Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = nonlinear refractive index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5039 KB  
Article
Enhancement of Self-Collimation via Nonlinear Symmetry Breaking in Hexagonal Photonic Crystals
by Ozgur Onder Karakilinc
Photonics 2025, 12(8), 798; https://doi.org/10.3390/photonics12080798 - 8 Aug 2025
Viewed by 201
Abstract
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive [...] Read more.
This study proposes the use of a low-symmetry hexagonal photonic crystal (LSHPC) incorporating Kerr-type nonlinearity to enhance self-collimation. The equifrequency contours (EFCs) of a C2-symmetric LSHPC composed of nonlinear LiNbO3 rods are analyzed as a function of the nonlinear refractive index. The self-collimation characteristics, transmission spectrum, group velocity dispersion (GVD), and third-order dispersion (TOD) are investigated using the Plane Wave Expansion (PWE) and Finite Difference Time Domain (FDTD) methods. The results demonstrate that increasing the nonlinear index leads to a significant flattening of the EFCs, which enhances self-collimation performance. Furthermore, symmetry-lowering perturbations improve beam confinement and enable all-angle self-collimation. These findings highlight the potential of Kerr-type nonlinear photonic crystals for integrated photonic circuits requiring precise control over light propagation. Full article
Show Figures

Figure 1

16 pages, 2036 KB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 - 2 Aug 2025
Viewed by 545
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

9 pages, 1767 KB  
Article
Nondestructive Hardness Assessment of Chemically Strengthened Glass
by Geovana Lira Santana, Raphael Barbosa, Vinicius Tribuzi, Filippo Ghiglieno, Edgar Dutra Zanotto, Lino Misoguti and Paulo Henrique Dias Ferreira
Optics 2025, 6(3), 31; https://doi.org/10.3390/opt6030031 - 15 Jul 2025
Viewed by 339
Abstract
Chemically strengthened glass is widely used for its remarkable fracture strength, mechanical performance, and scratch resistance. Assessing its hardness is crucial to evaluating improvements from chemical tempering. However, conventional methods like Vickers hardness tests are destructive, altering the sample surface. This study presents [...] Read more.
Chemically strengthened glass is widely used for its remarkable fracture strength, mechanical performance, and scratch resistance. Assessing its hardness is crucial to evaluating improvements from chemical tempering. However, conventional methods like Vickers hardness tests are destructive, altering the sample surface. This study presents a novel, rapid, and nondestructive testing (NDT) approach by correlating the nonlinear refractive index (n2) with surface hardness. Using ultrafast laser pulses, we measured the n2 cross-section via the nonlinear ellipse rotation (NER) signal in Gorilla®-type glass subjected to ion exchange (Na+ by K+). A microscope objective lens provided a penetration resolution of ≈5.5 μm, enabling a localized NER signal analysis. We demonstrate a correlation between the NER signal and hardness, offering a promising pathway for advanced, noninvasive characterization. This approach provides a reliable alternative to traditional destructive techniques, with potential applications in industrial quality control and material science research. Full article
Show Figures

Figure 1

18 pages, 12019 KB  
Article
Influence of Temperature on the Optical Properties of Ternary Organic Thin Films for Photovoltaics
by Gabriela Lewinska, Jerzy Sanetra, Konstanty W. Marszalek, Alexander Quandt and Bouchta Sahraoui
Materials 2025, 18(14), 3319; https://doi.org/10.3390/ma18143319 - 15 Jul 2025
Viewed by 366
Abstract
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, [...] Read more.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2′,3′:4′,5′] thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4′,5′]thieno [2′,3′:4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ(3) after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer. Full article
Show Figures

Figure 1

12 pages, 483 KB  
Article
Effect of Localized Surface Plasmons on the Nonlinear Optical Properties in the Semi-Parabolic Quantum Well
by Shusen Chen and Kangxian Guo
Optics 2025, 6(3), 29; https://doi.org/10.3390/opt6030029 - 2 Jul 2025
Viewed by 351
Abstract
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression [...] Read more.
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression of the semi-parabolic well in the terahertz laser field is derived via a Kramers–Henneberger transformation, and then the new energy levels and wave functions are solved by the finite difference method. Next, optical absorption coefficients and refraction index changes are derived according to quantum theory. Finally, the study shows that localized surface plasmons can cause a redshift in the peak position, while simultaneously weakening the peak value of optical absorption coefficients. The results confirm that the desired performance can be obtained by adjusting the radius of the particle, the distance between the particle and the quantum well, or the natural frequency of the quantum well. Full article
Show Figures

Figure 1

34 pages, 6553 KB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Cited by 1 | Viewed by 1440
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

23 pages, 890 KB  
Review
Space–Time Duality in Optics: Its Origin and Applications
by Govind P. Agrawal
Photonics 2025, 12(6), 611; https://doi.org/10.3390/photonics12060611 - 13 Jun 2025
Viewed by 489
Abstract
The concept of space–time duality in optics was originally based on the mathematical connection between the diffraction of beams in space and the dispersion of pulses in time. This concept has been extended in recent years from the temporal analog of reflection for [...] Read more.
The concept of space–time duality in optics was originally based on the mathematical connection between the diffraction of beams in space and the dispersion of pulses in time. This concept has been extended in recent years from the temporal analog of reflection for optical pulses to photonic time crystals in a medium where refractive index varies with time in a periodic fashion. In this review, I discuss how the concept of space–time duality and the use of nonlinear optics has led to many advances in recent years. Starting from the historical origin of space–time duality, time lenses and their applications are reviewed first. Later sections cover phenomena such as soliton-induced temporal reflection, time-domain waveguiding, and the formation of spatiotemporal Bragg gratings. Full article
Show Figures

Figure 1

23 pages, 3507 KB  
Article
Third-Order Optical Nonlinearities in Antireflection Coatings: Model, Simulation, and Design
by Steffen Wilbrandt and Olaf Stenzel
Modelling 2025, 6(2), 48; https://doi.org/10.3390/modelling6020048 - 12 Jun 2025
Viewed by 927
Abstract
We present a practical numerical model for calculating transmittance and reflectance of multilayer antireflection coatings taking third-order optical nonlinearities into account. Thereby, the impact of different types of discretization of the complex refractive index profile on the predicted system performance is investigated. Additionally, [...] Read more.
We present a practical numerical model for calculating transmittance and reflectance of multilayer antireflection coatings taking third-order optical nonlinearities into account. Thereby, the impact of different types of discretization of the complex refractive index profile on the predicted system performance is investigated. Additionally, aspects of parallelism of the calculations are discussed. It is shown that the inclusion of nonlinearity is essential when large laser intensities are incident to the coating. The developed method is applied for the design of different antireflective coatings matching various types of targets. Full article
Show Figures

Figure 1

23 pages, 4593 KB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 552
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

34 pages, 2554 KB  
Article
An Improved Whale Optimization Algorithm via Angle Penalized Distance for Automatic Train Operation
by Longda Wang, Yanjie Ju, Long Guo, Gang Liu, Chunlin Li and Yan Chen
Biomimetics 2025, 10(6), 384; https://doi.org/10.3390/biomimetics10060384 - 9 Jun 2025
Viewed by 416
Abstract
This study proposes a novel effective improved whale optimization algorithm via angle penalized distance (IWOA-APD) for automatic train operation (ATO) to effectively improve the ATO quality. Specifically, aiming at the high-quality target speed curve of urban rail trains, a target speed curve multi-objective [...] Read more.
This study proposes a novel effective improved whale optimization algorithm via angle penalized distance (IWOA-APD) for automatic train operation (ATO) to effectively improve the ATO quality. Specifically, aiming at the high-quality target speed curve of urban rail trains, a target speed curve multi-objective optimization model for ATO is established with energy saving, punctuality, accurate stopping, and comfort as the indexes; and the comprehensive evaluation strategy utilizing angle-penalized distance as the evaluation index is proposed to enhance the assessment’s rationality and applicability. On this basis, the IWOA-APD is proposed using strategies of non-linear decreasing convergence factor, solutions of out-of-bounds eliminating via combination of reflection and refraction, mechanisms of genetic evolution with variable probability, and elite maintenance based on fusion distance and crowding degree distance. In addition, the detailed design scheme of IWOA-APD is given. The test results show that the proposed IWOA-APD achieves significant performance improvements compared to traditional MOWOA. In the optimization scenario from Lvshun New Port Station to Tieshan Town Station of Dalian urban rail transit line No.12, the IGD value shows a remarkable 69.1% reduction, while energy consumption decreases by 12.5%. The system achieves a 64.6% improvement in punctuality and a 76.5% enhancement in parking accuracy. Additionally, comfort level improves by 15.9%. Full article
Show Figures

Figure 1

25 pages, 2321 KB  
Article
The Bifurcation and Exact Solution of the Nonlinear Schrödinger Equation with Kudryashov’s Quintic Power Law of the Refractive Index Together with the Dual Form of Nonlocal Nonlinearity
by Cailiang Chen, Mengke Yu and Qiuyan Zhang
Mathematics 2025, 13(12), 1922; https://doi.org/10.3390/math13121922 - 9 Jun 2025
Viewed by 360
Abstract
This study investigates a nonlinear Schrödinger equation that includes Kudryashov’s quintic power-law refractive index along with dual-form nonlocal nonlinearity. Employing dynamical systems theory, we analyze the model through a traveling-wave transformation, reducing it to a singular yet integrable traveling-wave system. The dynamical behavior [...] Read more.
This study investigates a nonlinear Schrödinger equation that includes Kudryashov’s quintic power-law refractive index along with dual-form nonlocal nonlinearity. Employing dynamical systems theory, we analyze the model through a traveling-wave transformation, reducing it to a singular yet integrable traveling-wave system. The dynamical behavior of the corresponding regular system is examined, revealing phase trajectories bifurcations under varying parameter conditions. Furthermore, explicit solutions—including periodic, homoclinic, and heteroclinic solutions—are derived for distinct parameter regimes. Full article
Show Figures

Figure 1

35 pages, 3228 KB  
Review
A Review of Sensors for the Monitoring, Modeling, and Control of Commercial Wine Fermentations
by Roger Boulton, James Nelson and André Knoesen
Fermentation 2025, 11(6), 329; https://doi.org/10.3390/fermentation11060329 - 7 Jun 2025
Cited by 1 | Viewed by 3672
Abstract
Large-scale commercial wine fermentation requires the monitoring and control of multiple variables to achieve optimal results. Challenges in measurement arise from turbidity, stratification in large unmixed volumes, the presence of grape skins and solids during red wine fermentations, the small changes in variables [...] Read more.
Large-scale commercial wine fermentation requires the monitoring and control of multiple variables to achieve optimal results. Challenges in measurement arise from turbidity, stratification in large unmixed volumes, the presence of grape skins and solids during red wine fermentations, the small changes in variables that necessitate precise sensors, and the unique composition of each juice, which makes every fermentation distinct. These complications contribute to nonlinear and time-variant characteristics for most control variables. This paper reviews sensors, particularly online ones, utilized in commercial winemaking. It examines the measurement of solution properties (density, weight, volume, osmotic pressure, dielectric constant, and refractive index), sugar consumption, ethanol and glycerol production, redox potential, cell mass, and cell viability during wine fermentation and their relevance as variables that could enhance the estimation of parameters in diagnostic and predictive wine fermentation models. Various methods are compared based on sensitivity, availability of sensor systems, and their appropriateness for measuring properties in large commercial wine fermentations. Additionally, factors influencing the adoption of control strategies are discussed. Finally, potential opportunities for control strategies and challenges for future sensor developments are outlined. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

42 pages, 14272 KB  
Review
Experimental Methods and Nonlinear Optical Properties of Open-Shell Molecular Species
by Kenji Kamada
Chemistry 2025, 7(3), 67; https://doi.org/10.3390/chemistry7030067 - 22 Apr 2025
Viewed by 1264
Abstract
Degenerate third-order nonlinear optical (NLO) responses of organic molecules have a wide range of applications in science and engineering because they relate to the intensity-dependent refractive index (IDRI) and nonlinear absorption (NLA), such as two-photon absorption (TPA). Among the many molecular systems, open-shell [...] Read more.
Degenerate third-order nonlinear optical (NLO) responses of organic molecules have a wide range of applications in science and engineering because they relate to the intensity-dependent refractive index (IDRI) and nonlinear absorption (NLA), such as two-photon absorption (TPA). Among the many molecular systems, open-shell molecular species such as intermediate singlet diradicaloids have attracted considerable attention because of their enhanced response, predicted theoretically by Nakano et al. Experimental studies for proofing and evaluating the enhanced nonlinearities play an important role in the development of the field. This tutorial review provides the solid fundamentals of the NLO processes of open-shell molecular species even to those who are not familiar with the experimental works. Its scope ranges from the basics of NLO responses, definitions, and interrelations of the key parameters of the responses, such as hyperpolarizability and TPA cross-section, to the experimental techniques used to evaluate them. Including the recent achievements, the evolution of experimental works on the TPA properties of singlet diradicaloids is also reviewed according to families of molecular structures. Full article
Show Figures

Graphical abstract

11 pages, 4665 KB  
Article
High-Quality GaP(111) Grown by Gas-Source MBE for Photonic Crystals and Advanced Nonlinear Optical Applications
by Karine Hestroffer, Kelley Rivoire, Jelena Vučković and Fariba Hatami
Nanomaterials 2025, 15(8), 619; https://doi.org/10.3390/nano15080619 - 18 Apr 2025
Viewed by 605
Abstract
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. [...] Read more.
The precise fabrication of semiconductor-based photonic crystals with tailored optical properties is critical for advancing photonic devices. GaP(111) is a material of particular interest due to its high refractive index, wide optical bandgap, and pronounced optical anisotropy, offering unique opportunities for photonic applications. Its near-lattice matching with silicon substrates further facilitates integration with existing silicon-based technologies. In this study, we present the growth of high-quality GaP(111) thin films using gas-source molecular-beam epitaxy (GSMBE), achieving atomically smooth terraces for the homo-epitaxy of GaP(111). We demonstrate the fabrication of photonic crystal cavities from GaP(111), employing AlGaP(111) as a sacrificial layer, and achieve a quality factor of 1200 for the cavity mode with resonance around 1500 nm. This work highlights the potential of GaP(111) for advanced photonic architectures, particularly in applications requiring strong light confinement and nonlinear optical processes, such as second-harmonic and sum-frequency generation. Full article
Show Figures

Figure 1

13 pages, 3937 KB  
Article
Enhancing Single-Mode Characteristics and Reducing Confinement Loss in Liquid-Core Anti-Resonant Fibers via Selective Filling and Geometrical Optimization
by Siyuan Chen, Caoyuan Wang, Cong Xiong, Yu Qin, Jie Zhu, Yichun Shen and Limin Xiao
Micromachines 2025, 16(4), 438; https://doi.org/10.3390/mi16040438 - 5 Apr 2025
Viewed by 677
Abstract
The liquid-core anti-resonant fiber (LCARF) has emerged as a versatile platform for applications in nonlinear photonics, biological sensing, and other domains. In this study, a systematic and comprehensive analysis of LCARF was conducted via the finite element method to evaluate its performance across [...] Read more.
The liquid-core anti-resonant fiber (LCARF) has emerged as a versatile platform for applications in nonlinear photonics, biological sensing, and other domains. In this study, a systematic and comprehensive analysis of LCARF was conducted via the finite element method to evaluate its performance across a wavelength range of 400–1200 nm. This included an assessment of the effects of structural parameters such as capillary wall thickness and the ratio of cladding tube diameter to core diameter on confinement loss and effective refractive index. The results reveal that the proposed core-only-filled approach significantly reduces the confinement loss compared to the conventional fully filled approach, thus facilitating signal transmission. Furthermore, the optimization of geometrical parameters greatly improves the single-mode characteristics of LCARFs. This work establishes a robust theoretical framework and provides valuable support for enhancing the LCARF applications in optofluidics, thereby contributing to the evolution of specialty fiber technologies. Full article
Show Figures

Figure 1

Back to TopTop