Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,331)

Search Parameters:
Keywords = normal contact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

18 pages, 4883 KiB  
Article
Analytical Solution for Longitudinal Response of Tunnel Structures Under Strike-Slip Fault Dislocation Considering Tangential Soil–Tunnel Contact Effect and Fault Width
by Helin Zhao, Qingzi Wu, Yao Zeng, Liangkun Zhou and Yumin Wen
Buildings 2025, 15(15), 2748; https://doi.org/10.3390/buildings15152748 - 4 Aug 2025
Viewed by 11
Abstract
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and [...] Read more.
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and the axial deformation characteristics of the tunnel structure, tangential foundation springs were introduced and a theoretical model for the longitudinal response of the tunnel under fault dislocation was established. Firstly, the tunnel was simplified as a finite-length beam. The normal and tangential springs were taken to represent the interaction between the soil and the lining. The fault’s free-field displacement was applied at the end of the normal foundation spring to simulate fault dislocation, and the differential equation for the longitudinal response of the tunnel structure was obtained. The analytical solution of the structural response was obtained using the Green’s function method. Then, the three-dimensional finite difference method was used to verify the effectiveness of the analytical model in this paper. The results show that the tangential contact effect between the surrounding rock and the lining has a significant impact on the longitudinal response of the tunnel structure. Ignoring this effect leads to an error of up to 35.33% in the peak value of the structural bending moment. Finally, the influences of the width of the fault zone, the soil stiffness of the fault zone, and the stiffness of the tunnel lining on the longitudinal response of the tunnel were explored. As the fault width increases, the internal force of the tunnel structure decreases. Increasing the lining concrete grade leads to an increase in the internal force of the structure. The increase in the elastic modulus of the surrounding rock in the fault area reduces the bending moment and shear force of the structure and increases the axial force. The research results can provide a theoretical basis for the anti-dislocation design of tunnels crossing faults. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

22 pages, 3894 KiB  
Article
3D-Printed Biocompatible Frames for Electrospun Nanofiber Membranes: An Enabling Biofabrication Technology for Three-Dimensional Tissue Models and Engineered Cell Culture Platforms
by Adam J. Jones, Lauren A. Carothers, Finley Paez, Yanhao Dong, Ronald A. Zeszut and Russell Kirk Pirlo
Micromachines 2025, 16(8), 887; https://doi.org/10.3390/mi16080887 - 30 Jul 2025
Viewed by 433
Abstract
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a [...] Read more.
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a novel and on-mat framing technique utilizing extrusion-based printing of a UV-curable biocompatible resin (Biotough D90 MF) to create rigid, integrated support structures directly on chitosan–polyethylene oxide (PEO) ESNFMs. We demonstrate fabrication of these circular frames via precise 3D printing and a simpler manual stamping method, achieving robust mechanical stabilization that enables routine laboratory manipulation without membrane damage. The resulting framed ESNFMs maintain structural integrity during subsequent processing and exhibit excellent biocompatibility in standardized extract assays (116.5 ± 12.2% normalized cellular response with optimized processing) and acceptable performance in direct contact evaluations (up to 78.2 ± 32.4% viability in the optimal configuration). Temporal assessment revealed characteristic cellular adaptation dynamics on nanofiber substrates, emphasizing the importance of extended evaluation periods for accurate biocompatibility determination of three-dimensional scaffolds. This innovative biofabrication approach overcomes critical limitations of previous handling methods, transforming delicate ESNFMs into robust, easy-to-use components for reliable integration into complex cell culture applications, barrier tissue models, and engineered systems. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 204
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

10 pages, 3042 KiB  
Article
Validity of IMUs in Comparison to a Marker-Based-Motion Capture System for Spatio-Temporal Parameters During Wheelchair Propulsion
by Lukas Karner, Lucas Schreff, Rainer Abel and Roy Müller
Sensors 2025, 25(15), 4676; https://doi.org/10.3390/s25154676 - 29 Jul 2025
Viewed by 159
Abstract
Background: Manual wheelchair propulsion is often associated with pain in the upper extremities. Recording spatio-temporal parameters can optimize movement patterns and prevent injuries. This study compares a marker-based camera system with inertial measurement units to validate their use in wheelchair propulsion on a [...] Read more.
Background: Manual wheelchair propulsion is often associated with pain in the upper extremities. Recording spatio-temporal parameters can optimize movement patterns and prevent injuries. This study compares a marker-based camera system with inertial measurement units to validate their use in wheelchair propulsion on a test stand. Methods: Spatio-temporal parameters of 27 manual wheelchair users propelling at three self-selected speeds (slow, normal, fast) were simultaneously recorded using a marker-based camera system and inertial measurement units, and subsequently compared between both systems. Results: A high correlation was observed among all spatio-temporal parameters (ρ > 0.992). The biases for the start time of hand contact with the pushrim (−0.02 ± 0.02 s), hand release from the pushrim (−0.02 ± 0.01 s), and push length (−0.45 ± 21.45 ms) were slightly overestimated, while recovery length (0.54 ± 21.02 ms), cycle speed (2.37 ± 2.67°/s), and push angle (1.75 ± 4.14°) were slightly underestimated. No bias was found for propulsion frequency. Conclusions: The spatio-temporal parameters recorded using inertial measurement units are suitable for the evaluation of manual wheelchair propulsion and can be used in a clinical context. The low acquisition costs and simple installation process may increase the use of inertial measurement units in the future. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 9314 KiB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 253
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
by Chao Ji, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen and Bo Yan
Agriculture 2025, 15(14), 1548; https://doi.org/10.3390/agriculture15141548 - 18 Jul 2025
Viewed by 326
Abstract
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on [...] Read more.
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on lateritic soil deformation remain poorly understood. This study aims to calibrate and validate discrete element method (DEM) models of lateritic soil at varying moisture contents of 20.51%, 22.39%, 24.53%, 26.28%, and 28.04% by integrating the Hertz–Mindlin contact mechanics with bonding and JKR cohesion models. Key parameters in the simulations were calibrated through systematic experimentation. Using Plackett–Burman design, critical factors significantly affecting axial compressive force—including surface energy, normal bond stiffness, and tangential bond stiffness—were identified. Subsequently, Box–Behnken response surface methodology was employed to optimize these parameters by minimizing deviations between simulated and experimental maximum axial compressive forces under each moisture condition. The calibrated models demonstrated high fidelity, with average relative errors of 4.53%, 3.36%, 3.05%, 3.32%, and 7.60% for uniaxial compression simulations across the five moisture levels. Stress–strain analysis under axial loading revealed that at a given surface displacement, both fracture dimensions and stress transfer rates decreased progressively with increasing moisture content. These findings elucidate the moisture-dependent micromechanical behavior of lateritic soil and provide critical data support for DEM-based design optimization of soil-engaging agricultural implements in tropical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 10071 KiB  
Article
Mechanisms of Adhesion Increase in Wet Sanded Wheel–Rail Contacts—A DEM-Based Analysis
by Bettina Suhr, William A. Skipper, Roger Lewis and Klaus Six
Lubricants 2025, 13(7), 314; https://doi.org/10.3390/lubricants13070314 - 18 Jul 2025
Viewed by 288
Abstract
In railways, problems in braking and traction can be caused by so-called low-adhesion conditions. Adhesion is increased by sanding, where sand grains are blasted towards the wheel–rail contact. Despite the successful use of sanding in practice and extensive experimental studies, the physical mechanisms [...] Read more.
In railways, problems in braking and traction can be caused by so-called low-adhesion conditions. Adhesion is increased by sanding, where sand grains are blasted towards the wheel–rail contact. Despite the successful use of sanding in practice and extensive experimental studies, the physical mechanisms of adhesion increase are poorly understood. This study combines experimental work with a DEM model to aim at a deeper understanding of adhesion increase during sanding. The experimentally observed processes during sanding involve repeated grain breakage, varying sand fragment spread, formation of clusters of crushed sand powders, plastic deformation of the steel surfaces due to the high load applied and shearing of the compressed sand fragments. The developed DEM model includes all these processes. Two types of rail sand are analysed, which differ in adhesion increase in High-Pressure Torsion tests under wet contact conditions. This study shows that higher adhesion is achieved when a larger proportion of the normal load is transferred through sand–steel contacts. This is strongly influenced by the coefficient of friction between sand and steel. Adhesion is higher for larger sand grains, higher sand fragment spread, and higher steel hardness, resulting in less indentation, all leading to larger areas covered by sand. Full article
Show Figures

Figure 1

15 pages, 2540 KiB  
Article
Experimental Analysis on the Effect of Contact Pressure and Activity Level as Influencing Factors in PPG Sensor Performance
by Francesco Scardulla, Gloria Cosoli, Cosmina Gnoffo, Luca Antognoli, Francesco Bongiorno, Gianluca Diana, Lorenzo Scalise, Leonardo D’Acquisto and Marco Arnesano
Sensors 2025, 25(14), 4477; https://doi.org/10.3390/s25144477 - 18 Jul 2025
Viewed by 420
Abstract
Photoplethysmographic (PPG) sensors are small and cheap wearable sensors which open the possibility of monitoring physiological parameters such as heart rate during normal daily routines, ultimately providing valuable information on health status. Despite their potential and distribution within wearable devices, their accuracy is [...] Read more.
Photoplethysmographic (PPG) sensors are small and cheap wearable sensors which open the possibility of monitoring physiological parameters such as heart rate during normal daily routines, ultimately providing valuable information on health status. Despite their potential and distribution within wearable devices, their accuracy is affected by several influencing parameters, such as contact pressure and physical activity. In this study, the effect of contact pressure (i.e., at 20, 60, and 75 mmHg) and intensity of physical activity (i.e., at 3, 6, and 8 km/h) were evaluated on a sample of 25 subjects using both a reference device (i.e., an electrocardiography-based device) and a PPG sensor applied to the skin with controlled contact pressure values. Results showed differing accuracy and precision when measuring the heart rate at different pressure levels, achieving the best performance at a contact pressure of 60 mmHg, with a mean absolute percentage error of between 3.36% and 6.83% depending on the physical activity levels, and a Pearson’s correlation coefficient of between 0.81 and 0.95. Plus, considering the individual optimal contact pressure, measurement uncertainty significantly decreases at any contact pressure, for instance, decreasing from 15 bpm (at 60 mmHg) to 8 bpm when running at a speed of 6 km/h (coverage factor k = 2). These results may constitute useful information for both users and manufacturers to improve the metrological performance of PPG sensors and expand their use in a clinical context. Full article
Show Figures

Figure 1

17 pages, 4636 KiB  
Article
Chip Flow Direction Modeling and Chip Morphology Analysis of Ball-End Milling Cutters
by Shiqiang Zhou, Anshan Zhang, Xiaosong Zhang, Maiqi Han and Bowen Liu
Coatings 2025, 15(7), 842; https://doi.org/10.3390/coatings15070842 - 18 Jul 2025
Viewed by 298
Abstract
Ball-end milling cutters are normally used for complex surface machining. During the milling process, the tool posture and cutting parameters of the ball-end milling cutters have a significant impact on chip formations and morphological changes. Based on the Cutter Workpiece Engagement (CWE) model, [...] Read more.
Ball-end milling cutters are normally used for complex surface machining. During the milling process, the tool posture and cutting parameters of the ball-end milling cutters have a significant impact on chip formations and morphological changes. Based on the Cutter Workpiece Engagement (CWE) model, this study establishes a chip flow model for ball-end milling cutters with consideration of the tool posture variation. The machining experiments of Ti-6Al-4V with a 15° inclined plane and different feed directions were carried out. The influence mechanism of time-varying tool posture on chip formation was systematically investigated. The results reveal an interaction between the chip flow direction and the cutting velocity direction. The included angle between the chip flow directions at the maximum and minimum contact points in the CWE area affects the degree of chip curling, with a smaller angle leading to weaker curling. This research provides a theoretical foundation for the optimization of posture parameters of ball-end milling cutters and expounds on the influence of the chip flow angle on chip deformation. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

27 pages, 3817 KiB  
Article
A Deep Learning-Based Diagnostic Framework for Shaft Earthing Brush Faults in Large Turbine Generators
by Katudi Oupa Mailula and Akshay Kumar Saha
Energies 2025, 18(14), 3793; https://doi.org/10.3390/en18143793 - 17 Jul 2025
Viewed by 243
Abstract
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. [...] Read more.
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. A key innovation lies in the use of FFT-derived spectrograms from both voltage and current waveforms as dual-channel inputs to the CNN, enabling automatic feature extraction of time–frequency patterns associated with different SEB fault types. The proposed framework combines advanced signal processing and convolutional neural networks (CNNs) to automatically recognize fault-related patterns in shaft grounding current and voltage signals. In the approach, raw time-domain signals are converted into informative time–frequency representations, which serve as input to a CNN model trained to distinguish normal and faulty conditions. The framework was evaluated using data from a fleet of large-scale generators under various brush fault scenarios (e.g., increased brush contact resistance, loss of brush contact, worn out brushes, and brush contamination). Experimental results demonstrate high fault detection accuracy (exceeding 98%) and the reliable identification of different fault types, outperforming conventional threshold-based monitoring techniques. The proposed deep learning framework offers a novel intelligent monitoring solution for predictive maintenance of turbine generators. The contributions include the following: (1) the development of a specialized deep learning model for shaft earthing brush fault diagnosis, (2) a systematic methodology for feature extraction from shaft current signals, and (3) the validation of the framework on real-world fault data. This work enables the early detection of brush degradation, thereby reducing unplanned downtime and maintenance costs in power generation facilities. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 5702 KiB  
Article
Calibration and Experimental Validation of Discrete Element Parameters of Fritillariae Thunbergii Bulbus
by Hang Zheng, Zhaowei Hu, Xianglei Xue, Yunxiang Ye, Tian Liu, Ning Ren, Fanyi Liu and Guohong Yu
Appl. Sci. 2025, 15(14), 7951; https://doi.org/10.3390/app15147951 - 17 Jul 2025
Viewed by 242
Abstract
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims [...] Read more.
The development of slicing equipment for Fritillariae Thunbergii Bulbus (FTB) has been constrained by the absence of precise and reliable simulation model parameters, which has hindered the optimization of structural design through simulation techniques. Taking FTB as the research object, this study aims to resolve this issue by conducting the calibration and experimental validation of the discrete element parameters for FTB. Both intrinsic and contact parameters were obtained through physical experiments, on the basis of which a discrete element model for FTB was established by using the Hertz–Mindlin with bonding model. To validate the calibrated bonding parameters of this model, the maximum shear force was selected as the evaluation index. Significant influencing factors were identified and analyzed through a single-factor test, a two-level factorial test, and the steepest ascent method. Response surface methodology was then applied for experimental design and parameter optimization. Finally, shear and compression tests were conducted to verify the accuracy of calibrated parameters. The results show that the mechanical properties of FTB are significantly affected by the normal stiffness per unit area, the tangential stiffness per unit area, and the bonding radius, with optimal values of 1.438 × 108 N·m−3, 0.447 × 108 N·m−3, and 1.362 mm, respectively. The relative errors in the shear and compression tests were all within 5.18%. The maximum error between the simulated and measured maximum shear force under three different types of blades was less than 5.11%. The percentages of the average shear force of the oblique blade were reduced by 52.23% and 29.55% compared with the flat and arc blades, respectively, while the force variation trends for FTB remained consistent. These findings confirm the reliability of the simulation parameters and establish a theoretical basis for optimizing the structural design of slicing equipment for FTB. Full article
Show Figures

Figure 1

18 pages, 10294 KiB  
Article
High-Precision Normal Stress Measurement Methods for Tire–Road Contact and Its Spatial and Frequency Domain Distribution Characteristics
by Liang Song, Xixian Wu, Zijie Xie, Jie Gao, Di Yun and Zongjian Lei
Lubricants 2025, 13(7), 309; https://doi.org/10.3390/lubricants13070309 - 16 Jul 2025
Viewed by 335
Abstract
This study investigates measurement methods for and the distribution characteristics of normal stress within tire–road contact areas. A novel measurement method, integrating 3D scanning technology with bearing area curve (BAC) analysis, is proposed. This method quantifies the rubber penetration depth and calculates contact [...] Read more.
This study investigates measurement methods for and the distribution characteristics of normal stress within tire–road contact areas. A novel measurement method, integrating 3D scanning technology with bearing area curve (BAC) analysis, is proposed. This method quantifies the rubber penetration depth and calculates contact stress based on rubber deformation. The key innovation of this method lies in this integrated methodology for high-precision stress mapping. In the spatial domain, stress distribution is characterized by the percentage of area occupied by different stress intervals, while in the frequency domain, stress levels are analyzed at various frequencies. The results demonstrate that as the Mean Profile Depth (MPD) of the road texture increases, the areas under stress greater than 1.0 MPa increase, while the areas under stress less than 0.8 MPa decrease. However, when the MPD exceeds 0.7 mm, this effect becomes less pronounced. Higher loads and harder rubber reduce the proportion of areas under lower stress and increase the proportion under higher stress. Low-frequency (<800 1/m) stress components increase with an MPD up to 0.7 mm, beyond which they exhibit diminished sensitivity. Stress at the same frequency is not significantly affected by load variation but increases markedly with increasing rubber hardness. This research provides crucial insights into contact stress distribution, establishing a foundation for analyzing road friction and optimizing surface texture design oriented towards high-friction pavements. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

15 pages, 4059 KiB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Viewed by 290
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

16 pages, 2107 KiB  
Article
Determination of Spatiotemporal Gait Parameters Using a Smartphone’s IMU in the Pocket: Threshold-Based and Deep Learning Approaches
by Seunghee Lee, Changeon Park, Eunho Ha, Jiseon Hong, Sung Hoon Kim and Youngho Kim
Sensors 2025, 25(14), 4395; https://doi.org/10.3390/s25144395 - 14 Jul 2025
Viewed by 543
Abstract
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm [...] Read more.
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events—initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)—using only a smartphone’s built-in inertial sensor placed in the user’s pocket. The algorithm enables estimation of spatiotemporal gait parameters such as cadence, stride length, loading response (LR), pre-swing (PSw), single limb support (SLS), double limb support (DLS), and swing phase and symmetry. Gait data were collected from 20 healthy individuals and 13 hemiparetic stroke patients. To reduce sensitivity to sensor orientation and suppress noise, sum vector magnitude (SVM) features were extracted and filtered using a second-order Butterworth low-pass filter at 3 Hz. A deep learning model was further compressed using knowledge distillation, reducing model size by 96% while preserving accuracy. The proposed method achieved error rates in event detection below 2% of the gait cycle for healthy gait and a maximum of 4.4% for patient gait in event detection, with corresponding parameter estimation errors also within 4%. These results demonstrated the feasibility of accurate and real-time gait monitoring using a smartphone. In addition, statistical analysis of gait parameters such as symmetry and DLS revealed significant differences between the normal and patient groups. While this study is not intended to provide or guide rehabilitation treatment, it offers a practical means to regularly monitor patients’ gait status and observe gait recovery trends over time. Full article
(This article belongs to the Special Issue Wearable Devices for Physical Activity and Healthcare Monitoring)
Show Figures

Figure 1

Back to TopTop