Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Feed Solution Preparation
2.3. Preparation of Core–Shell Alcogels
2.4. Alcogels Characterization
2.5. Modelling and Optimization of Alcogel Formulations Through Artificial Intelligence Techniques
2.6. Core–Shell Aerogel Particles Production
2.7. Characterization of Aerogel Formulations
2.7.1. Morphological Characterization
2.7.2. Structural Characterization
2.7.3. Drug Loading and Encapsulation Efficiency Characterization
2.7.4. In Vitro Drug Release Characterization
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Considerations for the Definition of the Space Design
3.2. Modelling and Optimization of Core–Shell Alcogel Formulations Through Artificial Intelligence Techniques
3.2.1. Neurofuzzy Logic (NFL) Modelling
3.2.2. Optimization by Artificial Neural Networks and Genetic Algorithms
3.3. Characterization of Core–Shell Aerogel Particles
3.3.1. Morphology, Particle Size Distribution, and Textural Properties of Core–Shell Aerogels
3.3.2. Drug Loading, Entrapment Yield, and Drug Release Studies: Hydrophilic Vs. Hydrophobic Drugs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, I.; Gurikov, P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Gurikov, P.; Smirnova, I. Amorphization of Drugs by Adsorptive Precipitation from Supercritical Solutions: A Review. J. Supercrit. Fluids 2018, 132, 105–125. [Google Scholar] [CrossRef]
- Stergar, J.; Maver, U. Review of Aerogel-Based Materials in Biomedical Applications. J. Sol-Gel Sci. Technol. 2016, 77, 738–752. [Google Scholar] [CrossRef]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-Promoting Effects of Konjac Glucomannan and Its Practical Applications: A Critical Review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef]
- Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11, 2144. [Google Scholar] [CrossRef]
- Tkalec, G.; Knez, Ž.; Novak, Z. PH Sensitive Mesoporous Materials for Immediate or Controlled Release of NSAID. Microporous Mesoporous Mater. 2016, 224, 190–200. [Google Scholar] [CrossRef]
- Akgün, I.S.; Ulker, Z.; Demir, E.; Işık, M.; Ekmekçiyan, N.; Darvishi, S.; Karaz, S.; Şenses, E.; Erkey, C. Enteric Coating of Drug Loaded Aerogel Particles in a Wurster Fluidized Bed and Its Effect on Release Behaviour. J. Drug Deliv. Sci. Technol. 2023, 82, 104279. [Google Scholar] [CrossRef]
- Schroeter, B.; Yonkova, V.P.; Goslinska, M.; Orth, M.; Pietsch, S.; Gurikov, P.; Smirnova, I.; Heinrich, S. Spray Coating of Cellulose Aerogel Particles in a Miniaturized Spouted Bed. Cellulose 2021, 28, 7795–7812. [Google Scholar] [CrossRef]
- Veronovski, A.; Knez, Ž.; Novak, Z. Preparation of Multi-Membrane Alginate Aerogels Used for Drug Delivery. J. Supercrit. Fluids 2013, 79, 209–215. [Google Scholar] [CrossRef]
- De Cicco, F.; Russo, P.; Reverchon, E.; García-González, C.A.; Aquino, R.P.; Del Gaudio, P. Prilling and Supercritical Drying: A Successful Duo to Produce Core-Shell Polysaccharide Aerogel Beads for Wound Healing. Carbohydr. Polym. 2016, 147, 482–489. [Google Scholar] [CrossRef]
- Taylan, G.O.; Illanes-Bordomás, C.; Guven, O.; Erkan, E.; Erünsal, S.Ç.; Oztop, M.H.; García-González, C.A. Core-Shell Aerogel Design for Enhanced Oral Insulin Delivery. Int. J. Pharm. 2024, 669, 125038. [Google Scholar] [CrossRef] [PubMed]
- Carrêlo, H.; Cidade, M.T.; Borges, J.P.; Soares, P. Gellan Gum/Alginate Microparticles as Drug Delivery Vehicles: DOE Production Optimization and Drug Delivery. Pharmaceuticals 2023, 16, 1029. [Google Scholar] [CrossRef] [PubMed]
- Mennini, N.; Furlanetto, S.; Cirri, M.; Mura, P. Quality by Design Approach for Developing Chitosan-Ca-Alginate Microspheres for Colon Delivery of Celecoxib-Hydroxypropyl-β-Cyclodextrin-PVP Complex. Eur. J. Pharm. Biopharm. 2012, 80, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Takahara, J.; Takayama, K.; Nagai, T. Multi-Objective Simultaneous Optimization Technique Based on an Artificial Neural Network in Sustained Release Formulations. J. Control. Release 1997, 49, 11–20. [Google Scholar] [CrossRef]
- Dean, A.; Voss, D.; Draguljić, D. Response Surface Methodology. In Design and Analysis of Experiments; Springer Texts in Statistics; Springer International Publishing: Cham, Switzerland, 2017; pp. 565–614. ISBN 978-3-319-52248-7. [Google Scholar]
- Martinez-Borrajo, R.; Diaz-Rodriguez, P.; Landin, M. Rationalized Design to Explore the Full Potential of PLGA Microspheres as Drug Delivery Systems. Drug Deliv. 2023, 30, 2219864. [Google Scholar] [CrossRef]
- Vaithiyalingam, S.; Khan, M.A. Optimization and Characterization of Controlled Release Multi-Particulate Beads Formulated with a Customized Cellulose Acetate Butyrate Dispersion. Int. J. Pharm. 2002, 234, 179–193. [Google Scholar] [CrossRef]
- Simões, M.F.; Silva, G.; Pinto, A.C.; Fonseca, M.; Silva, N.E.; Pinto, R.M.A.; Simões, S. Artificial Neural Networks Applied to Quality-by-Design: From Formulation Development to Clinical Outcome. Eur. J. Pharm. Biopharm. 2020, 152, 282–295. [Google Scholar] [CrossRef]
- Rowe, R.C.; Colbourn, E. Neural Computing in Product Formulation. Chem. Educ. 2003, 8, 1–8. [Google Scholar] [CrossRef]
- Lefnaoui, S.; Rebouh, S.; Bouhedda, M.; Yahoum, M.M. Artificial Neural Network for Modeling Formulation and Drug Permeation of Topical Patches Containing Diclofenac Sodium. Drug Deliv. Transl. Res. 2020, 10, 168–184. [Google Scholar] [CrossRef]
- Rodríguez-Dorado, R.; Landín, M.; Altai, A.; Russo, P.; Aquino, R.P.; Del Gaudio, P. A Novel Method for the Production of Core-Shell Microparticles by Inverse Gelation Optimized with Artificial Intelligent Tools. Int. J. Pharm. 2018, 538, 97–104. [Google Scholar] [CrossRef]
- Alvarez-Manceñido, F.; Landin, M.; Martínez-Pacheco, R. Konjac Glucomannan/Xanthan Gum Enzyme Sensitive Binary Mixtures for Colonic Drug Delivery. Eur. J. Pharm. Biopharm. 2008, 69, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mu, R.-J.; Lin, L.; Chen, X.; Lin, S.; Ye, Q.; Pang, J. Bioinspired Aerogel Based on Konjac Glucomannan and Functionalized Carbon Nanotube for Controlled Drug Release. Int. J. Biol. Macromol. 2019, 133, 693–701. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Yang, F. Konjac Glucomannan, a Promising Polysaccharide for OCDDS. Carbohydr. Polym. 2014, 104, 175–181. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Shao, Q.; Rowe, R.C.; York, P. Comparison of Neurofuzzy Logic and Neural Networks in Modelling Experimental Data of an Immediate Release Tablet Formulation. Eur. J. Pharm. Sci. 2006, 28, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Colbourn, E.; Rowe, R.C. Neural Computing and Farmaceutical Formulation, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005; Volume 4, ISBN 978-0-429-13148-6. [Google Scholar]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Robitzer, M.; Tourrette, A.; Horga, R.; Valentin, R.; Boissière, M.; Devoisselle, J.M.; Di Renzo, F.; Quignard, F. Nitrogen Sorption as a Tool for the Characterisation of Polysaccharide Aerogels. Carbohydr. Polym. 2011, 85, 44–53. [Google Scholar] [CrossRef]
- Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Sigurdsson, H.H.; Concheiro, A.; Loftsson, T. γ-Cyclodextrin Hydrogels and Semi-Interpenetrating Networks for Sustained Delivery of Dexamethasone. Carbohydr. Polym. 2010, 80, 900–907. [Google Scholar] [CrossRef]
- USP. Reagents: Ph 7.4 Phosphate Buffered Saline TS; Reagents; United States Pharmacopeia: Rockville, MD, USA, 2024. [Google Scholar]
- USP. General Chapter: (711) Dissolution; United States Pharmacopeia: Rockville, MD, USA, 2024. [Google Scholar]
- Gómez-Amoza, J.L. Capítulo 3—Caracterización de Sólidos Pulverulentos. In Tratado de Tecnología Farmacéutica. Volumen I: Sistemas Farmacéuticos; Martinez Pacheco, R., Ed.; Síntesis: Madrid, Spain, 2016; Volume 1, ISBN 978-84-9077-098-6. [Google Scholar]
- Ferraz, M.P.; Mateus, A.Y.; Sousa, J.C.; Monteiro, F.J. Nanohydroxyapatite Microspheres as Delivery System for Antibiotics: Release Kinetics, Antimicrobial Activity, and Interaction with Osteoblasts. J. Biomed. Mater. Res. 2007, 81A, 994–1004. [Google Scholar] [CrossRef]
- Ribeiro, C.C.; Barrias, C.C.; Barbosa, M.A. Preparation and Characterisation of Calcium-Phosphate Porous Microspheres with a Uniform Size for Biomedical Applications. J. Mater. Sci. Mater. Med. 2006, 17, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, P.; Colombo, P.; Colombo, G.; Russo, P.; Sonvico, F. Mechanisms of Formation and Disintegration of Alginate Beads Obtained by Prilling. Int. J. Pharm. 2005, 302, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kavli, T.; Weyer, E. ASMOD (Adaptive Spline Modelling of Observation Data): Some Theoretical and Experimental Results. In Proceedings of the IEE Colloquium on Advances in Neural Networks for Control and Systems, Berlin, Germany, 25–27 May 1994; pp. 3/1–3/7. [Google Scholar]
- Seoane-Viaño, I.; Januskaite, P.; Alvarez-Lorenzo, C.; Basit, A.W.; Goyanes, A. Semi-Solid Extrusion 3D Printing in Drug Delivery and Biomedicine: Personalised Solutions for Healthcare Challenges. J. Control. Release 2021, 332, 367–389. [Google Scholar] [CrossRef]
- Yoshimura, M.; Nishinari, K. Dynamic Viscoelastic Study on the Gelation of Konjac Glucomannan with Different Molecular Weights. Food Hydrocoll. 1999, 13, 227–233. [Google Scholar] [CrossRef]
- Du, X.; Li, J.; Chen, J.; Li, B. Effect of Degree of Deacetylation on Physicochemical and Gelation Properties of Konjac Glucomannan. Food Res. Int. 2012, 46, 270–278. [Google Scholar] [CrossRef]
- Luo, X.; He, P.; Lin, X. The Mechanism of Sodium Hydroxide Solution Promoting the Gelation of Konjac Glucomannan (KGM). Food Hydrocoll. 2013, 30, 92–99. [Google Scholar] [CrossRef]
- Berkland, C.; Kim, K.; Pack, D.W. Fabrication of PLG Microspheres with Precisely Controlled and Monodisperse Size Distributions. J. Control. Release 2001, 73, 59–74. [Google Scholar] [CrossRef]
- Chan, E.-S.; Lee, B.-B.; Ravindra, P.; Poncelet, D. Prediction Models for Shape and Size of Ca-Alginate Macrobeads Produced through Extrusion–Dripping Method. J. Colloid Interface Sci. 2009, 338, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Davarcı, F.; Turan, D.; Ozcelik, B.; Poncelet, D. The Influence of Solution Viscosities and Surface Tension on Calcium-Alginate Microbead Formation Using Dripping Technique. Food Hydrocoll. 2017, 62, 119–127. [Google Scholar] [CrossRef]
- Ouwerx, C.; Velings, N.; Mestdagh, M.M.; Axelos, M.A.V. Physico-Chemical Properties and Rheology of Alginate Gel Beads Formed with Various Divalent Cations. Polym. Gels Netw. 1998, 6, 393–408. [Google Scholar] [CrossRef]
- Lakehal, I.; Montembault, A.; David, L.; Perrier, A.; Vibert, R.; Duclaux, L.; Reinert, L. Prilling and Characterization of Hydrogels and Derived Porous Spheres from Chitosan Solutions with Various Organic Acids. Int. J. Biol. Macromol. 2019, 129, 68–77. [Google Scholar] [CrossRef]
- López-Iglesias, C.; Barros, J.; Ardao, I.; Monteiro, F.J.; Alvarez-Lorenzo, C.; Gómez-Amoza, J.L.; García-González, C.A. Vancomycin-Loaded Chitosan Aerogel Particles for Chronic Wound Applications. Carbohydr. Polym. 2019, 204, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. [Google Scholar] [CrossRef]
- Del Gaudio, P.; Auriemma, G.; Russo, P.; Mencherini, T.; Campiglia, P.; Stigliani, M.; Aquino, R.P. Novel Co-Axial Prilling Technique for the Development of Core–Shell Particles as Delayed Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2014, 87, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Sellitto, M.R.; Amante, C.; Aquino, R.P.; Russo, P.; Rodríguez-Dorado, R.; Neagu, M.; García-González, C.A.; Adami, R.; Del Gaudio, P. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds. Gels 2023, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Remuiñán-Pose, P.; López-Iglesias, C.; Iglesias-Mejuto, A.; Mano, J.F.; García-González, C.A.; Rial-Hermida, M.I. Preparation of Vancomycin-Loaded Aerogels Implementing Inkjet Printing and Superhydrophobic Surfaces. Gels 2022, 8, 417. [Google Scholar] [CrossRef]
- Tkalec, G.; Knez, Ž.; Novak, Z. Formation of Polysaccharide Aerogels in Ethanol. RSC Adv. 2015, 5, 77362–77371. [Google Scholar] [CrossRef]
- Veronovski, A.; Tkalec, G.; Knez, Ž.; Novak, Z. Characterisation of Biodegradable Pectin Aerogels and Their Potential Use as Drug Carriers. Carbohydr. Polym. 2014, 113, 272–278. [Google Scholar] [CrossRef]
- Chim, R.B.; De Matos, M.B.C.; Braga, M.E.M.; Dias, A.M.A.; De Sousa, H.C. Solubility of Dexamethasone in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2012, 57, 3756–3760. [Google Scholar] [CrossRef]
- Zizovic, I. Supercritical Fluid Applications in the Design of Novel Antimicrobial Materials. Molecules 2020, 25, 2491. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Modeling of Diffusion Controlled Drug Delivery. J. Control. Release 2012, 161, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
Sample | NC | [KGM] (% w/v) | [Alg] (% w/v) | Pouter (bar) | Pinner (bar) | Airflow (L/min) |
---|---|---|---|---|---|---|
1 | B | 0.7 | 0.75 | 0.4 | 0.6 | 2.20 |
2 | C | 0.6 | 1.25 | 0.8 | 1.0 | 2.65 |
3 | A | 0.7 | 0.75 | 1.2 | 0.2 | 1.75 |
4 | A | 0.6 | 1.25 | 0.8 | 0.2 | 1.75 |
5 | B | 0.7 | 0.75 | 0.4 | 0.6 | 2.65 |
6 | C | 0.6 | 1.25 | 1.2 | 1.0 | 2.20 |
7 | A | 0.6 | 1.25 | 0.8 | 0.2 | 2.65 |
8 | B | 0.7 | 0.75 | 0.4 | 0.8 | 1.75 |
9 | C | 0.7 | 0.75 | 1.2 | 1.0 | 2.20 |
10 | A | 0.6 | 1.25 | 0.4 | 0.6 | 1.75 |
11 | B | 0.7 | 1.25 | 1.2 | 1.0 | 2.20 |
12 | C | 0.6 | 0.75 | 0.8 | 0.2 | 2.65 |
13 | C | 0.7 | 1.25 | 0.4 | 1.0 | 2.65 |
14 | A | 0.6 | 0.75 | 0.8 | 0.2 | 2.20 |
15 | B | 0.6 | 0.75 | 1.2 | 0.6 | 1.75 |
16 | A | 0.7 | 1.25 | 0.8 | 0.6 | 1.75 |
17 | B | 0.7 | 0.75 | 1.2 | 0.8 | 2.20 |
18 | C | 0.6 | 1.25 | 0.8 | 0.6 | 2.65 |
19 | A | 0.6 | 1.25 | 1.2 | 0.2 | 2.20 |
20 | B | 0.7 | 0.75 | 0.8 | 0.8 | 2.65 |
21 | C | 0.7 | 0.75 | 0.4 | 1.0 | 1.75 |
22 | B | 0.6 | 1.25 | 0.4 | 0.2 | 2.65 |
23 | A | 0.6 | 0.75 | 1.2 | 1.0 | 2.20 |
24 | C | 0.7 | 1.25 | 0.8 | 0.6 | 1.75 |
Sample | Prilling Capability Score | Mean Feret Diameter (mm) | Circularity | Centred Core Score | Coating Thickness (mm) |
---|---|---|---|---|---|
1 | 2 | 1.474 | 0.952 | 4 | 0.298 |
2 | 2 | 1.324 | 0.918 | 3 | 0.074 |
3 | 0 | 2.417 | 0.738 | 0 | 0 |
4 | * | * | * | * | * |
5 | 1 | 1.384 | 0.929 | 1 | 0.306 |
6 | 1 | 1.769 | 0.905 | 3 | 0.307 |
7 | * | * | * | * | * |
8 | 2 | 1.477 | 0.946 | 1 | 0.323 |
9 | 2 | 1.440 | 0.882 | 3 | 0.091 |
10 | * | * | * | * | * |
11 | 1 | 2.408 | 0.742 | 0 | 0 |
12 | 2 | 1.681 | 0.825 | 5 | 0.170 |
13 | 2 | 1.428 | 0.891 | 0 | 0 |
14 | 2 | 1.599 | 0.823 | 1 | 0.395 |
15 | * | * | * | * | * |
16 | 0 | 1.610 | 0.915 | 0 | 0 |
17 | 2 | 3.022 | 0.642 | 0 | 0 |
18 | 2 | 1.216 | 0.902 | 3 | 0.089 |
19 | * | * | * | * | * |
20 | 2 | 1.107 | 0.944 | 2 | 0.254 |
21 | 2 | 1.486 | 0.924 | 0 | 0 |
22 | * | * | * | * | * |
23 | 0 | 1.909 | 0.829 | 2 | 0.343 |
24 | 2 | 1.707 | 0.916 | 4 | 0.139 |
Output | Submodels | Inputs from NFL Submodels | R2 | Calculated F Value | d.f. (v1, v2) | Critical F α < 0.05 |
---|---|---|---|---|---|---|
Prilling capability score | 1 | NC | 73.88 | 7.07 | 6, 15 | 2.79 |
2 | [Alg] | |||||
3 | Pouter | |||||
Mean Feret diameter | 1 | NC × Pouter | 93.12 | 1.80 | 15, 2 | 19.45 |
2 | [KGM] × Pinner | |||||
3 | Airflow | |||||
Circularity | 1 | NC × Pouter | 92.07 | 10.31 | 9, 8 | 3.38 |
2 | Pinner | |||||
3 | Pouter | |||||
Centred core score | 1 | NC × Pinner | 75.25 | 4.17 | 8, 11 | 2.94 |
2 | Pouter | |||||
Coating thickness | 1 | [Alg] | 89.72 | 7.85 | 10, 9 | 3.14 |
2 | [KGM] × Airflow | |||||
3 | Pouter × Pinner |
Property | Weight | Function | Min | Mid1 | Mid2 | Max |
---|---|---|---|---|---|---|
Prilling capability score | 10 | UP | 0 | 1.5 | 1.6 | 2 |
Mean Feret Diameter | 5 | TENT | 1.107 | 2 | 2.5 | 3.022 |
Circularity | 1 | UP | 0.642 | 0.7985 | 0.7985 | 0.955 |
Centred core score | 9 | UP | 0 | 4 | 4.1 | 5 |
Coating thickness | 8 | UP | 0.074 | 0.2345 | 0.2345 | 0.395 |
Property | Prilling Capability Score | Mean Feret Diameter (mm) | Circularity | Centred Core Score | Coating Thickness (mm) |
---|---|---|---|---|---|
Theoretical | 2 | 2.10 | 0.86 | 4 | 0.28 |
Experimental | 2 ± 0 | 1.83 ± 0.43 | 0.89 ± 0.13 | 4 ± 0 | 0.32 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illanes-Bordomás, C.; Landin, M.; García-González, C.A. Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools. Polymers 2025, 17, 1919. https://doi.org/10.3390/polym17141919
Illanes-Bordomás C, Landin M, García-González CA. Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools. Polymers. 2025; 17(14):1919. https://doi.org/10.3390/polym17141919
Chicago/Turabian StyleIllanes-Bordomás, Carlos, Mariana Landin, and Carlos A. García-González. 2025. "Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools" Polymers 17, no. 14: 1919. https://doi.org/10.3390/polym17141919
APA StyleIllanes-Bordomás, C., Landin, M., & García-González, C. A. (2025). Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools. Polymers, 17(14), 1919. https://doi.org/10.3390/polym17141919