Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging?
Abstract
1. Introduction
2. TLRs—Viable Targets for Inflammaging
2.1. Genomic and Transcriptomic Evidence in Aging
2.2. Observational Studies: TLR Expression, Inflammation, and Frailty
2.3. Endogenous TLR Agonists (DAMPs) Amplifying Inflammaging
2.3.1. mtDNA
2.3.2. HMGB1 and TLR4
2.3.3. S100 Proteins and TLR Signaling
2.3.4. HSPs and Other DAMPs
3. Natural Modulators of TLRs
- -
- inhibition of canonical TLR4/MyD88/NF-κB signaling. Nearly all compounds (e.g., baicalin, curcumin, berberine, paeoniflorin, quercetin) suppress the MyD88–IRAK–TRAF6 axis, leading to reduced phosphorylation and nuclear translocation of NF-κB p65, and thereby lowering transcription of pro-inflammatory cytokines [70,73,74,77,80].
- -
- -
- -
- stabilization of IκB-α and prevention of NF-κB nuclear translocation. This common mechanistic endpoint prevents the persistent transcription of inflammatory genes.
- -
- -
4. Discussion
- (i)
- interrupting DAMP–TLR4 feedback loops,
- (ii)
- reducing baseline NF-κB activation and IL-6/TNF output that drive frailty and metabolic decline,
- (iii)
- preserving redox balance to prevent further DAMP release, and
- (iv)
- Aging-specific translational trials evaluating natural TLR modulators with endpoints such as cytokine profiles (IL-6, IL-1β, TNF-α), circulating DAMPs (mtDNA, HMGB1), and frailty or resilience indices.
- Mechanistic biomarker development, including ex vivo TLR responsiveness, to assess both basal and inducible immune function.
- Combination strategies integrating TLR modulation with DAMP-lowering or senolytic interventions.
- Selective targeting approaches balancing inflammation control with immune competence.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef]
- Molteni, M.; Gemma, S.; Rossetti, C. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation. Mediat. Inflamm. 2016, 2016, 6978936. [Google Scholar] [CrossRef]
- Pascual, M.; Calvo-Rodriguez, M.; Núñez, L.; Villalobos, C.; Ureña, J.; Guerri, C. Toll-like Receptors in Neuroinflammation, Neurodegeneration, and Alcohol-induced Brain Damage. IUBMB Life 2021, 73, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, Y.; Sun, X.; Zeh, H.J.; Kang, R.; Lotze, M.T.; Tang, D. DAMPs, Ageing, and Cancer: The ‘DAMP Hypothesis. ’ Ageing Res. Rev. 2015, 24, 3–16. [Google Scholar] [CrossRef]
- Zanini, G.; Selleri, V.; Lopez Domenech, S.; Malerba, M.; Nasi, M.; Mattioli, A.V.; Pinti, M. Mitochondrial DNA as Inflammatory DAMP: A Warning of an Aging Immune System? Biochem. Soc. Trans. 2023, 51, 735–745. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Panda, A.; Qian, F.; Mohanty, S.; van Duin, D.; Newman, F.K.; Zhang, L.; Chen, S.; Towle, V.; Belshe, R.B.; Fikrig, E.; et al. Age-Associated Decrease in TLR Function in Primary Human Dendritic Cells Predicts Influenza Vaccine Response. J. Immunol. 2010, 184, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, A.; Esposo, M.; Kaushal, K.; Tay, J.; Osann, K.; Agrawal, S.; Gupta, S.; Agrawal, A. Age-Associated Impaired Plasmacytoid Dendritic Cell Functions Lead to Decreased CD4 and CD8 T Cell Immunity. Age 2011, 33, 363–376. [Google Scholar] [CrossRef]
- Qian, F.; Guo, X.; Wang, X.; Yuan, X.; Chen, S.; Malawista, S.E.; Bockenstedt, L.K.; Allore, H.G.; Montgomery, R.R. Reduced Bioenergetics and Toll-like Receptor 1 Function in Human Polymorphonuclear Leukocytes in Aging. Aging 2014, 6, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Wang, X.; Zhang, L.; Chen, S.; Piecychna, M.; Allore, H.; Bockenstedt, L.; Malawista, S.; Bucala, R.; Shaw, A.C.; et al. Age-associated Elevation in TLR5 Leads to Increased Inflammatory Responses in the Elderly. Aging Cell 2012, 11, 104–110. [Google Scholar] [CrossRef]
- Perkins, R.K.; Lavin, K.M.; Raue, U.; Jemiolo, B.; Trappe, S.W.; Trappe, T.A. Effects of Aging and Lifelong Aerobic Exercise on Expression of Innate Immune Components in Skeletal Muscle of Women. J. Appl. Physiol. 2024, 136, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lertwattanarak, R.; Garduno, J.d.J.; Galeana, J.J.; Li, J.; Zamarripa, F.; Lancaster, J.L.; Mohan, S.; Hussey, S.; Musi, N. Elevated Muscle TLR4 Expression and Metabolic Endotoxemia in Human Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 232–246. [Google Scholar] [CrossRef]
- Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.; Jury, J.; Foley, K.P.; et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe 2017, 21, 455–466.e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Li, H.; Wang, H.; Zhang, T.; Hutchinson, M.R.; Yin, H.; Wang, X. Small-Molecule Modulators of Toll-like Receptors. Acc. Chem. Res. 2020, 53, 1046–1055. [Google Scholar] [CrossRef]
- Gao, W.; Xiong, Y.; Li, Q.; Yang, H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front. Physiol. 2017, 8, 508. [Google Scholar] [CrossRef]
- Azam, S.; Jakaria, M.; Kim, I.-S.; Kim, J.; Haque, M.E.; Choi, D.-K. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front. Immunol. 2019, 10, 1000. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Kao, C.-L.; Liu, C.-M. The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway. Int. J. Mol. Sci. 2018, 19, 2729. [Google Scholar] [CrossRef]
- Shaw, A.C.; Panda, A.; Joshi, S.R.; Qian, F.; Allore, H.G.; Montgomery, R.R. Dysregulation of Human Toll-like Receptor Function in Aging. Ageing Res. Rev. 2011, 10, 346–353. [Google Scholar] [CrossRef]
- Dunston, C.R.; Griffiths, H.R. The Effect of Ageing on Macrophage Toll-like Receptor-Mediated Responses in the Fight against Pathogens. Clin. Exp. Immunol. 2010, 161, 407–416. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, H.; Lee, J.-H.; Hwangbo, C. Toll-like Receptor 4 (TLR4): New Insight Immune and Aging. Immun. Ageing 2023, 20, 67. [Google Scholar] [CrossRef]
- Bailey, K.L.; Smith, L.M.; Heires, A.J.; Katafiasz, D.M.; Romberger, D.J.; LeVan, T.D. Aging Leads to Dysfunctional Innate Immune Responses to TLR2 and TLR4 Agonists. Aging Clin. Exp. Res. 2019, 31, 1185–1193. [Google Scholar] [CrossRef]
- Calabria, E.; Mazza, E.M.C.; Dyar, K.A.; Pogliaghi, S.; Bruseghini, P.; Morandi, C.; Salvagno, G.L.; Gelati, M.; Guidi, G.C.; Bicciato, S.; et al. Aging: A Portrait from Gene Expression Profile in Blood Cells. Aging 2016, 8, 1802–1821. [Google Scholar] [CrossRef] [PubMed]
- Bickler, S.W.; Cauvi, D.M.; Fisch, K.M.; Prieto, J.M.; Sykes, A.G.; Thangarajah, H.; Lazar, D.A.; Ignacio, R.C.; Gerstmann, D.R.; Ryan, A.F.; et al. Extremes of Age Are Associated with Differences in the Expression of Selected Pattern Recognition Receptor Genes and ACE2, the Receptor for SARS-CoV-2: Implications for the Epidemiology of COVID-19 Disease. BMC Med. Genom. 2021, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, T.U.; Wilkinson, P.A.; Cameron, M.J.; Ghneim, K.; Chiang, C.; Wertheimer, A.M.; Hiscott, J.B.; Nikolich-Zugich, J.; Haddad, E.K. Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists. J. Immunol. 2017, 199, 1405–1417. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, Y.; Li, B.; Qiu, X.; Hu, H.; Zhang, X.; Lu, Z.; Zheng, F. Transcriptional Characteristics and Functional Validation of Three Monocyte Subsets during Aging. Immun. Ageing 2023, 20, 50. [Google Scholar] [CrossRef]
- Lissner, M.M.; Thomas, B.J.; Wee, K.; Tong, A.-J.; Kollmann, T.R.; Smale, S.T. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults. PLoS ONE 2015, 10, e0132061. [Google Scholar] [CrossRef]
- Harris, T.B.; Ferrucci, L.; Tracy, R.P.; Corti, M.C.; Wacholder, S.; Ettinger, W.H.; Heimovitz, H.; Cohen, H.J.; Wallace, R. Associations of Elevated Interleukin-6 and C-Reactive Protein Levels with Mortality in the Elderly. Am. J. Med. 1999, 106, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Dalmaroni, M.J.; Gerswhin, M.E.; Adamopoulos, I.E. The Critical Role of Toll-like Receptors—From Microbial Recognition to Autoimmunity: A Comprehensive Review. Autoimmun. Rev. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Compté, N.; Zouaoui Boudjeltia, K.; Vanhaeverbeek, M.; De Breucker, S.; Tassignon, J.; Trelcat, A.; Pepersack, T.; Goriely, S. Frailty in Old Age Is Associated with Decreased Interleukin-12/23 Production in Response to Toll-Like Receptor Ligation. PLoS ONE 2013, 8, e65325. [Google Scholar] [CrossRef][Green Version]
- Verschoor, C.P.; Johnstone, J.; Millar, J.; Parsons, R.; Lelic, A.; Loeb, M.; Bramson, J.L.; Bowdish, D.M.E. Alterations to the Frequency and Function of Peripheral Blood Monocytes and Associations with Chronic Disease in the Advanced-Age, Frail Elderly. PLoS ONE 2014, 9, e104522. [Google Scholar] [CrossRef]
- Reitsema, R.D.; Kumawat, A.K.; Hesselink, B.-C.; van Baarle, D.; van Sleen, Y. Effects of Ageing and Frailty on Circulating Monocyte and Dendritic Cell Subsets. NPJ Aging 2024, 10, 17. [Google Scholar] [CrossRef]
- Lukyanova, S.O.; Artemyeva, O.V.; Strazhesko, I.D.; Nasaeva, E.D.; Grechenko, V.V.; Gankovskaya, L.V. Expression of TLR2, IL-1β, and IL-10 Genes as a Possible Factor of Successful or Pathological Aging in Nonagenarians. Bull. Exp. Biol. Med. 2024, 176, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Nidadavolu, L.S.; Feger, D.; Chen, D.; Wu, Y.; Grodstein, F.; Gross, A.L.; Bennett, D.A.; Walston, J.D.; Oh, E.S.; Abadir, P.M. Associations between Circulating Cell-Free Mitochondrial DNA, Inflammatory Markers, and Cognitive and Physical Outcomes in Community Dwelling Older Adults. Immun. Ageing 2023, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Guerra, F.; Calvani, R.; Bucci, C.; Lo Monaco, M.R.; Bentivoglio, A.R.; Coelho-Júnior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial Dysfunction and Aging: Insights from the Analysis of Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 805. [Google Scholar] [CrossRef]
- Gomez, C.R. Role of Heat Shock Proteins in Aging and Chronic Inflammatory Diseases. Geroscience 2021, 43, 2515–2532. [Google Scholar] [CrossRef]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef] [PubMed]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release Mechanisms of Major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Chen, Z.; Behrendt, R.; Wild, L.; Schlee, M.; Bode, C. Cytosolic Nucleic Acid Sensing as Driver of Critical Illness: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2025, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Yang, J.; Guo, Y.; Liu, Y.; Zhong, X. Altered Levels of Circulating Mitochondrial DNA in Elderly People with Sarcopenia: Association with Mitochondrial Impairment. Exp. Gerontol. 2022, 163, 111802. [Google Scholar] [CrossRef]
- De Gaetano, A.; Solodka, K.; Zanini, G.; Selleri, V.; Mattioli, A.V.; Nasi, M.; Pinti, M. Molecular Mechanisms of MtDNA-Mediated Inflammation. Cells 2021, 10, 2898. [Google Scholar] [CrossRef]
- Tao, G.; Liao, W.; Hou, J.; Jiang, X.; Deng, X.; Chen, G.; Ding, C. Advances in Crosstalk among Innate Immune Pathways Activated by Mitochondrial DNA. Heliyon 2024, 10, e24029. [Google Scholar] [CrossRef]
- Albuquerque-Souza, E.; Crump, K.E.; Rattanaprukskul, K.; Li, Y.; Shelling, B.; Xia-Juan, X.; Jiang, M.; Sahingur, S.E. TLR9 Mediates Periodontal Aging by Fostering Senescence and Inflammaging. J. Dent. Res. 2022, 101, 1628–1636. [Google Scholar] [CrossRef]
- Behl, T.; Sharma, E.; Sehgal, A.; Kaur, I.; Kumar, A.; Arora, R.; Pal, G.; Kakkar, M.; Kumar, R.; Bungau, S. Expatiating the Molecular Approaches of HMGB1 in Diabetes Mellitus: Highlighting Signalling Pathways via RAGE and TLRs. Mol. Biol. Rep. 2021, 48, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wu, Y.; Wei, A.; Nie, H.; Hui, S.; Liu, C.; Deng, T. Serum HMGB1 as a Predictor for Postoperative Delirium in Elderly Patients Undergoing Total Hip Arthroplasty Surgery. Adv. Clin. Exp. Med. 2024, 34, 361–368. [Google Scholar] [CrossRef]
- Jia, Y.; Li, D.; Yu, J.; Liu, Y.; Li, F.; Li, W.; Zhang, Q.; Gao, Y.; Zhang, W.; Zeng, Z.; et al. Subclinical Cardiovascular Disease and Frailty Risk: The Atherosclerosis Risk in Communities Study. BMC Geriatr. 2022, 22, 321. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Liu, H.; Chen, F.; Wang, H.; Chen, S.; Xie, J.; Zheng, Z.; Li, Z. Alarmins S100A8/A9 Promote Intervertebral Disc Degeneration and Inflammation-Related Pain in a Rat Model through Toll-like Receptor-4 and Activation of the NF-ΚB Signaling Pathway. Osteoarthr. Cartil. 2022, 30, 998–1011. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tsoporis, J.N.; Jia, S.-H.; dos Santos, C.C.; Parker, T.G.; Marshall, J.C. Toll-Like Receptors, Associated Biochemical Signaling Networks, and S100 Ligands. Shock 2021, 56, 167–177. [Google Scholar] [CrossRef]
- Bockstiegel, J.; Engelhardt, J.; Weindl, G. P2X7 Receptor Activation Leads to NLRP3-Independent IL-1β Release by Human Macrophages. Cell Commun. Signal. 2023, 21, 335. [Google Scholar] [CrossRef]
- Fisch, D.; Zhang, T.; Sun, H.; Ma, W.; Tan, Y.; Gygi, S.P.; Higgins, D.E.; Kagan, J.C. Molecular Definition of the Endogenous Toll-like Receptor Signalling Pathways. Nature 2024, 631, 635–644. [Google Scholar] [CrossRef]
- Mushenkova, N.V.; Bezsonov, E.E.; Orekhova, V.A.; Popkova, T.V.; Starodubova, A.V.; Orekhov, A.N. Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines 2021, 9, 915. [Google Scholar] [CrossRef]
- Wicherska-Pawłowska, K.; Wróbel, T.; Rybka, J. Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int. J. Mol. Sci. 2021, 22, 13397. [Google Scholar] [CrossRef]
- Salminen, A.; Kauppinen, A.; Kaarniranta, K. Emerging Role of NF-ΚB Signaling in the Induction of Senescence-Associated Secretory Phenotype (SASP). Cell Signal 2012, 24, 835–845. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, N.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Amphiregulin Induces INOS and COX-2 Expression through NF-ΚB and MAPK Signaling in Hepatic Inflammation. Mediators Inflamm. 2023, 2023, 2364121. [Google Scholar] [CrossRef]
- Perkins, D.J.; Richard, K.; Hansen, A.-M.; Lai, W.; Nallar, S.; Koller, B.; Vogel, S.N. Autocrine–Paracrine Prostaglandin E2 Signaling Restricts TLR4 Internalization and TRIF Signaling. Nat. Immunol. 2018, 19, 1309–1318. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
- Bleve, A.; Motta, F.; Durante, B.; Pandolfo, C.; Selmi, C.; Sica, A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin. Rev. Allergy Immunol. 2022, 64, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Tseng, Y.; Lee, T.; Fu, Y.; Chang, W.; Lo, W.; Lin, C.; Lo, Y. Triptolide Prevents LPS-induced Skeletal Muscle Atrophy via Inhibiting NF-κB/TNF-α and Regulating Protein Synthesis/Degradation Pathway. Br. J. Pharmacol. 2021, 178, 2998–3016. [Google Scholar] [CrossRef] [PubMed]
- Dongre, U.J. Adipokines in Insulin Resistance: Current Updates. Biosci. Biotechnol. Res. Asia 2021, 18, 357–366. [Google Scholar] [CrossRef]
- Fischer, R.; Maier, O. Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF. Oxid. Med. Cell Longev. 2015, 2015, 610813. [Google Scholar] [CrossRef]
- van Sleen, Y.; Shetty, S.A.; van der Heiden, M.; Venema, M.C.A.; Gutiérrez-Melo, N.; Toonen, E.J.M.; van Beek, J.; Buisman, A.-M.; van Baarle, D.; Sauce, D. Frailty Is Related to Serum Inflammageing Markers: Results from the VITAL Study. Immun. Ageing 2023, 20, 68. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Othman, I.; Aamir, K.; Shaikh, M.F. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells 2020, 9, 383. [Google Scholar] [CrossRef]
- Rai, V.; Agrawal, D.K. The Role of Damage- and Pathogen-Associated Molecular Patterns in Inflammation-Mediated Vulnerability of Atherosclerotic Plaques. Can. J. Physiol. Pharmacol. 2017, 95, 1245–1253. [Google Scholar] [CrossRef]
- Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The Possible Pathophysiology Mechanism of Cytokine Storm in Elderly Adults with COVID-19 Infection: The Contribution of “Inflame-Aging”. Inflamm. Res. 2020, 69, 825–839. [Google Scholar] [CrossRef]
- Panyod, S.; Wu, W.-K.; Hsieh, Y.-C.; Tseng, Y.-J.; Peng, S.-Y.; Chen, R.-A.; Huang, H.-S.; Chen, Y.-H.; Shen, T.-C.D.; Ho, C.-T.; et al. Ginger Essential Oil Prevents NASH Progression by Blocking the NLRP3 Inflammasome and Remodeling the Gut Microbiota-LPS-TLR4 Pathway in Mice. Nutr. Diabetes 2024, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-Y.; Zheng, X.-M.; Liu, H.-J.; Han, X.; Zhang, L.; Hu, B.; Li, S. Rotundic Acid Improves Nonalcoholic Steatohepatitis in Mice by Regulating Glycolysis and the TLR4/AP1 Signaling Pathway. Lipids Health Dis. 2023, 22, 214. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Liu, Y.; He, H.; Luo, Z.; Liu, W.; Song, N.; Ju, M. Ginsenoside Rb1 Reduces D-GalN/LPS-Induced Acute Liver Injury by Regulating TLR4/NF-ΚB Signaling and NLRP3 Inflammasome. J. Clin. Transl. Hepatol. 2022, 10, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Bian, C.; Yuan, J.; Chu, W.; Xiang, X.; Chen, F.; Wang, C.; Feng, H.; Lin, J. Curcumin Attenuates Acute Inflammatory Injury by Inhibiting the TLR4/MyD88/NF-ΚB Signaling Pathway in Experimental Traumatic Brain Injury. J. Neuroinflamm. 2014, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- WeiGang, H.; KaiQiang, L.; XueYou, H.; JiaHan, X.; TaiXin, Z.; YingKai, D.; JunYi, H.; MoYan, J.; JiaChen, W.; Xin, W.; et al. Therapeutic Potential of a Triazole Curcumin in Inflammation: Decreased LPS-Induced Acute Lung Injury in Mice by Targeting MD2/TLR4. Arab. J. Chem. 2023, 16, 105076. [Google Scholar] [CrossRef]
- Tu, C.; Han, B.; Yao, Q.; Zhang, Y.; Liu, H.; Zhang, S. Curcumin Attenuates Concanavalin A-Induced Liver Injury in Mice by Inhibition of Toll-like Receptor (TLR) 2, TLR4 and TLR9 Expression. Int. Immunopharmacol. 2012, 12, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, Y.; Gong, X.; Zhang, L.; Zhou, Q.; Wu, S.; Zhang, X.; Hu, J.; Kuang, G.; Yin, X.; et al. Baicalin and Its Nanoliposomes Ameliorates Nonalcoholic Fatty Liver Disease via Suppression of TLR4 Signaling Cascade in Mice. Int. Immunopharmacol. 2020, 80, 106208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhu, Q.; Shao, Y.; Wang, K.; Wu, Y. Paeoniflorin Prevents TLR2/4-Mediated Inflammation in Type 2 Diabetic Nephropathy. Biosci. Trends 2017, 11, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Li, K.; Gong, X.; Jiang, R.; Huang, W.; Chen, X.; Tie, H.; Zhou, Q.; Wu, S.; Wan, J.; et al. Paeoniflorin Protects against Liver Ischemia/Reperfusion Injury in Mice via Inhibiting HMGB1-TLR4 Signaling Pathway. Phytother. Res. 2018, 32, 2247–2255. [Google Scholar] [CrossRef]
- Ma, J.-Q.; Li, Z.; Xie, W.-R.; Liu, C.-M.; Liu, S.-S. Quercetin Protects Mouse Liver against CCl4-Induced Inflammation by the TLR2/4 and MAPK/NF-ΚB Pathway. Int. Immunopharmacol. 2015, 28, 531–539. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Q.; Liu, X.; Jin, J. Berberine Attenuates Septic Cardiomyopathy by Inhibiting TLR4/NF-ΚB Signalling in Rats. Pharm. Biol. 2021, 59, 119–126. [Google Scholar] [CrossRef]
- Al-dossari, M.H.; Fadda, L.M.; Attia, H.A.; Hasan, I.H.; Mahmoud, A.M. Curcumin and Selenium Prevent Lipopolysaccharide/Diclofenac-Induced Liver Injury by Suppressing Inflammation and Oxidative Stress. Biol. Trace Elem. Res. 2020, 196, 173–183. [Google Scholar] [CrossRef]
- Tu, C.; Yao, Q.; Xu, B.; Wang, J.; Zhou, C.; Zhang, S. Protective Effects of Curcumin against Hepatic Fibrosis Induced by Carbon Tetrachloride: Modulation of High-Mobility Group Box 1, Toll-like Receptor 4 and 2 Expression. Food Chem. Toxicol. 2012, 50, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Yao, Q.; Xu, B.; Zhang, S.; Tu, C. Quercetin Protects Mice from ConA-Induced Hepatitis by Inhibiting HMGB1-TLR Expression and Down-Regulating the Nuclear Factor Kappa B Pathway. Inflammation 2016, 39, 96–106. [Google Scholar] [CrossRef]
- Lee, S.A.; Lee, S.H.; Kim, J.Y.; Lee, W.S. Effects of Glycyrrhizin on Lipopolysaccharide-Induced Acute Lung Injury in a Mouse Model. J. Thorac. Dis. 2019, 11, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- ZHANG, Z.; CHEN, N.; LIU, J.-B.; WU, J.-B.; ZHANG, J.; ZHANG, Y.; JIANG, X. Protective Effect of Resveratrol against Acute Lung Injury Induced by Lipopolysaccharide via Inhibiting the Myd88-Dependent Toll-like Receptor 4 Signaling Pathway. Mol. Med. Rep. 2014, 10, 101–106. [Google Scholar] [CrossRef]
- Jingyan, L.; Yujuan, G.; Yiming, Y.; Lingpeng, Z.; Tianhua, Y.; Mingxing, M. Salidroside Attenuates LPS-Induced Acute Lung Injury in Rats. Inflammation 2017, 40, 1520–1531. [Google Scholar] [CrossRef]
- Wang, N.; Geng, C.; Sun, H.; Wang, X.; Li, F.; Liu, X. Hesperetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice through Regulating the TLR4–MyD88–NF-ΚB Signaling Pathway. Arch. Pharm. Res. 2019, 42, 1063–1070. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, J.; Kang, Q.; He, X.; Guo, D. Protective Effect of Hesperidin Against Sepsis-Induced Lung Injury by Inducing the Heat-Stable Protein 70 (Hsp70)/Toll-Like Receptor 4 (TLR4)/Myeloid Differentiation Primary Response 88 (MyD88) Pathway. Med. Sci. Monit. 2019, 25, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Cheng, A.; Qiu, M.; Zang, G. Allicin Improves Lung Injury Induced by Sepsis via Regulation of the Toll-Like Receptor 4 (TLR4)/Myeloid Differentiation Primary Response 88 (MYD88)/Nuclear Factor Kappa B (NF-ΚB) Pathway. Med. Sci. Monit. 2019, 25, 2567–2576. [Google Scholar] [CrossRef]
- Panyod, S.; Wu, W.-K.; Lu, K.-H.; Liu, C.-T.; Chu, Y.-L.; Ho, C.-T.; Hsiao, W.-L.W.; Lai, Y.-S.; Chen, W.-C.; Lin, Y.-E.; et al. Allicin Modifies the Composition and Function of the Gut Microbiota in Alcoholic Hepatic Steatosis Mice. J. Agric. Food Chem. 2020, 68, 3088–3098. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, K.; Wu, H.; Yang, C.; Yang, Y.; Yang, J.; Zhao, G.; Deng, G. Magnoflorine Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Suppressing NF-ΚB and MAPK Activation. Front. Pharmacol. 2018, 9, 982. [Google Scholar] [CrossRef] [PubMed]
- Yunhe, F.; Bo, L.; Xiaosheng, F.; Fengyang, L.; Dejie, L.; Zhicheng, L.; Depeng, L.; Yongguo, C.; Xichen, Z.; Naisheng, Z.; et al. The Effect of Magnolol on the Toll-like Receptor 4/Nuclear Factor Kappa B Signaling Pathway in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Eur. J. Pharmacol. 2012, 689, 255–261. [Google Scholar] [CrossRef]
- Mohammed, E.T.; Safwat, G.M. Grape Seed Proanthocyanidin Extract Mitigates Titanium Dioxide Nanoparticle (TiO2-NPs)–Induced Hepatotoxicity Through TLR-4/NF-ΚB Signaling Pathway. Biol. Trace Elem. Res. 2020, 196, 579–589. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Jin, J.; Jin, L.-W.; Chen, Y.; Zhou, Z.-H.; Li, Z.-Y. Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-ΚB Signal Pathway. Inflammation 2017, 40, 523–529. [Google Scholar] [CrossRef]
- Fan, H.-Y.; Qi, D.; Yu, C.; Zhao, F.; Liu, T.; Zhang, Z.-K.; Yang, M.-Y.; Zhang, L.-M.; Chen, D.-Q.; Du, Y. Paeonol Protects Endotoxin-Induced Acute Kidney Injury: Potential Mechanism of Inhibiting TLR4-NF-κB Signal Pathway. Oncotarget 2016, 7, 39497–39510. [Google Scholar] [CrossRef]
- Cui, H.-X.; Chen, J.-H.; Li, J.-W.; Cheng, F.-R.; Yuan, K. Protection of Anthocyanin from Myrica Rubra against Cerebral Ischemia-Reperfusion Injury via Modulation of the TLR4/NF-ΚB and NLRP3 Pathways. Molecules 2018, 23, 1788. [Google Scholar] [CrossRef]
- Yubolphan, R.; Kobroob, A.; Kongkaew, A.; Chiranthanut, N.; Jinadang, N.; Wongmekiat, O. Berberine Mitigates Sepsis-Associated Acute Kidney Injury in Aged Rats by Preserving Mitochondrial Integrity and Inhibiting TLR4/NF-ΚB and NLRP3 Inflammasome Activations. Antioxidants 2024, 13, 1398. [Google Scholar] [CrossRef]
- Wang, X.-P.; Lei, F.; Du, F.; Chai, Y.-S.; Jiang, J.-F.; Wang, Y.-G.; Yu, X.; Yan, X.-J.; Xing, D.-M.; Du, L.-J. Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling. PLoS ONE 2015, 10, e0134044. [Google Scholar] [CrossRef]
- Kim, T.-H.; Yoon, S.-J.; Lee, S.-M. Genipin Attenuates Sepsis by Inhibiting Toll-Like Receptor Signaling. Mol. Med. 2012, 18, 455–465. [Google Scholar] [CrossRef]
- Zhao, X.; Yin, L.; Fang, L.; Xu, L.; Sun, P.; Xu, M.; Liu, K.; Peng, J. Protective Effects of Dioscin against Systemic Inflammatory Response Syndromevia Adjusting TLR2/MyD88/NF-κb Signal Pathway. Int. Immunopharmacol. 2018, 65, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Xie, Q.; Li, Q.; Qin, S.; Wu, J.; Jiang, H.; Yu, B.; Luo, W. Resveratrol Alleviates Liver Fibrosis by Targeting Cross-Talk Between TLR2/MyD88/ERK and NF-κB/NLRP3 Inflammasome Pathways in Macrophages. J. Biochem. Mol. Toxicol. 2025, 39, e70208. [Google Scholar] [CrossRef]
- Fei, L.; Jifeng, F.; Tiantian, W.; Yi, H.; Linghui, P. Glycyrrhizin Ameliorate Ischemia Reperfusion Lung Injury through Downregulate TLR2 Signaling Cascade in Alveolar Macrophages. Front. Pharmacol. 2017, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sheng, Y.; Shi, L.; Zheng, Z.; Chen, M.; Lu, B.; Ji, L. Quercetin and Baicalein Suppress Monocrotaline-Induced Hepatic Sinusoidal Obstruction Syndrome in Rats. Eur. J. Pharmacol. 2017, 795, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Feng, G.; Zhang, M.; Zhang, X.; Lu, J.; Feng, C.; Zhu, F. Oxymatrine Attenuates TNBS-Induced Colinutis in Rats through TLR9/Myd88/NF-ΚB Signal Pathway. Hum. Exp. Toxicol. 2022, 41, 9603271221078866. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, H.; Xu, Y.; Xing, G.; Wang, X. Curcumin Plays a Protective Role against Septic Acute Kidney Injury by Regulating the TLR9 Signaling Pathway. Transl. Androl. Urol. 2021, 10, 2103–2112. [Google Scholar] [CrossRef]
- Gu, J.; Ran, X.; Deng, J.; Zhang, A.; Peng, G.; Du, J.; Wen, D.; Jiang, B.; Xia, F. Glycyrrhizin Alleviates Sepsis-Induced Acute Respiratory Distress Syndrome via Suppressing of HMGB1/TLR9 Pathways and Neutrophils Extracellular Traps Formation. Int. Immunopharmacol. 2022, 108, 108730. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, C.; Wang, Q.; Kuang, L.; Le, A. Tanshinone IIA Relieves Arthritis by Inhibiting Autophagy of Fibroblast-like Synoviocytes via Matrix Metalloproteinase9/Receptor for Advanced Glycation End Product/Toll-like Receptor 9 Signal Axis in Mice with Collagen-induced Arthritis. Phytother. Res. 2023, 37, 1391–1404. [Google Scholar] [CrossRef]
- Iskender, H.; Dokumacioglu, E.; Terim Kapakin, K.A.; Yenice, G.; Mohtare, B.; Bolat, I.; Hayirli, A. Effects of Oleanolic Acid on Inflammation and Metabolism in Diabetic Rats. Biotech. Histochem. 2022, 97, 269–276. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Peng, J.; Huang, Y.; Gong, Z.; Lu, H.; Han, L.; Wang, D. Gastrodin against Oxidative Stress-Inflammation Crosstalk via Inhibiting MtDNA/TLR9 and JAK2/STAT3 Signaling to Ameliorate Ischemic Stroke Injury. Int. Immunopharmacol. 2024, 141, 113012. [Google Scholar] [CrossRef]
- Dokumacioğlu, E.; İskender, H.; Terim Kapakin, K.A.; Yenice, G.; Mokthare, B.; Bolat, İ.; Hayirli, A. Effect of Betulinic Acid Administration on TLR-9/NF-ΚB/IL-18 Levels in Experimental Liver Injury. Turk. J. Med. Sci. 2021, 51, 1543–1552. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 12 November 2025).
- Brubaker, D.K.; Lauffenburger, D.A. Translating Preclinical Models to Humans. Science 2020, 367, 742–743. [Google Scholar] [CrossRef]
- Doherty, T.M.; Weinberger, B.; Didierlaurent, A.; Lambert, P.-H. Age-Related Changes in the Immune System and Challenges for the Development of Age-Specific Vaccines. Ann. Med. 2025, 57, 2477300. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Baldwin, J.; Brar, D.; Salunke, D.B.; Petrovsky, N. Toll-like Receptor (TLR) Agonists as a Driving Force behind next-Generation Vaccine Adjuvants and Cancer Therapeutics. Curr. Opin. Chem. Biol. 2022, 70, 102172. [Google Scholar] [CrossRef]
- Kuzmich, N.; Sivak, K.; Chubarev, V.; Porozov, Y.; Savateeva-Lyubimova, T.; Peri, F. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef]
- Shi, H.; Dong, L.; Dang, X.; Liu, Y.; Jiang, J.; Wang, Y.; Lu, X.; Guo, X. Effect of Chlorogenic Acid on LPS-Induced Proinflammatory Signaling in Hepatic Stellate Cells. Inflamm. Res. 2013, 62, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhou, E.; Wei, Z.; Song, X.; Liu, Z.; Wang, T.; Wang, W.; Zhang, N.; Liu, G.; Yang, Z. Glycyrrhizin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Reducing TLR4 Recruitment into Lipid Rafts in RAW264.7 Cells. Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2014, 1840, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Federico, S.; Pozzetti, L.; Papa, A.; Carullo, G.; Gemma, S.; Butini, S.; Campiani, G.; Relitti, N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J. Med. Chem. 2020, 63, 13466–13513. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, J.; Dong, H.; Chen, G.; Qin, X.; Hu, M.; Yuan, F.; Fang, K.; Wang, D.; Jiang, S.; et al. Inhibitory Effects of Berberine on Proinflammatory M1 Macrophage Polarization through Interfering with the Interaction between TLR4 and MyD88. BMC Complement. Altern. Med. 2019, 19, 314. [Google Scholar] [CrossRef]
- Wang, L.; Li, N.; Lin, D.; Zang, Y. Curcumin Protects against Hepatic Ischemia/Reperfusion Induced Injury through Inhibiting TLR4/NF-ΚB Pathway. Oncotarget 2017, 8, 65414–65420. [Google Scholar] [CrossRef]


| Body Site/Cell Type (Human) | TLR | Direction with Age | Reference |
|---|---|---|---|
| Peripheral blood—myeloid DCs | TLR1, TLR2, TLR3, TLR8 | ↓ expression and function | [10] |
| Peripheral blood—plasmacytoid DCs | TLR9 (and TLR7 responsiveness) | ↓ responsiveness/expression signals | [11] |
| Peripheral blood—Neutrophils | TLR1 | ↓ surface expression | [12] |
| Peripheral blood—Monocytes | TLR5 | ↑ expression and signaling | [13] |
| Skeletal muscle (vastus lateralis) | TLR4 | ↑ expression/signaling with aging | [14,15] |
| Author (Year) | Sample and Population | Omics Method | TLR-Relevant Findings |
|---|---|---|---|
| Calabria et al. (2016) [25] | Whole blood Healthy adults (46 ± 3 y, N = 11) vs. healthy elderly (68 ± 4 y, N = 9); | Whole-blood microarray + GSEA + qPCR | Enrichment of the Toll pathway gene set with higher expression of TLR4, TLR6, TLR9, MYD88, IKBKG (NEMO), and NFKBIA in the elderly. |
| Bickler et al. (2021) [26] | Human dermal fibroblast lines spanning ≤ 10 y (N = 14) to ≥ 80 y (N = 33) GSE113957) | Bulk RNA-seq reanalysis | ≥80 y vs. ≤10 y groups: Significantly upregulated: TLR3, TLR4, IFIH1 TLR4 showed the strongest effect. Negatively correlated: NOD1, cGAS |
| Metcalf et al. (2017) [27] | Sorted monocyte subsets Healthy non-frail adults (21–40 y) vs. older adults (≥65 y); | Global transcriptomics after PRR agonists (TLR4, TLR7/8, RIG-I) | Surface TLR expression (TLR3, TLR4, TLR7) did not vary with age. Old vs. young: ↓ TLR-induced cytokine response (IL-1β, IL-6, IFN-γ, TNF-α) ↓ TLR-associated antiviral/interferon genes ↓ NF-κB target genes ↑ Oxidative stress–related transcripts |
| Wang et al. (2023) [28] | Three monocyte subsets; CD14+ monocytes (N = 1202, 44–83 y) Healthy young (19–30 y) vs. elderly (55–86 y); | Bulk transcriptomics + pathway analysis | Old monocytes vs. young monocytes: ↓ IFN-β, IL-1β and IFN-γ response to viral exposure, while ↑ IL-6. |
| Study (Year) | Settings | Design and Frailty Measure | TLR Target | Main Finding Related to Frailty |
|---|---|---|---|---|
| Compté et al., 2013 [32] | Belgium; 100 participants aged 23–96 years Subset analysis: 52 participants >75 years old (27 non-frail, 25 frail). | Cross-sectional observational study. Frailty assessed by ISAR scale. | Whole-blood ex vivo; stimulation with LPS (TLR4 ligand) + R848 (TLR7/8 ligand). | Elderly vs. young: TLR4, NF-κB, and p38 expression, and Erk phosphorylation remain stable on monocytes and cDCs ↓ IL-12p70, IL-23 (even more in frail elderly) |
| Verschoor et al., 2014 [33] | Canada; 129 participants “advanced-age, frail elderly” (61–100 y) vs. young adults (19–59 y) | Cross-sectional observational study. Frailty assessed using the Clinical Frailty Scale (score ≥ 4) | PBMCs—monocytes and DCs; stimulation with Pam3CSK4 (TLR2 agonist) and LPS (TLR4 agonist). | Elderly vs. young: ↑ TLR2 on myeloid DCs ↑ TLR4 on classical monocytes ↓ CCR2 (no change between seniors ↔ frail) ↓ CX3CR1 only in frail elderly |
| Reitsema et al., 2024 [34] | Netherlands and Sweden; 45 participants Healthy young controls (median age 29 y) vs. healthy (73 y) or frail (76 y) older adults | Observational cross-sectional study. Frailty assessed using the Tilburg Frailty Indicator; Groningen Frailty Indicator, and Fried Frailty Phenotype. | PBMCs—monocyte subsets | Elderly vs. young: ↑ TLR2 on classical monocytes and cDC2 TLR4 ↔ (no significant change) Frailty vs. healthy old age: No significant differences in subset frequencies or other markers (TLR2, TLR4, CD86, CD11c, HLA-DR, PD-L1). Elderly vs. young: |
| Lukyanova et al. (2024) [35] | Russia 219 nonagenarians (mean age = 92.1 y); control 24 healthy young donors (mean age = 22.5 y). | Observational cross-sectional study nonagenarians categorized as with/without frailty and as successful vs. pathological aging based on presence of four geriatric syndromes (frailty, dementia, sarcopenia, reduced functional activity). | TLR2 gene expression assessed in peripheral blood leukocytes. | ↑ IL1β and TLR2 expression ↓ IL10 expression Frailty vs. non-frailty: ↑ IL1β and TLR2 expression Successful vs. pathological aging: ↑ IL10 expression Similar IL1β and TLR2 levels of expression |
| Nidadavolu et al. (2023) [36] | USA; community-dwelling older adults (N = 672; mean age 80.4 ± 7.2 y) | Observational, cross-sectional and longitudinal analyses. Frailty measured as a composite z-score including grip strength, timed walk, body mass index, and fatigue | Indirect innate immune activation assessed via circulating cell-free mtDNA | Elevated mtDNA levels correlated with ↑ frailty, ↓ gait speed, ↓ grip strength, ↓ cognitive performance, and ↑ mortality risk. cf-mtDNA-induced activation of TLR9: ↑ CRP, ↑ TNF-α, and ↑ IL-6 |
| Natural Compound | Sources | Experimental Model | Mode of Administration | TLR4-Related Mechanism | Main Outcomes | Reference |
|---|---|---|---|---|---|---|
| Baicalin | Scutellaria baicalensis Georgi | MCD-induced NAFLD C57BL/6J mice | 50 mg/kg, orally, 4 weeks | TLR4/MyD88/NF-κB/p38 MAPK inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 ↓ CCL2 ↓ CXCL2 ↓ ICAM ↓ VCAM ↓ ELAM | [73] |
| Ginger essential oil | Zingiber officinale | P-HFD/LPS-induced NASH C57BL/6 J mice | 12.5–125 mg/kg, orally, 12 weeks | TLR4/NF-κB inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [67] |
| Paeoniflorin | Paeonia lactiflora Pall | Hepatic ischemia/reperfusion injury C57BL/6 mice | 100 mg/kg, orally, 3 times (every 8 h) before surgery | TLR4/HMGB1/ERK1/2/JNK1/2/p38/NF-κB inhibition | ↓ TNF-α ↓ IL-1β | [75] |
| Type 2 diabetes-induced nephropathy db/db mice | 15–60 mg, i.p., 2 weeks | TLR4/MyD88/IRAK1/NF-κB/iNOS inhibition | ↓ TNF-α ↓ IL-1β ↓ MCP-1 ↓ CD68+ | [74] | ||
| Rotundic acid | Ilex rotunda | HFD-induced NASH C57BL/6 mice | 30 mg/kg, orally, 3 weeks | TLR4/MyD88/MAP3K8/MAPK3/AP-1 (c-Fos/c-Jun) inhibition | - | [68] |
| Ginsenoside Rb1 | Panax ginseng | D-GalN/LPS-induced acute liver injury C57BL/6 mice | 30–60 mg/kg, i.p. 3 days before D-GalN/LPS treatment | TLR4/MyD88/NF-κB/NLRP3 inhibition | ↓ TNF-α ↓ IL-6 ↓ IL-1β ↓ IL-18 | [69] |
| Curcumin | Curcuma longa Linn | Concanavalin A–induced autoimmune hepatitis BALB/c mice | 200 mg/kg, orally, 40 min before Concanavalin A injection | TLR4 inhibition | ↓ TNF-α ↓ IFN-γ ↑ IL-10 ↓ Kupffer cell infiltration (F4/80+) | [72] |
| LPS/DCL-induced hepatotoxicity Wistar rats | 200 mg/kg, orally, for 7 days before LPS/DCL and twice (2 h and 8 h) after LPS/DCL | TLR4/NF-κB/MAPK (p38/JNK) inhibition | ↓ TNF-α ↓ IL-6 ↓ NO | [78] | ||
| Traumatic brain injury C57BL/6 mice | 50–200 mg/kg, i.p., single dose | TLR4/MyD88/NF-κB inhibition | ↓ IL-1β ↓ IL-6 ↓ TNF-α ↓ MCP-1 ↓ RANTES | [70] | ||
| CCl4-induced hepatic fibrosis Sprague-Dawley rats | 200 mg/kg, orally, 6 weeks | TLR4/HMGB1 inhibition | ↓ col3a1 ↓ alpha-SMA ↓ TNF-a ↓ IL-6 ↓ MCP-1 | [79] | ||
| Triazole curcumin | Curcuma longa Linn | LPS-induced ALI Kunming mice | 2.5–20 mg/kg, orally, single dose, before LPS treatment | TLR4/MyD88/NF-κB/AP-1 inhibition | ↓ TNF-α ↓ IL-6 ↓ fibrosis | [71] |
| Quercetin | Allium cepa Vitis vinifera Solanum lycopersicum Brassica oleracea | CCl4-induced hepatic inflammation ICR mice | 40 -80 mg/kg, orally, 1 week | TLR4/NF-κB (p65)/MAPK (p38/JNK/ERK) inhibition | ↓ iNOS ↓ IL-1β ↓ COX-2 ↓ NO | [76] |
| Concanavalin A– induced hepatitis BALB/c mice | 50 mg/kg, i.p., single dose before concanavalin A | TLR2/HMGB1/NF-κB inhibition | ↓ TNF-α ↓ Interferon-γ ↓ IL-4 | [80] | ||
| Glycyrrhizin | Glycyrrhiza glabra | LPS-induced ALI BALB/c mice | 50 mg/kg, i.v., immediately and 12 h following LPS injection | TLR4/NF-κB inhibition | ↓ TNF-α ↓ IL-1α ↓ IL-6 ↓ neutrophil and macrophage infiltration ↓ MPO ↓ COX-2 ↓ iNOS | [81] |
| Resveratrol | Vitis vinifera | LPS-induced ALI BALB/c mice | 5–45 mg/kg, orally, 3 days before LPS injection | TLR4/MyD88/NF-κB inhibition | ↓ IL-6 ↓ COX-2 | [82] |
| Salidroside | Rhodiola rosea | LPS-induced ALI Sprague–Dawley rats | 20–40 mg/kg, orally, 3 days | TLR4/NF-κB inhibition | ↓ TNF-α ↓ IL-6 ↓ IL-1β | [83] |
| Hesperetin | Citrus spp. | LPS-induced ALI C57BL/6 mice | 10–30 mg/kg, orally, single dose | TLR4/MyD88/TRAF6/TAK1/NF-κB (p65) inhibition; IκB-α stabilization | ↓ TNF-α ↓ IL-6 ↓ NO | [84] |
| Hesperidin | Citrus spp. | CLP-induced sepsis-associated lung injury albino mice | 10–20 mg/kg, orally, single dose | Hsp70/TLR4/MyD88 inhibition | ↓ TNF-α ↓ IL-6 ↓ IL-1 | [85] |
| Allicin | Allium sativum | LPS-induced ALI Sprague-Dawley rats | 25–100 μg/mL, i.p., every 12 h, for 24 h | TLR4/MyD88/NF-κB inhibition | ↓ TNF-α ↓ IL-6 ↓ IL-1β | [86] |
| Alcohol-induced hepatic steatosis C57BL/6 mice | 5–20 mg/kg, orally, 4 weeks | TLR4/CD14 inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [87] | ||
| Magnoflorine | Magnolia spp. Aristolochia spp. | LPS-induced ALI BALB/c mice | 5–20 mg/kg, i.p., three times at 0, 8, 16 h after LPS injection | TLR4/NF-κB/MAPK (p38/ERK/JNK) inhibition; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [88] |
| Magnolol | Magnolia officinalis | LPS-induced ALI BALB/c mice | 5–20 mg/kg, i.p., single dose | TLR4/NF-κB inhibition; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [89] |
| Procyanidin | Vitis vinifera | TiO2 nanoparticle–induced hepatotoxicity Albino rats | 75 mg/kg, orally, 30 days | TLR4/NIK/NF-κB inhibition | ↓ TNF-α | [90] |
| Chlorogenic acid | Camellia sinensis Meum athamanticum | LPS-induced AKI C57BL/6 mice | 5–20 mg/kg, i.p., single dose, 1h before LPS injection | TLR4/MyD88 inhibition; NF-κB (p65) inhibition; IκB-α stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [91] |
| Paeonol | Paeonia moutan Sims | LPS-induced AKI BALB/c mice | 12.5–50 mg/kg, orally, 7 days | TLR4/IKKβ/NF-κB (p65) inhibition; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [92] |
| Anthocyanins | Myrica rubra | Cerebral ischemia–reperfusion injury ICR mice | 100–300 mg/kg, orally, 1 week | TLR4/NLRP3 inhibition | ↓ TNF-α ↓ IL-18 ↓ caspase-1 ↓ NO | [93] |
| Berberine | Coptis chinensis | CLP-induced sepsis Wistar rats | 25–50 mg/kg, orally, 5 days | TLR4/NF-κB/NLRP3 inhibition | ↓ TNF-α ↓ IL-1β | [94] |
| LPS-induced sepsis-associated myocardial injury Sprague Dawley rats | 50 mg/kg, orally, 3 days before LPS injection | TLR4/NF-κB (p65) inhibition | ↓ TNF-α ↓ IL-1β | [77] | ||
| Acute alcohol–induced gastrointestinal injury ICR mice | 75–300 mg/kg, orally, 1h before alcohol administration | TLR4 inhibition | ↓ TNF-α ↓ IL-1β | [95] | ||
| Genipin | Gardenia jasminoides | CLP–induced sepsis ICR mice | 1–5 mg/kg, i.v., immediately (0 h) or 0 and 24 h after CLP | TLR2/HMGB1/MyD88/TRIF/NF-κB (p65)/MAPK (p38/JNK/ERK)/IRF3; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [96] |
| Natural Compound | Sources | Experimental Model | Method of Administration | TLR2-Related Mechanism | Main Outcomes | Reference |
|---|---|---|---|---|---|---|
| Curcumin | Curcuma longa Linn | Concanavalin A–induced autoimmune hepatitis BALB/c mice | 200 mg/kg, orally, 40 min before Concanavalin A injection | TLR2 inhibition | ↓ TNF-α ↓ IFN-γ ↑ IL-10 ↓ Kupffer cell infiltration (F4/80+) | [72] |
| CCl4-induced hepatic fibrosis Sprague-Dawley rats | 200 mg/kg, orally, 6 weeks | TLR2/HMGB1 inhibition | ↓ col3a1 ↓ alpha-SMA ↓ TNF-a ↓ IL-6 ↓ MCP-1 | [79] | ||
| Glycyrrhizin | Glycyrrhiza glabra | Lung ischemia–reperfusion injury BALB/c mice | 200 mg/kg, i.p., single dose | TLR2/MyD88/NF-κB inhibition | ↓ IL-1β ↓ IL-6 | [99] |
| Quercetin | Allium cepa Vitis vinifera Solanum lycopersicum Brassica oleracea | CCl4-induced hepatic inflammation ICR mice | 40–80 mg/kg, orally, 1 week | TLR2/NF-κB (p65)/MAPK (p38/JNK/ERK) inhibition | ↓ iNOS ↓ IL-1β ↓ COX-2 ↓ NO | [76] |
| Concanavalin A-induced hepatitis BALB/c mice | 50 mg/kg, i.p., single dose before concanavalin A | TLR2/HMGB1/NF-κB (p65) inhibition; IκB stabilization | ↓ TNF-α ↓ Interferon-γ ↓ IL-4 | [80] | ||
| Quercetin/Baicalein | Quercetin: Allium cepa Vitis vinifera Solanum lycopersicum Brassica oleracea Baicalein: Lepisorus ussuriensis Scutellaria prostrata | MCT-induced SOS Sprague Dawley rats | 40 mg/kg, intragastrical administration, twice at 6 h and 30 h after MCT administration | TLR2/MyD88/NF-κB (p-p65/nuclear-p65/p-IκB)/Egr1/MAPK (p-ASK1/p-MEK1/2/p-cRaf/p-MKK3/6/p-MKK4/p38/JNK/ERK 1/2)/PI3K/AKT/mTOR inhibition; Nrf2 activation | ↓ TNF-α ↓ IL-1β ↓ MDA ↓ MPO ↓ MMP-9 ↓ Serpine1 ↓ TF ↑ GCLC ↑ GCLM | [100] |
| Paeoniflorin | Paeonia lactiflora Pall | Type 2 diabetes-induced nephropathy db/db mice | 15–60 mg, i.p., 2 weeks | TLR2/MyD88/IRAK1/NF-κB/iNOS inhibition | ↓ TNF-α ↓ IL-1β ↓ MCP-1 ↓ CD68+ | [74] |
| Berberine | Coptis chinensis | Acute alcohol–induced gastrointestinal injury ICR mice | 75–300 mg/kg, orally, 1h before alcohol administration | TLR2 inhibition | ↓ TNF-α ↓ IL-1β | [95] |
| Resveratrol | Vitis vinifera | CCl4–induced liver fibrosis BALB/c mice | 400 mg/kg.d, i.p., 5 weeks | 4 weeks: TLR2/MyD88/ERK/NF-κB (p50)/NLRP3 activation 5 weeks: TLR2/MyD88/ERK/NF-κB (p50)/NLRP3 inhibition | 4 weeks: ↑ IL-10 ↑ Caspase-1 ↑ IL-1β ↑ IL-18 5 weeks: ↓ IL-10 ↓ Caspase-1 ↓ IL-1β ↓ IL-18 | [98] |
| Genipin | Gardenia jasminoides | CLP–induced sepsis ICR mice | 1–5 mg/kg, i.v., immediately (0 h) or 0 and 24 h after CLP | TLR2/HMGB1/MyD88/TRIF/NF-κB (p65)/MAPK (p38/JNK/ERK)/IRF3; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [96] |
| Dioscin | Dioscorea nipponica Makino | Zymosan-induced SIRS C57BL/6J mice and Sprague Dawley rats | 20–80 mg/kg for mice and 15–60 mg/kg for rats, orally, 7 days | TLR2/HMGB1/MyD88/NF-κb inhibition; IκBα stabilization | ↓ TNF-α ↓ IL-1β ↓ IL-6 ↓ MPO ↓ MDA ↑ SOD ↓CD68+ macrophages | [97] |
| Natural Compound | Sources | Experimental Model | Method of Administration | TLR9-Related Mechanism | Main Outcomes | Reference |
|---|---|---|---|---|---|---|
| Glycyrrhizin | Glycyrrhiza glabra | CLP-induced sepsis-associated ARDS C57BL/6 mice | 15 mg/kg, i.p., single dose after CLP | TLR9/HMGB1/MyD88 inhibition | ↓ Cit-H3 ↓ NETs in lung tissue ↓ IL-6 | [103] |
| Curcumin | Curcuma longa Linn | Concanavalin A–induced autoimmune hepatitis BALB/c mice | 200 mg/kg, orally, single dose 40 min before Concanavalin A injection | TLR9 inhibition | ↓ TNF-α ↓ IFN-γ ↑ IL-10 ↓ Kupffer cell infiltration (F4/80+) | [72] |
| CLP–induced AKI Sprague-Dawley rats | 40 mg/kg, orally, single dose after CLP | TLR9/MYD88/IRF5/IRF7/NF-κB inhibition | ↓ TNF-α ↓ IL-10 ↓ NGAL ↓ KIM-1 ↓ CysC | [102] | ||
| Tanshinone IIA | Salvia miltiorrhiza Bunge | Collagen–induced arthritis DBA/1 mice | 5 mg/kg, orally, once a day from days 21 to 48 days | TLR9/RAGE/MMP9 inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 | [104] |
| Oleanolic acid | Olea europaea Salvia miltiorrhiza Sambucus chinensis | STZ–induced diabetes Sprague Dawley rats | 5 mg/kg, orally, 21 days | TLR-9/NF-κB inhibition | ↓ IL-18 ↓ MDA | [105] |
| Oxymatrine | Daphniphyllum spp. | TNBS-induced colitis Sprague-Dawley rats | 10–60 mg/kg, i.p., 7 days | TLR9/Myd88/NF-κB (p65) inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 ↓ IL-10 ↑ ZO-1 ↑ occludin ↑ claudin-2 | [101] |
| Quercetin/Baicalein | Quercetin: Allium cepa Vitis vinifera Solanum lycopersicum Brassica oleracea Baicalein: Lepisorus ussuriensis Scutellaria prostrata | MCT-induced SOS Sprague Dawley rats | 40 mg/kg, intragastrical administration, twice at 6 h and 30 h after MCT administration | TLR9/MyD88/NF-κB (p-p65/nuclear-p65/p-IκB)/Egr1/MAPK (p-ASK1/p-MEK1/2/p-cRaf/p-MKK3/6/p-MKK4/p38/JNK/ERK 1/2)/PI3K/AKT/mTOR inhibition; Nrf2 activation | ↓ TNF-α ↓ IL-1β ↓ MDA ↓ MPO ↓ MMP-9 ↓ Serpine1 ↓ TF ↑ GCLC ↑ GCLM | [100] |
| Gastrodin | Gastrodia elata | Ischemic stroke injury (middle cerebral artery occlusion/reperfusion) Sprague Dawley rats | 25–100 mg/kg, i.p., 3 days before surgery and an additional 7 days post-surgery. | mDNA/TLR9/JAK2/STAT3 inhibition | ↓ TNF-α ↓ IL-1β ↓ IL-6 ↑ CAT ↑ GSH ↓ MDA ↑ SOD ↑ ATP ↑ T-ATPase | [106] |
| Betulinic acid | Paeonia emodi Bowdichia virgilioides | APAP-induced hepatotoxicity Sprague Dawley rats | 25 mg/kg, orally, 15 days | TLR-9/NF-κB inhibition | ↓ IL-18 ↓ MDA | [107] |
| Natural Compound | Chemical Class | Physicochemical Properties | Safety Data |
|---|---|---|---|
| Baicalin | Glycosyloxyflavone | MW = 446.4 g/mol; XLogP3 = 1.1; TPSA = 183 Å2; HBD = 6; HBA = 11 | - |
| Paeoniflorin | Terpene glycoside | MW = 480.5 g/mol; XLogP3 = −1; TPSA = 164 Å2; HBD = 5; HBA = 11 | Mouse (i.p.) LD50 = 3530 mg/kg; Mouse (i.v.) LD50 = 9530 mg/kg Adverse effects: sleep, somnolence. |
| Rotundic acid | Triterpenoid | MW = 488.7 g/mol; XLogP3 = 5.3; TPSA = 98 Å2; HBD = 4; HBA = 5 | - |
| Ginsenoside Rb1 | Ginsenoside | MW = 1109.3 g/mol; XLogP3 = 0.3; TPSA = 377 Å2; HBD = 15; HBA = 23 | Mouse (i.p.) LD50 = 1110 mg/kg; Mouse (i.v.) LD50 = 243 mg/kg |
| Curcumin | Beta-diketone | MW = 368.4 g/mol; XLogP3 = 3.2; TPSA = 93.1 Å2; HBD = 2; HBA = 6 | Mouse (i.p.) LD50 = 1500 mg/kg; Mouse (oral) LD50 > 2 g/kg; Rat (oral) LD50 > 5 g/kg; Rabbit (dermal) LD50 > 5 g/kg. |
| Quercetin | Pentahydroxyflavone | MW = 302.23 g/mol; XLogP3 = 1.5; TPSA = 127 Å2; HBD = 5; HBA = 7 | Mouse (oral) LD50 = 159 mg/kg Mouse (i.p.) LD50 = 3 g/kg Mouse (s.c.) LD50 = 97 mg/kg Rat (oral) LD50 = 161 mg/kg. Adverse effects: somnolence, muscle weakness, respiratory depression; |
| Glycyrrhizin | Triterpenoid saponin | MW = 822.9 g/mol; XLogP3 = 3.7; TPSA = 267 Å2; HBD = 8; HBA = 16 | Human (oral) TDLo = 5571 µg/kg/3D—changes in urine composition; Human (oral) TDLo = 280 mg/kg/4 weeks—somnolence; Human (oral) TDLo = 662 mg/kg/1 year—convulsions, muscle weakness; Rat (oral) LDLo = 3 g/kg; Rat (i.p.) LDLo = 2 g/kg; Mouse (oral) LD50 = 4320 mg/kg; Mouse (i.p.) LDLo = 1 g/kg; Mouse (i.v.) LD50 = 589 mg/kg—respiratory stimulation, other respiratory changes. |
| Resveratrol | Stilbene | MW = 228.24 g/mol; XLogP3 = 3.1; TPSA = 60.7 Å2; HBD = 3; HBA = 3 | Rat (oral, 90 days, feed) BMDL05 = 344 mg/kg bw/day –body weight decrease; Human (oral, 1.5–3.0 g/day): mild, reversible ALT/AST increases |
| Salidroside | Glycoside | MW = 300.30 g/mol; XLogP3 = −0.6; TPSA = 120 Å2; HBD = 5; HBA = 7 | Mouse (s.c.) LD50 = 28,600 µL/kg |
| Hesperetin | Trihydroxyflavanone | MW = 302.28 g/mol; XLogP3 = 2.4; TPSA = 96.2 Å2; HBD = 3; HBA = 6 | - |
| Hesperidin | Flavanone disaccharide | MW = 610.6 g/mol; XLogP3 = –1.1; TPSA = 234 Å2; HBD = 8; HBA = 15 | Mouse (i.p.) LD50 = 1 g/kg |
| Allicin | Sulfoxide | MW = 162.3 g/mol; XLogP3 = 1.3; TPSA = 61.6 Å2; HBD = 0; HBA = 3 | Mouse (s.c.) LD50 = 120 mg/kg; Mouse (i.v.) LD50 = 60 mg/kg |
| Magnoflorine | Alkaloid | MW = 342.4 g/mol; XLogP3 = 2.7; TPSA = 58.9 Å2; HBD = 2; HBA = 4 | Mouse (i.p.) LD50 = 19,600 µg/kg; Mouse (s.c.) LD50 = 138 mg/kg; Mouse (i.v.) LD50 = 20 mg/kg |
| Magnolol | Biphenyl | MW = 266.3 g/mol; XLogP3 = 5; TPSA = 40.5 Å2; HBD = 2; HBA = 2 | Mouse (oral) LD50 = 2200 mg/kg |
| Procyanidin | Proanthocyanidin oligomer | MW = 594.5 g/mol; XLogP3 = 2; TPSA = 230 Å2; HBD = 10; HBA = 13 | - |
| Chlorogenic acid | Cinnamate ester | MW = 354.31 g/mol; XLogP3 = −0.4; TPSA = 165 Å2; HBD = 6; HBA = 9 | Rat (i.p.) LDLo = 4 g/kg |
| Paeonol | Phenol | MW = 166.17 g/mol; XLogP3 = 2; TPSA = 46.5 Å2; HBD = 1; HBA = 3 | Mouse (oral) LD50 = 490 mg/kg; Mouse (i.p.) LD50 = 781 mg/kg—altered sleep time; Mouse (i.v.) LD50 = 196 mg/kg—altered sleep time |
| Anthocyanins | Flavonoid | MW = 207.25 g/mol; TPSA = 1 Å2; HBD = 0; HBA = 0 | - |
| Berberine | Alkaloid | MW = 336.4 g/mol; XLogP3 = 3.6; TPSA = 40.8 Å2; HBD = 0; HBA = 4 | Rat (i.p.) LD > 500 mg/kg; Mouse (oral) LD50 = 329 mg/kg; Mouse (s.c.) LD50 = 18 mg/kg; Rabbit (s.c.) LDLo = 100 mg/kg. |
| Genipin | Iridoid monoterpenoid | MW = 226.23 g/mol; XLogP3 = −0.7; TPSA = 76 Å2; HBD = 2; HBA = 5 | Mouse (oral) LD50 = 237 mg/kg; Mouse (i.p.) LD50 = 190 mg/kg; Mouse (i.v.) LD50 = 153 mg/kg. |
| Baicalein | Trihydroxyflavone | MW = 270.24 g/mol; XLogP3 = 1.7; TPSA = 87 Å2; HBD = 3; HBA = 5 | - |
| Dioscin | Spirostanyl glycoside | MW = 869.0 g/mol; XLogP3 = 1.3; TPSA = 236 Å2; HBD = 8; HBA = 16 | Mouse (s.c.) LD50 > 300 mg/kg |
| Tanshinone IIA | Diterpenoid | MW = 294.3 g/mol; XLogP3 = 4.3; TPSA = 47.3 Å2; HBD = 0; HBA = 3 | - |
| Oleanolic acid | Triterpenoid | MW = 456.7 g/mol; XLogP3 = 7.5; TPSA = 57.5 Å2; HBD = 2; HBA = 3 | Rat (oral) LD50 > 2 g/kg; Rat (i.p.) LD50 > 2 g/kg; Mouse (oral) LD50 > 2 g/kg; Mouse (i.p.) LD50 = 1500 mg/kg |
| Oxymatrine | Alkaloid | MW = 264.36 g/mol; XLogP3 = 1; TPSA = 38.4 Å2; HBD = 0; HBA = 2 | Mouse (i.p.) LD50 = 521 mg/kg; Mouse (i.m.) LD50 = 257 mg/kg; Mouse (i.v.) LD50 = 150 mg/kg |
| Gastrodin | Phenolic glycoside | MW = 286.28 g/mol; XLogP3 = −0.8; TPSA = 120 Å2; HBD = 5; HBA = 7 | - |
| Betulinic acid | Triterpenoid | MW = 456.7 g/mol; XLogP3 = 8.2; TPSA = 57.5 Å2; HBD = 2; HBA = 3 | - |
| Compound | Model/Cell | TLR Target | Agonist/Context | Effect vs. Control |
|---|---|---|---|---|
| Chlorogenic acid | Primary rat hepatic stellate cells | TLR4/MyD88 | LPS | No change in TLR4 or MyD88 expression vs. control; downstream NF-κB/ROS inhibited [113] |
| Glycyrrhizin | RAW264.7 macrophages and airway epithelium models | TLR4/CD14 | LPS or HMGB1-rich supernatants | No effect on TLR4/CD14 expression; reduces TLR4 translocation to lipid rafts and downstream signaling [114] |
| Resveratrol | RAW264.7 macrophages | TLR2/3/4/9 pathways | Poly I:C (TLR3), LPS (TLR4), Pam3CSK4 (TLR2), CpG (TLR9) | Inhibits TRIF-dependent (TLR3/4) NF-κB, no inhibition on MyD88-dependent TLR2/9 [115] |
| Berberine | LPS-stimulated macrophages | TLR4/MyD88 | LPS | TLR4 protein unchanged; interferes with TLR4–MyD88 signaling [116] |
| Curcumin | Hepatocytes/marrow (ischemia–reperfusion in vivo and in vitro) | TLR4/NF-κB | H/R injury or LPS | No significant change vs. control in unstimulated groups; inhibits TLR4/NF-κB only under injurious stimulation [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, C.; Pușcașu, C.; Nitulescu, G.M.; Zanfirescu, A. Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging? Int. J. Mol. Sci. 2025, 26, 11305. https://doi.org/10.3390/ijms262311305
Andrei C, Pușcașu C, Nitulescu GM, Zanfirescu A. Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging? International Journal of Molecular Sciences. 2025; 26(23):11305. https://doi.org/10.3390/ijms262311305
Chicago/Turabian StyleAndrei, Corina, Ciprian Pușcașu, George Mihai Nitulescu, and Anca Zanfirescu. 2025. "Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging?" International Journal of Molecular Sciences 26, no. 23: 11305. https://doi.org/10.3390/ijms262311305
APA StyleAndrei, C., Pușcașu, C., Nitulescu, G. M., & Zanfirescu, A. (2025). Modulation of Toll-like Receptors with Natural Compounds: A Therapeutic Avenue Against Inflammaging? International Journal of Molecular Sciences, 26(23), 11305. https://doi.org/10.3390/ijms262311305

