum marianum. The review highlights their capacity to modulate key intracellular pathways. These pathways are implicated in endometriosis. The review covers the integration of phytochemical-specific actions within NF-κB- (nuclear factor kappa-light-chain-enhancer of activated B cells), COX-2-(Cyclooxygenase-2), PI3K/Akt-(PI3K/Akt signaling pathway), Nrf2/ARE-(Nuclear factor erythroid 2–related factor 2) and ERβ-(Estrogen receptor beta) mediated networks, which jointly regulate cytokine secretion, apoptosis, angiogenesis and redox balance in endometrial lesions. Curcumin downregulates COX-2 and aromatase while activating Nrf2 signalling, shogaol from ginger suppresses prostaglandin synthesis and induces caspase-dependent apoptosis, isoliquiritigenin from liquorice inhibits HMGB1-TLR4–NF-κB (High Mobility Group Box 1, Toll-like receptor 4) activation, and silymarin from milk thistle reduces IL-6 (Interleukin-6) and miR-155 (microRNA-155) expression while enhancing antioxidant capacity. Together, these phytochemicals demonstrate pharmacodynamic complementarity with hormonal agents by targeting local inflammatory and oxidative circuits rather than systemic endocrine axes. This mechanistic framework supports the rational integration of phytotherapy into endometriosis management and identifies redox-inflammatory signalling nodes as future translational targets. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 3169 KB  
Article
Dehydroandrographolide Alleviates Oxidative Stress, Inflammatory Response, and Pyroptosis in DSS-Induced Colitis Mice by Modulating Nrf2 Signaling Pathway
by Meifen Wang, Zhenyu Li, Xinghua Lei, Ziyue Yang, Shuixing Yu and Guangxin Chen
Biomolecules 2025, 15(11), 1580; https://doi.org/10.3390/biom15111580 - 10 Nov 2025
Viewed by 724
Abstract
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated [...] Read more.
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated Kinase (Erk), c-Jun N-terminal Kinase (Jnk), p38 Mitogen-Activated Protein Kinase (P38), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 activation, and downregulated interleukin-6 (il-6) and interleukin-1β (il-1β) mRNA. It also had antioxidant effects by upregulating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (Nqo-1) and heme oxygenase-1 (Ho-1), promoting protein kinase B (Akt) and 5′-adenosine monophosphate-activated protein kinase-α1 (Ampk-α1) phosphorylation. DA decreased cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNos) levels and alleviated intracellular reactive oxygen species (ROS) accumulation. In vivo, DA alleviated DSS-induced colitis in wild type (WT) mice by improving weight loss, disease activity index, colonic inflammation, and oxidative stress. The beneficial effects were linked to inhibiting Erk, Jnk, and P38 activation and enhancing Nrf2 signaling pathway. DA inhibited NOD-like receptor family pyrin domain-containing 3 (Nlrp3) inflammasome-mediated pryoptosis. However, DA’s protective effects were abolished in DSS-induced nrf2−/− mice, suggesting its efficacy depends on Nrf2 signaling. Overall, DA alleviates oxidative stress, inflammatory responses, and pyroptosis in experimental colitis mice mainly by activating Nrf2 signaling pathway, highlighting its potential as a promising therapeutic option for inflammatory bowel disease. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 3rd Edition)
Show Figures

Figure 1

15 pages, 1651 KB  
Article
Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study
by Spyridon Papagiannis, Zinon Kokkalis, George Kyriakopoulos, Antonia Petropoulou, Irini Tatani, Christiana Kotsia, Panagiotis Megas and Constantinos Stathopoulos
J. Pers. Med. 2025, 15(11), 508; https://doi.org/10.3390/jpm15110508 - 28 Oct 2025
Viewed by 551
Abstract
Background/Objectives: Aseptic loosening (AL) is among the most common causes of late failure following total hip arthroplasty (THA), often necessitating complex revision surgery. Current diagnostic tools, mainly based on clinical and radiological findings, are primarily able to identify advanced changes of periprosthetic osteolysis [...] Read more.
Background/Objectives: Aseptic loosening (AL) is among the most common causes of late failure following total hip arthroplasty (THA), often necessitating complex revision surgery. Current diagnostic tools, mainly based on clinical and radiological findings, are primarily able to identify advanced changes of periprosthetic osteolysis (PPOL). Therefore, early detection of AL remains a challenge. Circulating microRNAs (miRNAs) have emerged as promising, minimally invasive biomarkers in musculoskeletal disorders. This study investigates the expression of inflammation-related miRNAs let-7i-5p, let-7e-5p, miR-15a-5p, miR-30a-3p and miR-130a-3p in patients with confirmed AL after THA to evaluate their potential role in AL. Methods: AL patients undergoing revision were compared with asymptomatic post-THA individuals and controls with degenerative osteoarthritis. Preoperative, peripheral blood samples were collected; total RNA was extracted; and quantitative real-time PCR (qRT-PCR) was performed to quantify miRNA expression. The relative expression of miRNAs was calculated using the 2–ΔΔCt method after proper normalization of Ct values. Statistical analysis assessed differences between groups. Results: The under investigation miRNAs exhibited distinct expression patterns. Several targets demonstrated significant downregulation in AL patients, suggesting a potential link to inflammatory and osteolytic pathways like Toll-like receptor 4 (TLR4)–Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, NLRP3 inflammasome activation and macrophage polarization. Conclusions: The observed alterations in circulating miRNAs support their capability as biomarkers for early detection of AL following THA. Larger cohorts could facilitate translation into routine clinical diagnostics. Full article
(This article belongs to the Section Omics/Informatics)
Show Figures

Figure 1

16 pages, 5190 KB  
Article
Terminalia chebula Fruit Extract Ameliorates Peripheral Edema by Inhibiting NF-κB and MAPK Signaling Pathways
by Sang-Hyup Lee, Sang-Yoon Kim, Yun-Gu Gwon, Su-Ha Lee, Ji-Soo Jeong, Je-Won Ko, Tae-Won Kim and Bong-Keun Choi
Int. J. Mol. Sci. 2025, 26(20), 9965; https://doi.org/10.3390/ijms26209965 - 13 Oct 2025
Viewed by 1005
Abstract
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. [...] Read more.
Peripheral edema is a pathological condition caused by abnormal fluid accumulation in the interstitial space due to elevated vascular permeability and inflammation. This study evaluated the therapeutic efficacy of Terminalia chebula fruit extract (TCE) in inflammation-induced peripheral edema and clarified its molecular mechanisms. Using hydrogen peroxide (H2O2)-stimulated human umbilical vein endothelial cells (HUVECs), TCE was tested for effects on cell viability, inflammatory gene expression, intracellular reactive oxygen species, endothelial barrier integrity, and vascular endothelial growth factor (VEGF)-induced migration. Its influence on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined. In vivo, TCE was assessed in acetic acid-induced peritoneal vascular permeability and carrageenan-induced paw edema models, followed by histological analysis and serum tumor necrosis factor-α (TNF-α) measurement. TCE restored cell viability (76.2% to 94.8%), reduced TNF, IL6, and PTGS2 mRNA expression, and decreased reactive oxygen species by 27.2%. It enhanced barrier integrity, increased transendothelial electrical resistance, and inhibited VEGF-induced migration. TCE suppressed NF-κB and MAPK activation. In vivo, TCE reduced Evans blue extravasation by 41.6% and paw edema by 67.5%. Histology showed reduced dermal thickening and inflammatory infiltration, and serum TNF-α levels were lowered. TCE attenuates peripheral edema by preserving endothelial barrier function and suppressing inflammatory signaling, supporting its potential as a therapeutic agent for inflammation-associated vascular dysfunction and edema. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop