Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Study Population, Inclusion and Exclusion Criteria
2.2. Demographic Characteristics, Statistical Analysis, Sample Size Calculation and Sample Collection
2.3. MiRNA Isolation from Serum Samples and Synovial Tissues
2.4. Reverse Transcription and Quantitative Polymerase Chain Reaction (qPCR) Assay
2.5. Statistical Analysis
3. Results
3.1. Differential Expression of Let-7i-5p in AL and Post-THA Patients
3.2. Profound Decrease of Let-7e-5p and miR-15a-5p Levels in Both Asymptomatic Post-THA Recipients and AL Patients
3.3. Differential Expression Levels of miR-30a-3p and miR-130a-3p Among Cohort Groups
3.4. MiRNA Expression Profiles Distinguishing AL from Asymptomatic Post-THA Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Full Form |
| AL | Aseptic Loosening |
| CT | Computed Tomography |
| DAMPs | Danger-Associated Molecular Patterns |
| ECmiRNAs | Extracellular Circulating microRNAs |
| IL-1β | Interleukin 1 beta |
| IL-6 | Interleukin 6 |
| LLD | Leg Length Discrepancy |
| miRNAs | microRNAs |
| MRI | Magnetic Resonance Imaging |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| OA | Osteoarthritis |
| OPG | Osteoprotegerin |
| PAMPs | Pathogen-Associated Molecular Patterns |
| PET | Positron Emission Tomography |
| PI3K/Akt | Phosphoinositide 3-kinase/Protein Kinase B |
| PPOL | Periprosthetic Osteolysis |
| qRT-PCR | Quantitative Real-Time Polymerase Chain Reaction |
| RANK | Receptor Activator of Nuclear Factor Kappa-B |
| RANKL | Receptor Activator of Nuclear Factor Kappa-B Ligand |
| RISC | RNA-Induced Silencing Complex |
| RUNX2 | Runt-related transcription factor 2 |
| SPECT/CT | Single-Photon Emission Computed Tomography/Computed Tomography |
| THA | Total Hip Arthroplasty |
| TLR4 | Toll-Like Receptor 4 |
| TNF-α | Tumor Necrosis Factor alpha |
| VTE | Venous Thromboembolism |
References
- Lützner, C.; Deckert, S.; Günther, K.P.; Postler, A.E.; Lützner, J.; Schmitt, J.; Limb, D.; Lange, T. Indication Criteria for Total Hip Arthroplasty in Patients with Hip Osteoarthritis-Recommendations from a German Consensus Initiative. Medicina 2022, 58, 574. [Google Scholar] [CrossRef]
- de Steiger, R.; Peng, A.; Lewis, P.; Graves, S. What Is the Long-term Survival for Primary THA With Small-head Metal-on-metal Bearings? Clin. Orthop. Relat. Res. 2018, 476, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Shichman, I.; Roof, M.; Askew, N.; Nherera, L.; Rozell, J.C.; Seyler, T.M.; Schwarzkopf, R. Projections and Epidemiology of Primary Hip and Knee Arthroplasty in Medicare Patients to 2040-2060. JB JS Open Access 2023, 8, e22. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Yu, S.; Chen, L.; Cleveland, J.D. Rates of Total Joint Replacement in the United States: Future Projections to 2020–2040 Using the National Inpatient Sample. J. Rheumatol. 2019, 46, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Pasqualini, I.; Emara, A.K.; Rullan, P.J.; Pan, X.; Simmons, H.L.; Klika, A.K.; Murray, T.G.; Piuzzi, N.S. Return to Sports and Return to Work After Total Hip Arthroplasty: A Systematic Review and Meta-analysis. JBJS Rev. 2023, 11, e22. [Google Scholar] [CrossRef]
- Kenney, C.; Dick, S.; Lea, J.; Liu, J.; Ebraheim, N.A. A systematic review of the causes of failure of Revision Total Hip Arthroplasty. J. Orthop. 2019, 16, 393–395. [Google Scholar] [CrossRef]
- Achakri, H.; Ben-Shlomo, Y.; Blom, A.; Boulton, C.; Bridgens, J.; Brittain, R.; Clark, E.; Dawson-Bowling, S.; Deere, K.; Esler, C.; et al. The National Joint Registry 20th Annual Report 2023; National Joint Registry: Hemel Hempstead, UK, 2022. [Google Scholar]
- Goodman, S.B.; Gallo, J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef]
- O’Shea, John J.; Gadina, Massimo; Siegel, Richard M. 9-Cytokines and Cytokine Receptors. In Clinical Immunology; Rich, Robert R., Fleishe, Thomas A., Shearer, William T., Schroeder, Harry W., Frew, Anthony J., Weyand, Cornelia M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 127–155.e1. [Google Scholar] [CrossRef]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; Escames, G.; Lei, W.; Zhang, X.; Li, M.; Jing, T.; Yao, Y.; Qiu, Z.; Wang, Z.; et al. The NLRP3 inflammasome: Contributions to inflammation-related diseases. Cell. Mol. Biol. Lett. 2023, 28, 51. [Google Scholar] [CrossRef]
- Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 2021, 39, 19–26. [Google Scholar] [CrossRef]
- Cong, Y.; Wang, Y.; Yuan, T.; Zhang, Z.; Ge, J.; Meng, Q.; Li, Z.; Sun, S. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Front. Immunol. 2023, 14, 1122057. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Bofill-De Ros, X.; Vang Ørom, U.A. Recent progress in miRNA biogenesis and decay. RNA Biol. 2024, 21, 36–43. [Google Scholar] [CrossRef]
- El-Daly, S.M.; Gouhar, S.A.; Abd Elmageed, Z.Y. Circulating microRNAs as Reliable Tumor Biomarkers: Opportunities and Challenges Facing Clinical Application. J. Pharmacol. Exp. Ther. 2023, 384, 35–51. [Google Scholar] [CrossRef]
- AlZaabi, A.; Shalaby, A. A Systematic Review of Diagnostic Performance of Circulating MicroRNAs in Colorectal Cancer Detection with a Focus on Early-Onset Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 9565. [Google Scholar] [CrossRef]
- Metcalf, G.A.D. MicroRNAs: Circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances. Oncogene 2024, 43, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Fang, H.; Gu, M.; Wang, H.; Yu, Q.; Chen, A.; Gan, K.F. MicroRNA Let-7i Regulates Innate TLR4 Pathways in Peripheral Blood Mononuclear Cells of Patients with Ankylosing Spondylitis. Int. J. Gen. Med. 2023, 16, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Sun, M.; Teng, X.; Xu, L. MicroRNA-7-5p regulates the expression of TFF3 in inflammatory bowel disease. Mol. Med. Rep. 2017, 16, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Abak, A.; Fattahi, F.; Hussen, B.M.; Bahroudi, Z.; Shoorei, H.; Taheri, M. The interaction between miRNAs/lncRNAs and nuclear factor-κB (NF-κB) in human disorders. Biomed. Pharmacother. 2021, 138, 111519. [Google Scholar] [CrossRef]
- Lou, Y.; Huang, Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp. Ther. Med. 2020, 19, 3060–3068. [Google Scholar] [CrossRef]
- González-López, P.; Álvarez-Villarreal, M.; Ruiz-Simón, R.; López-Pastor, A.R.; de Ceniga, M.V.; Esparza, L.; Martín-Ventura, J.L.; Escribano, Ó.; Gómez-Hernández, A. Role of miR-15a-5p and miR-199a-3p in the inflammatory pathway regulated by NF-κB in experimental and human atherosclerosis. Clin. Transl. Med. 2023, 13, e1363. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, B.; Huang, M.; Wang, X. miR-30a-3p participates in the development of asthma by targeting CCR3. Open Med. 2020, 15, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Huang, J.; Wang, H. MiR-30a-3p ameliorates oxidative stress in rheumatoid arthritis synovial fibroblasts via activation of Nrf2-ARE signaling pathway. Immunol. Lett. 2021, 232, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Hou, Y.; Liu, Y.; Yu, T.; Cui, Y.; Nie, H. MiR-130a-3p Alleviates Inflammatory and Fibrotic Phases of Pulmonary Fibrosis Through Proinflammatory Factor TNF-α and Profibrogenic Receptor TGF-βRII. Front. Pharmacol. 2022, 13, 863646. [Google Scholar] [CrossRef]
- Ju, H.Y.; Tang, S.S.; Li, B.J.; Luo, X.; Li, Q. The expression levels of circulating miR-140-3p, miR-130a-3p, and miR-320b as diagnostic biomarkers in acute ischemic stroke. Kaohsiung J. Med. Sci. 2023, 39, 927–935. [Google Scholar] [CrossRef]
- Kovalenko, B.; Bremjit, P.; Fernando, N. Classifications in Brief: Tönnis Classification of Hip Osteoarthritis. Clin. Orthop. Relat. Res. 2018, 476, 1680–1684. [Google Scholar] [CrossRef]
- Anil, U.; Singh, V.; Schwarzkopf, R. Diagnosis and Detection of Subtle Aseptic Loosening in Total Hip Arthroplasty. J. Arthroplast. 2022, 37, 1494–1500. [Google Scholar] [CrossRef]
- Sriram, H.; Khanka, T.; Kedia, S.; Tyagi, P.; Ghogale, S.; Deshpande, N.; Chatterjee, G.; Rajpal, S.; Patkar, N.V.; Subramanian, P.G.; et al. Improved protocol for plasma microRNA extraction and comparison of commercial kits. Biochem. Med. 2021, 31, 030705. [Google Scholar] [CrossRef]
- De-Ugarte, L.; Serra-Vinardell, J.; Nonell, L.; Balcells, S.; Arnal, M.; Nogues, X.; Mellibovsky, L.; Grinberg, D.; Diez-Perez, A.; Garcia-Giralt, N. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum. Cell 2018, 31, 33–41. [Google Scholar] [CrossRef]
- Chekka, L.M.S.; Langaee, T.; Johnson, J.A. Comparison of Data Normalization Strategies for Array-Based MicroRNA Profiling Experiments and Identification and Validation of Circulating MicroRNAs as Endogenous Controls in Hypertension. Front. Genet. 2022, 13, 836636. [Google Scholar] [CrossRef]
- Choudhary, A.; Pisulkar, G.; Taywade, S.; Awasthi, A.A.; Salwan, A. A Comprehensive Review of Total Hip Arthroplasty Outcomes in Post-traumatic Hip Arthritis: Insights and Perspectives. Cureus 2024, 16, e56350. [Google Scholar] [CrossRef]
- Hermansen, L.L.; Iversen, T.F.; Iversen, P.; Viberg, B.; Overgaard, S. The “true” 1-year incidence of dislocation after primary total hip arthroplasty: Validation of an algorithm identifying dislocations in the Danish National Patient Register based on 5,415 patients from the Danish Hip Arthroplasty Register. Acta Orthop. 2024, 95, 380–385. [Google Scholar] [CrossRef]
- Xu, D.; Di, K.; Fan, B.; Wu, J.; Gu, X.; Sun, Y.; Khan, A.; Li, P.; Li, Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front. Bioeng. Biotechnol. 2022, 10, 948959. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ding, H.; Lyu, J.; Chen, Y.; Huang, C.; Zhang, C.; Li, W.; Fang, X.; Zhang, W. Detection of rare microorganisms in bone and joint infections by metagenomic next-generation sequencing. Bone Jt. Res. 2024, 13, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Gu, Z.; Leng, J.; Zou, X.; Chen, H.; Min, F.; Zhou, W.; Zhang, L.; Li, G. Let-7f-5p ameliorates inflammation by targeting NLRP3 in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019, 118, 109313. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, S.; Wang, J.; Deng, F.; Guo, Y.; Li, Y.; Fan, M.; Song, Q.; Liu, H.; Weng, Y.; et al. MiR-30a regulates the proliferation, migration, and invasion of human osteosarcoma by targeting Runx2. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 3479–3488. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, C.; Lei, F.; Liao, M.; Wang, W.; Xu, N.; Zhang, Y.; Xie, W. MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. Sci. Rep. 2017, 7, 5270. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Liu, J.; Zhang, Z.; Mao, X.; Zhou, H. MicroRNA-130a enhances the killing ability of natural killer cells against non-small cell lung cancer cells by targeting signal transducers and activators of transcription 3. Biochem. Biophys. Res. Commun. 2020, 523, 481–486. [Google Scholar] [CrossRef]
- Roelofs, A.J.; De Bari, C. Osteoarthritis year in review 2023: Biology. Osteoarthr. Cartil. 2024, 32, 148–158. [Google Scholar] [CrossRef]
- Zhao, K.; Ruan, J.; Nie, L.; Ye, X.; Li, J. Effects of synovial macrophages in osteoarthritis. Front. Immunol. 2023, 14, 1164137. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Skeparnias, I.; Anastasakis, D.; Grafanaki, K.; Kyriakopoulos, G.; Alexopoulos, P.; Dougenis, D.; Scorilas, A.; Kontos, C.K.; Stathopoulos, C. Contribution of miRNAs, tRNAs and tRFs to Aberrant Signaling and Translation Deregulation in Lung Cancer. Cancers 2020, 12, 3056. [Google Scholar] [CrossRef] [PubMed]
- Grafanaki, K.; Grammatikakis, I.; Ghosh, A.; Gopalan, V.; Olgun, G.; Liu, H.; Kyriakopoulos, G.C.; Skeparnias, I.; Georgiou, S.; Stathopoulos, C.; et al. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol. Ther. 2023, 248, 108466. [Google Scholar] [CrossRef] [PubMed]
- Korfiati, A.; Grafanaki, K.; Kyriakopoulos, G.C.; Skeparnias, I.; Georgiou, S.; Sakellaropoulos, G.; Stathopoulos, C. Revisiting miRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int. J. Mol. Sci. 2022, 23, 1299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, W.; Zhang, P.; Ling, S.; Li, Y.; Zhao, D.; Peng, J.; Wang, A.; Li, Q.; Song, J.; et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol. 2015, 12, 343–353. [Google Scholar] [CrossRef]
- Abu Qudeiri, J.E.; Abdudeen, A.; Sahadevan, M.R.; Padmanabhan M, A. Numerical investigation on the wear characteristics of hip implant under static loading. Heliyon 2024, 10, e26151. [Google Scholar] [CrossRef]
- Mestry, C.; Ashavaid, T.F.; Shah, S.A. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann. Clin. Biochem. 2023, 60, 14–26. [Google Scholar] [CrossRef]







| Variable | OA Group (n = 21) | THA Group (n = 21) | REV Group (n = 21) |
|---|---|---|---|
| Gender (F/M) | 12/9 | 15/6 | 15/6 |
| Age (years) | 64.3 (58–76) | 76.9 (69–85) | 75.4 (63–81) |
| BMI (kg/m2) | 26.8 (23.2–34.7) | 24.6 (22.1–29.3) | 26.9 (23.6–32.8) |
| Time since primary THA (years) | — | 13.8 (12–16) | 14.7 (11–20) |
| Bearing surface | — | MoM: 13, CoC: 5, MoP: 3 | MoP: 11, CoP: 6, MoM: 4 |
| Type of fixation | - | Cementless: 16, Hybrid (cemented stem: 5) | Cementless:18, Hybrid (cemented stem: 3) |
| Preoperative HHS | 63.9 (52.8–77.6) | 82.3 (73.4–89.2) | 53.5 (41.4–63.9) |
| Preoperative SF-36—General health perception (%) | 58.6 (49–71) | 80.8 (71–86) | 50.2 (39–62) |
| Preoperative SF-36—Physical functioning (%) | 61.6 (52–74) | 82.6 (76–88) | 55.7 (49–70) |
| Primer Name | Sequence (5′ → 3′) |
|---|---|
| Oligo-dT adapter | GCGAGCACAGAATTAATACGACTCATATAGGTTTTTTTTTTTTVN |
| Outer Primer | GCGAGCACAGAATTAATACGACT |
| RNU6 | GCTCGCTTCGGCAGCACATA |
| let-7i-5p | TGAGGTAGTAGTTTGTGCTGTT |
| let-7e-5p | TGAGGTAGGAGGTTGTATAGTT |
| miR-15a-5p | TAGCAGCACATAATGGTTTGTGAA |
| miR-30a-3p | CTTTCAGTCGGATGTTTGCAGC |
| miR-130a-3p | CAGTGCAATGTTAAAAGGGCAT |
| miRNA | Normal Function | Effect of Downregulation in AL |
|---|---|---|
| let-7i-5p | Suppresses TLR4, NF-κB, NLRP3 → restrains inflammation | Enhanced TLR4/NF-κB signaling → sustained macrophage activation and osteolysis |
| miR-30a-3p | Inhibits autophagy & NF-κB, modulates osteoblast/osteoclast balance | Increased inflammation, impaired osteoblast function → net bone loss |
| miR-130a-3p | Regulates macrophage polarization, suppresses osteoclastogenesis | Shift to M1 phenotype, increased NFATc1 activity → chronic inflammation, bone resorption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papagiannis, S.; Kokkalis, Z.; Kyriakopoulos, G.; Petropoulou, A.; Tatani, I.; Kotsia, C.; Megas, P.; Stathopoulos, C. Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study. J. Pers. Med. 2025, 15, 508. https://doi.org/10.3390/jpm15110508
Papagiannis S, Kokkalis Z, Kyriakopoulos G, Petropoulou A, Tatani I, Kotsia C, Megas P, Stathopoulos C. Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study. Journal of Personalized Medicine. 2025; 15(11):508. https://doi.org/10.3390/jpm15110508
Chicago/Turabian StylePapagiannis, Spyridon, Zinon Kokkalis, George Kyriakopoulos, Antonia Petropoulou, Irini Tatani, Christiana Kotsia, Panagiotis Megas, and Constantinos Stathopoulos. 2025. "Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study" Journal of Personalized Medicine 15, no. 11: 508. https://doi.org/10.3390/jpm15110508
APA StylePapagiannis, S., Kokkalis, Z., Kyriakopoulos, G., Petropoulou, A., Tatani, I., Kotsia, C., Megas, P., & Stathopoulos, C. (2025). Alterations in Circulating miRNAs and Their Potential Role in Aseptic Loosening After Total Hip Replacement: An Observational, Cross-Sectional Study. Journal of Personalized Medicine, 15(11), 508. https://doi.org/10.3390/jpm15110508

