Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,399)

Search Parameters:
Keywords = normal delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2113 KiB  
Article
Accumulation Kinetics and Biological Action of Doxorubicin in Rabbit Intervertebral Discs
by Eleni Mavrogonatou, Anastasios Kouroumalis, Lubna Khaldi, Christophoros Christophoridis and Dimitris Kletsas
Int. J. Mol. Sci. 2025, 26(15), 7386; https://doi.org/10.3390/ijms26157386 - 30 Jul 2025
Abstract
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance [...] Read more.
Doxorubicin (DOX) is widely used for the treatment of several tumors, but considerable dose-dependent side effects on many normal tissues, including bones, have been reported. The aim of the present study was to follow for the first time the kinetics of DOX accumulation/clearance in the non-vascularized intervertebral disc (IVD), as well as to assess the drug’s biological action in the annulus fibrosus (AF) and nucleus pulposus (NP) IVD cells and tissues. DOX was administered intravenously to rabbits before the isolation of IVDs, in which DOX quantification was performed using a highly sensitive LC-HRMS/MS analytical method. The effect of the drug on IVD cells’ physiology was assessed in vitro, while IVD tissue quality post-DOX administration was studied in vivo through histological analysis. DOX delivery was found significantly lower in the IVD compared to the highly vascularized skin, declining from the outer AF to the inner NP. The low DOX concentrations reaching the IVDs had marginal effects on cells’ viability, intracellular redox status, and p38 MAPK activation, while they did not evoke cellular senescence. Most importantly, the drug did not negatively affect ECM integrity, as collagen and proteoglycan content remained stable in vitro and in vivo. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 6143 KiB  
Article
Optical Character Recognition Method Based on YOLO Positioning and Intersection Ratio Filtering
by Kai Cui, Qingpo Xu, Yabin Ding, Jiangping Mei, Ying He and Haitao Liu
Symmetry 2025, 17(8), 1198; https://doi.org/10.3390/sym17081198 - 27 Jul 2025
Viewed by 167
Abstract
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to [...] Read more.
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to meet the accuracy and real-time demands of complex logistics scenarios due to challenges such as image distortion, uneven illumination, and field overlap. This paper proposes a three-level collaborative recognition method based on deep learning that facilitates structured information extraction through regional normalization, dual-path parallel extraction, and a dynamic matching mechanism. First, the geometric distortion associated with contour detection and the lightweight direction classification model has been improved. Second, by integrating the enhanced YOLOv5s for key area localization with the upgraded PaddleOCR for full-text character extraction, a dual-path parallel architecture for positioning and recognition has been constructed. Finally, a dynamic space–semantic joint matching module has been designed that incorporates anti-offset IoU metrics and hierarchical semantic regularization constraints, thereby enhancing matching robustness through density-adaptive weight adjustment. Experimental results indicate that the accuracy of this method on a self-constructed dataset is 89.5%, with an F1 score of 90.1%, representing a 24.2% improvement over traditional OCR methods. The dynamic matching mechanism elevates the average accuracy of YOLOv5s from 78.5% to 89.7%, surpassing the Faster R-CNN benchmark model while maintaining a real-time processing efficiency of 76 FPS. This study offers a lightweight and highly robust solution for the efficient extraction of order information in complex logistics scenarios, significantly advancing the intelligent upgrading of sorting systems. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 2884 KiB  
Article
Strategies for Offline Adaptive Biology-Guided Radiotherapy (BgRT) on a PET-Linac Platform
by Bin Cai, Thomas I. Banks, Chenyang Shen, Rameshwar Prasad, Girish Bal, Mu-Han Lin, Andrew Godley, Arnold Pompos, Aurelie Garant, Kenneth Westover, Tu Dan, Steve Jiang, David Sher, Orhan K. Oz, Robert Timmerman and Shahed N. Badiyan
Cancers 2025, 17(15), 2470; https://doi.org/10.3390/cancers17152470 - 25 Jul 2025
Viewed by 274
Abstract
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based [...] Read more.
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based on real-time assessments of Activity Concentration (AC), Normalized Target Signal (NTS), and bounded dose-volume histogram (bDVH%) metrics. Three offline strategies were developed: (1) preemptive adaptation for minor changes, (2) partial re-simulation for moderate changes, and (3) full re-simulation for major anatomical or metabolic alterations. Two clinical cases demonstrating strategies 1 and 2 are presented. Results: The preemptive adaptation strategy was applied in a case with early tumor shrinkage, maintaining delivery parameters within acceptable limits while updating contours and dose distribution. In the partial re-Simulation case, significant changes in PET signal necessitated a same-day PET functional modeling session and plan re-optimization, effectively restoring safe deliverability. Both cases showed reduced target volumes and improved OAR sparing without additional patient visits or tracer injections. Conclusions: Offline adaptive workflows for BgRT provide practical solutions to address inter-fractional changes in tumor structure and function. These strategies can help maintain the safety and accuracy of BgRT delivery and support clinical adoption of PET-guided radiotherapy, paving the way for future online adaptive capabilities. Full article
Show Figures

Figure 1

34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 317
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

11 pages, 857 KiB  
Article
Placental Expression of Sirtuins in Women with Gestational Diabetes
by Michał Czerewaty, Łukasz Ustianowski, Kajetan Kiełbowski, Estera Bakinowska, Krzysztof Safranow, Maciej Tarnowski, Tomasz Sroczyński and Andrzej Pawlik
Genes 2025, 16(7), 844; https://doi.org/10.3390/genes16070844 - 20 Jul 2025
Viewed by 299
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnant women. It can lead to several complications, such as preterm delivery, macrosomia, or metabolic disorders in newborns. Studies have revealed morphological and transcriptional differences between the placentas of patients with GDM and women with normal glucose tolerance. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent deacetylases that interact with and regulate the activity of numerous proteins. However, little is known about their role in the pathogenesis of GDM. This study was performed to analyze the placental expression of SIRTs and investigate their correlations with clinical parameters. Methods: GDM was diagnosed based on the 75 g oral glucose tolerance test in accordance with the criteria developed by the International Association of Diabetes and Pregnancy Study Groups. Placental tissues were collected, and the expression of SIRT1,-3,-4 and a reference gene (β-2 microglobulin) was analyzed. Results: The placental expression of SIRT1 and SIRT3 was elevated in women with GDM. However, there was no significant difference in SIRT4 expression between women with GDM and those with normal glucose tolerance. Furthermore, we found no significant correlations between SIRT1, SIRT3, and SIRT4 expression and clinical parameters. Conclusions: The findings of this study demonstrate elevated expression of SIRT1 and SIRT3 in the placentas of women with GDM. Further studies are required to confirm our observations and demonstrate the precise role of these enzymes in GDM. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1413 KiB  
Article
NRG Oncology Liver Proton SBRT and Hypofractionated Radiation Therapy: Current Treatment Technical Assessment and Practice Patterns
by Minglei Kang, Paige A. Taylor, Jiajian Shen, Jun Zhou, Jatinder Saini, Theodore S. Hong, Kristin Higgins, Wei Liu, Ying Xiao, Charles B. Simone and Liyong Lin
Cancers 2025, 17(14), 2369; https://doi.org/10.3390/cancers17142369 - 17 Jul 2025
Viewed by 444
Abstract
Background/Objectives: Proton therapy delivers highly conformal doses to the target area without producing an exit dose, minimizing cumulative doses to healthy liver tissue. This study aims to evaluate current practices, challenges, and variations in the implementation of proton stereotactic body radiation therapy (SBRT) [...] Read more.
Background/Objectives: Proton therapy delivers highly conformal doses to the target area without producing an exit dose, minimizing cumulative doses to healthy liver tissue. This study aims to evaluate current practices, challenges, and variations in the implementation of proton stereotactic body radiation therapy (SBRT) and hypofractionated therapy for liver malignancies, with the goal of providing a technical assessment to promote broader adoption and support future clinical trials. Methods and Materials: An extensive survey was conducted by NRG Oncology across North American proton treatment centers to assess the current practices of proton liver SBRT and hypofractionated therapy. The survey focused on key aspects, including patient selection, prescription and normal tissue constraints, simulation and motion management, treatment planning, quality assurance (QA), treatment delivery, and the use of image-guided radiation therapy (IGRT). Results: This survey captures the current practice patterns and status of proton SBRT and hypofractionated therapy in liver cancer treatment.  Proton therapy is increasingly preferred for treating inoperable liver malignancies due to its ability to minimize healthy tissue exposure. However, the precision required for proton therapy presents challenges, particularly in managing uncertainties and target motion during high-dose fractions and short treatment courses. Survey findings revealed significant variability in clinical practices across centers, highlighting differences in motion management, dose fractionation schedules, and QA protocols. Conclusion: Proton SBRT and hypofractionated therapy offer significant potential for treating liver malignancies. A comprehensive approach involving precise patient selection, treatment planning, and QA is essential for ensuring safety and effectiveness. This survey provides valuable insights into current practices and challenges, offering a foundation for technical recommendations to optimize the use of proton therapy and guide future clinical trials. Full article
(This article belongs to the Special Issue Proton Therapy of Cancer Treatment)
Show Figures

Figure 1

11 pages, 2630 KiB  
Case Report
Prenatal Diagnosis of Vaginal Ectopic Ureter Insertion—Case Outcome and Literature Overview
by Iulian Gabriel Goidescu, Georgiana Nemeti, Adelina Staicu, Mihai Surcel, Cerasela Mihaela Goidescu, Ioana Cristina Rotar, Gheorghe Cruciat and Daniel Muresan
Diagnostics 2025, 15(14), 1788; https://doi.org/10.3390/diagnostics15141788 - 16 Jul 2025
Viewed by 284
Abstract
Background and clinical significance: Ectopic ureters are a rare urinary tract malformation, typically diagnosed in childhood and infrequently in adulthood. The prenatal detection by ultrasound and magnetic resonance imaging (MRI) of this clinical entity has scarcely been reported. Careful foetal scanning during the [...] Read more.
Background and clinical significance: Ectopic ureters are a rare urinary tract malformation, typically diagnosed in childhood and infrequently in adulthood. The prenatal detection by ultrasound and magnetic resonance imaging (MRI) of this clinical entity has scarcely been reported. Careful foetal scanning during the late second and third trimester might provide clues and lead to prenatal detection. However, even the postnatal diagnosis is challenging, and often delayed towards adulthood, since the condition may present with nonspecific symptoms, leading to underdiagnosis or misdiagnosis. In female patients, approximately 25% of ectopic ureters open into the vagina. Due to the high risk of recurrent urinary tract infections and the potential development of uretero-hydronephrosis, timely diagnosis is essential, and prompt surgical correction is mandated. Case presentation: We report the case of a 33-year-old GII PI patient diagnosed with cystic dysplasia of the left foetal kidney at the 16 WG (weeks of gestation) scan. The malformation was consistent at 21 WG when karyotyping by amniocentesis identified a normal female molecular karyotype. MRI performed at 28 weeks confirmed the left renal dysplasia and raised the suspicion of an abnormal insertion of the left ureter into the vagina. After delivery, the vaginal ureteral ectopy was confirmed at 3 weeks postpartum via cystoscopy. Postpartum whole exome sequencing identified a variant of uncertain significance (VUS) mutation in the SOX 13 gene (SRY-box transcription factor 13). Renal scintigraphy performed 7 months postnatally identified a hypo/afunctional left kidney which led to the indication of nephrectomy by the paediatric urologist. The surgical intervention was performed at 8 months postpartum with a favourable outcome. Conclusions: Ectopic ureters are a pathology generating life-long morbidity and discomfort of the offspring and young adult. Awareness to this pathology must be raised among clinicians, especially regarding the potential detection by minute prenatal ultrasound examinations, followed by MRI to refine diagnosis. Postnatally, the persistence of suspicious yet unspecific symptoms, in both males and females, must trigger thorough imaging/cystoscopic examination to reach diagnosis and provide correct management. Full article
(This article belongs to the Special Issue Advances in Fetal Diagnosis and Therapy)
Show Figures

Figure 1

15 pages, 2527 KiB  
Article
A Disposable SWCNTs/AuNPs-Based Screen-Printed ISE at Different Temperatures to Monitor Ca2+ for Hypocalcemia Diagnosis
by Zhixue Yu, Hui Wang, Yue He, Ruipeng Chen, Xiangfang Tang and Benhai Xiong
Chemosensors 2025, 13(7), 252; https://doi.org/10.3390/chemosensors13070252 - 12 Jul 2025
Viewed by 361
Abstract
In this paper, screen-printed ion-selective electrodes combined with single-walled carbon nanotubes (SWCNTs) and gold nanoparticles (AuNPs) were used to rapidly and accurately measure serum Ca2+ concentration. Due to the susceptibility of cows to hypocalcemia after delivery, this disease can affect the health [...] Read more.
In this paper, screen-printed ion-selective electrodes combined with single-walled carbon nanotubes (SWCNTs) and gold nanoparticles (AuNPs) were used to rapidly and accurately measure serum Ca2+ concentration. Due to the susceptibility of cows to hypocalcemia after delivery, this disease can affect the health of cows and reduce milk production. Therefore, the development of an economical and swift detection method holds paramount importance for facilitating early diagnosis and subsequent treatment. In this study, by combining the high electrical conductivity and large surface area of SWCNTs with the strong catalytic activity of AuNPs, a SWCNTs/AuNPs composite with high sensitivity and good stability was prepared, achieving efficient selective recognition and signal conversion of Ca2+. The experimental results indicate that the screen-printed electrode modified with SWCNTs/AuNPs exhibited excellent performance in the determination of Ca2+ concentration. Its linear response range is 10−5.5–10−1 M, covering the normal and pathological concentration range of Ca2+ in cow blood, and the detection limit is far below the clinical detection requirements. In addition, the electrode also has good anti-interference ability and fast response time (about 15 s), showing good performance in the range of 5–45 °C. In practical applications, the combination of the electrode and portable detection equipment can realize the field rapid determination of cow blood Ca2+ concentration. This method is easy to operate, cost-effective, and easy to promote, providing strong technical support for the health management of dairy farms. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

20 pages, 2364 KiB  
Article
Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools
by Carlos Illanes-Bordomás, Mariana Landin and Carlos A. García-González
Polymers 2025, 17(14), 1919; https://doi.org/10.3390/polym17141919 - 11 Jul 2025
Viewed by 343
Abstract
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six [...] Read more.
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six variables: alginate and konjac glucomannan concentrations, compressed airflow, liquid pump pressures, and nozzle configuration. A hybrid software using Artificial Neural Networks and genetic algorithms was used to model and optimize the hydrogel formation, achieving a 100% desirable solution. The optimal formulation identified resulted in particles displaying a log-normal size distribution (R2 = 0.967) with an average diameter of 1.57 mm. Supercritical CO2 drying yielded aerogels with macropores and mesopores and a high specific surface area (201 ± 10 m2/g). The loading of vancomycin hydrochloride (Van) or a dexamethasone base (DX) into the aerogel cores during the process was tested. The aerogels exhibited appropriate structural characteristics, and both drugs showed burst release profiles with ca. 80% release within 10 min for DX and medium-dependent release for Van. This study demonstrates the feasibility of producing konjac aerogel particles for delivery systems and the high potential of AI-driven optimization methods, highlighting the need for coating modifications to achieve the desired release profiles. Full article
Show Figures

Graphical abstract

12 pages, 1450 KiB  
Article
Polyhydramnios at Term in Gestational Diabetes: Should We Be Concerned?
by Mercedes Horcas-Martín, Tania Luque-Patiño, Claudia Usandizaga-Prat, Elena Díaz-Fernández, Victoria Melero-Jiménez, Luis Vázquez-Fonseca, Francisco Visiedo, José Román Broullón-Molanes, Rocío Quintero-Prado and Fernando Bugatto
Children 2025, 12(7), 920; https://doi.org/10.3390/children12070920 - 11 Jul 2025
Viewed by 407
Abstract
Background/Objectives: Pregnancies complicated by idiopathic polyhydramnios are linked to a heightened risk of numerous maternal and perinatal complications. We aim to study the implications of polyhydramnios in term pregnancies complicated with gestational diabetes mellitus (GDM). Methods: A prospective cohort study including 340 GDM [...] Read more.
Background/Objectives: Pregnancies complicated by idiopathic polyhydramnios are linked to a heightened risk of numerous maternal and perinatal complications. We aim to study the implications of polyhydramnios in term pregnancies complicated with gestational diabetes mellitus (GDM). Methods: A prospective cohort study including 340 GDM cases was conducted. An ultrasound scan was conducted at term between 37 and 40 weeks and amniotic fluid volume (AFV) was assessed by measuring the amniotic fluid index (AFI) and the single deepest pocket (SDP). Maternal demographics and obstetric and perinatal outcomes were evaluated after delivery. We performed comparisons between groups with normal AFV and polyhydramnios (AFI ≥ 24 cm or SDP ≥ 8 cm), and between groups with normal and increased AFV (AFI or SDP ≥ 75th centile). A multivariate logistic regression analysis was performed to study association between AVF measurements and adverse maternal and perinatal outcomes. Results: We found that women with GDM and polyhydramnios at term had a higher risk of maternal (54.3 vs. 27.5%, p < 0.001) and perinatal adverse outcomes (65.7% vs. 46.5%, p < 0.03). The increased AFV group showed a higher risk of fetal overgrowth (LGA: 21.4% vs. 8.2%, p < 0.001 and macrosomia: 19.8% vs. 5.4%, p < 0.001, respectively) and a lesser risk of delivering an SGA fetus (6.3% vs. 13.6%, respectively). Both AFI and SDP showed a significant correlation with newborn weight (r = 0.27; p < 0.001 and r = 0.28; p < 0.001, respectively) and newborn centile (r = 0.26; p < 0.001 and r = 0.26 for both). Subsequent to conducting a multivariate logistic regression analysis adjusted for pregestational BMI, nulliparity, and insulin treatment, both AFI and SDP were significantly associated with perinatal complications, but AFI showed a stronger association with fetal overgrowth (aOR 1.11; p = 0.004 for a LGA fetus and aOR 1.12; p = 0.002 for macrosomia) and with lower risk of delivering an SGA fetus (aOR 0.89; p = 0.009) or IUGR fetus (aOR 0.86; p = 0.03). ROC analysis showed a poor diagnostic performance of both AFI and SDP for identifying macrosomia (AUC 0.68 for AFI, and 0.65 for SDP). Conclusions: Detection of polyhydramnios at term, whether using AFI or SDP, identifies a subgroup of women with gestational diabetes with higher risks of obstetric and perinatal complications. Cases with increased AFV (AFI ≥ 18 cm or SDP ≥ 6.5 cm) are also associated with an increased risk of fetal overgrowth and may require more intensive monitoring for management and optimal delivery timing, with the aim of improve perinatal outcomes. Full article
(This article belongs to the Special Issue Advances in Prenatal Diagnosis and Their Impact on Neonatal Outcomes)
Show Figures

Figure 1

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 403
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

28 pages, 9146 KiB  
Review
Nanoscale Porphyrin-Based Metal–Organic Frameworks for Enhanced Radiotherapy–Radiodynamic Therapy: A Comprehensive Review
by Bin Gong, Qiuyun Zhang, Yijie Qu, Xiaohua Zheng and Weiqi Wang
Pharmaceutics 2025, 17(7), 883; https://doi.org/10.3390/pharmaceutics17070883 - 4 Jul 2025
Viewed by 520
Abstract
The phototherapeutic applications of porphyrin-based nanoscale metal–organic frameworks (nMOFs) are limited by the poor penetration of conventional excitation light sources into biological tissues. Radiodynamic therapy (RDT), which directly excites photosensitizers using X-rays, can overcome the issue of tissue penetration. However, RDT faces the [...] Read more.
The phototherapeutic applications of porphyrin-based nanoscale metal–organic frameworks (nMOFs) are limited by the poor penetration of conventional excitation light sources into biological tissues. Radiodynamic therapy (RDT), which directly excites photosensitizers using X-rays, can overcome the issue of tissue penetration. However, RDT faces the problems of low energy conversion efficiency, requiring a relatively high radiation dose, and the potential to cause damage to normal tissues. Researchers have found that by using some metals with high atomic numbers (high Z) as X-ray scintillators and coordinating them with porphyrin photosensitizers to form MOF materials, the excellent antitumor effect of radiotherapy (RT) and RDT can be achieved under low-dose X-ray irradiation, which can not only effectively avoid the penetration limitations of light excitation methods but also eliminate the defect issues associated with directly using X-rays to excite photosensitizers. This review summarizes the relevant research work in recent years, in which researchers have used metal ions with high Z, such as Hf4+, Th4+, Ta5+, and Bi3+, in coordination with carboxyl porphyrins to form MOF materials for combined RT and RDT toward various cancer cells. This review compares the therapeutic effects and advantages of using different high-Z metals and introduces the application of the heavy atom effect. Furthermore, it explores the introduction of a chemodynamic therapy (CDT) mechanism through iron coordination at the porphyrin center, along with optimization strategies such as oxygen delivery using hemoglobin to enhance the efficacy of these MOFs as radiosensitizers. This review also summarizes the potential of these materials in preclinical applications and highlights the current challenges they face. It is expected that the summary and prospects outlined in this review can further promote preclinical biomedical research into and the development of porphyrin-based nMOFs. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

15 pages, 527 KiB  
Article
Some Levels of Plasma Free Fatty Acids and Amino Acids in the Second Trimester Are Linked to Gestational Diabetes and Are Predictive of Persisting Impaired Glucose Tolerance After Delivery
by Vendula Bartáková, Anna Pleskačová, Lukáš Pácal, Monika Skrutková Langmajerová, Jindra Smutná, Katarína Chalásová, Veronika Eclerová, Zdeněk Glatz, Kateřina Kaňková and Josef Tomandl
J. Clin. Med. 2025, 14(13), 4744; https://doi.org/10.3390/jcm14134744 - 4 Jul 2025
Viewed by 286
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) represents an increased metabolic risk in future life for both mother and child. We hypothesize free fatty acids (FFAs) and amino acids (AAs) disturbances in plasma during second trimester might be indicating high risk of persisting glucose intolerance [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) represents an increased metabolic risk in future life for both mother and child. We hypothesize free fatty acids (FFAs) and amino acids (AAs) disturbances in plasma during second trimester might be indicating high risk of persisting glucose intolerance (PGI). The aim of study was to determine plasma FFAs and AAs during pregnancy in women with normal pregnancy and GDM and also in post-GDM women with PGI after delivery and to find potential association of altered FFAs and AAs profile with adverse peripartal outcomes and PGI after GDM. Material and Methods: A total of 54 pregnant women were included in the study. Of those 34 participants had GDM. PGI was diagnosed by oGTT up to one year after delivery. Plasma FFAs were determined using GC-FID and plasma AAs levels were determined using CE-MS method. Results: Decreased levels of tetradecanoic acid and several AAs were found in GDM group during pregnancy. Oleic and docosahexaenoic acid correlated positively while almost all AAs negatively correlated with oGTT values in the pregnancy (all p < 0.05, Spearman). Logistic regression model (using AAs, FFAs and BMI) identified higher citrulline and glutamate levels and lower tetradecenoic acid and choline as the best predictors for postpartum PGI. Some differences in AA levels were detected in women with macrosomic babies. Conclusions: Data support a possible link between GDM development and PGI after delivery and selected metabolite levels. The predictive potential of plasma FFAs and AAs levels on a diabetes risk in future life requires further validation. Full article
(This article belongs to the Special Issue Gestational Diabetes: Cutting-Edge Research and Clinical Practice)
Show Figures

Figure 1

15 pages, 1973 KiB  
Article
VIVA Stent Preclinical Evaluation in Swine: A Novel Cerebral Venous Stent with a Unique Delivery System
by Yuval Ramot, Michal Steiner, Udi Vazana, Abraham Nyska and Anat Horev
J. Clin. Med. 2025, 14(13), 4721; https://doi.org/10.3390/jcm14134721 - 3 Jul 2025
Viewed by 477
Abstract
Background: Venous sinus stenting is a promising treatment for intracranial venous disorders, such as idiopathic intracranial hypertension and pulsatile tinnitus, associated with transverse sinus stenosis. The VIVA Stent System (VSS) is a novel self-expanding braided venous stent designed to navigate tortuous cerebral venous [...] Read more.
Background: Venous sinus stenting is a promising treatment for intracranial venous disorders, such as idiopathic intracranial hypertension and pulsatile tinnitus, associated with transverse sinus stenosis. The VIVA Stent System (VSS) is a novel self-expanding braided venous stent designed to navigate tortuous cerebral venous anatomy. This preclinical study assessed the safety, thrombogenicity, and performance of the VSS in a swine model. Methods: Fifteen swine underwent bilateral internal mammary vein stenting with either the VSS (n = 9) or the PRECISE® PRO RX stent (n = 6, reference). Fluoroscopy and thrombogenicity assessments were conducted on the day of stenting, clinical pathology analysis was carried out throughout the in-life phase, and CT Venography was performed before sacrifice. Animals were sacrificed at 30 ± 3 or 180 ± 11 days post-stenting for necropsy and histological evaluation. Results: Fluoroscopic angiography confirmed the successful VSS deployment with complete venous wall apposition and no vessel damage. The VSS achieved the highest scores on a four-point Likert scale for most performance parameters. No thrombus formation was observed on either delivery system. CT Venography confirmed vessel patency, no stent migration, and complete stent integrity. Histopathology showed a mild, expected foreign body reaction at 30 days, which resolved by 180 days, indicating normal healing progression. Both stents showed increased luminal diameter and decreased wall thickness at 180 days, suggesting vessel recovery. No adverse reactions were observed in non-target organs. Conclusions: The VSS exhibited favorable safety, procedural performance, and thromboresistance in a swine model, supporting its potential clinical use for treating transverse sinus stenosis and related conditions. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Graphical abstract

35 pages, 1216 KiB  
Review
Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy
by Natalia Ivanovna Agalakova
Int. J. Mol. Sci. 2025, 26(13), 6407; https://doi.org/10.3390/ijms26136407 - 3 Jul 2025
Viewed by 535
Abstract
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an [...] Read more.
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an adaptive reaction aiming to restore ER proteostasis, prolonged and severe ERS leads to cell death. Taking into account that the components of the ERS/UPR machinery in cancers of different types can be overexpressed or downregulated, both the induction of excessive ERS and suppression of UPR have been proposed as therapeutic strategies to sensitize cells to conventional chemotherapy. This narrative review presents a several examples of using natural and synthetic compounds that can either induce persistent ERS by selectively blocking ER Ca2+ pumps (SERCA) to disrupt ER Ca2+ homeostasis, or altering the activity of UPR chaperones and sensors (GRP78, PERK, IRE1α, and ATF6) to impair protein degradation signaling. The molecular alterations induced by miscellaneous inhibitors of ERS/UPR effectors are described as well. These agents showed promising therapeutic effects as a part of combination therapy in preclinical experimental settings; however, the number of clinical trials is still limited, while their results are inconsistent. Multiple side effects, high toxicity to normal cells, or poor bioavailability also hampers their clinical application. Since the pharmacological modulation of ERS/UPR is a valuable approach to sensitize cancer cells to standard chemotherapy, the search for more selective agents with better stability and low toxicity, as well as the development of more efficient delivery systems that can increase their therapeutic specificity, are highly required goals for future studies. Full article
Show Figures

Figure 1

Back to TopTop