Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,533)

Search Parameters:
Keywords = nonlinear MASs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1822 KiB  
Article
Finite Integration Method with Chebyshev Expansion for Shallow Water Equations over Variable Topography
by Ampol Duangpan, Ratinan Boonklurb, Lalita Apisornpanich and Phiraphat Sutthimat
Mathematics 2025, 13(15), 2492; https://doi.org/10.3390/math13152492 (registering DOI) - 2 Aug 2025
Abstract
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial [...] Read more.
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial differential equations into integral equations, approximates spatial terms via Chebyshev polynomials, and uses forward differences for time discretization. Validated on stationary lakes, dam breaks, and Gaussian pulses, the scheme achieved errors below 1012 for water height and velocity, while conserving mass with volume deviations under 105. Comparisons showed superior shock-capturing versus finite difference methods. For two-dimensional cases, it accurately resolved wave interactions over complex topographies. Though limited to wet beds and small-scale two-dimensional problems, the method provides a robust simulation tool. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing for Applied Mathematics)
14 pages, 1462 KiB  
Article
Theoretical Investigation of the Material Usage During On-Bead Enrichment of Post-Translationally Modified Peptides in Suspension Systems
by Kai Liu, Yuanyu Huang, Thomas Huang, Pengyuan Yang, Jilie Kong, Huali Shen and Quanqing Zhang
Molecules 2025, 30(15), 3245; https://doi.org/10.3390/molecules30153245 (registering DOI) - 2 Aug 2025
Abstract
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free [...] Read more.
Over the past decade, the number and diversity of identified protein post-translational modifications (PTMs) have grown significantly. However, most PTMs occur at relatively low abundance, making selective enrichment of modified peptides essential. To address this, we developed a thermodynamic model describing the free beads enrichment in suspension enrichment process and derived a theoretical relationship between material dosage and analyte recovery. The model predicts a non-linear trend, with enrichment efficiency increasing up to an optimal dosage and declining thereafter—a pattern confirmed by experimental data. We validated the model using centrifugation-based enrichment for glycosylated peptides and magnetic-based enrichment for phosphorylated peptides. In both cases, the results aligned with theoretical predictions. Additionally, the optimal dosage varied among peptides with the same modification type, highlighting the importance of tailoring enrichment strategies. This study provides a solid theoretical and experimental basis for optimizing PTMs enrichment and advancing more sensitive, accurate, and efficient mass spectrometry-based proteomic workflows. Full article
Show Figures

Figure 1

20 pages, 3657 KiB  
Article
Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete
by Feng Guo, Weijie He, Longlong Tu and Huiming Hou
Buildings 2025, 15(15), 2725; https://doi.org/10.3390/buildings15152725 (registering DOI) - 1 Aug 2025
Abstract
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the [...] Read more.
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the evolution of oriented microcrack networks. The model incorporates nonlinear anisotropic plastic strain from coupled chemical–mechanical damage. Unlike conventional concrete rheology, this model characterizes chemical creep through stress-chemical coupled damage mechanics. The numerical model is incorporated within COMSOL Multiphysics to perform coupled multiphysics simulations. A close match is observed between the numerical predictions and experimental findings. Under high stress loads, calcium leaching and mechanical stress exhibit significant coupling effects. Regarding concrete durability, chemical degradation has a more pronounced effect on concrete’s stiffness and strength reduction compared with stress-generated microcracking. Full article
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Correlations Between Coffee Intake, Glycemic Control, Cardiovascular Risk, and Sleep in Type 2 Diabetes and Hypertension: A 12-Month Observational Study
by Tatiana Palotta Minari, José Fernando Vilela-Martin, Juan Carlos Yugar-Toledo and Luciana Pellegrini Pisani
Biomedicines 2025, 13(8), 1875; https://doi.org/10.3390/biomedicines13081875 (registering DOI) - 1 Aug 2025
Abstract
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension [...] Read more.
Background: The consumption of coffee has been widely debated regarding its effects on health. This study aims to analyze the correlations between daily coffee intake and sleep, blood pressure, anthropometric measurements, and biochemical markers in individuals with type 2 diabetes (T2D) and hypertension over a 12-month period. Methods: An observational study was conducted with 40 participants with T2D and hypertension, comprising 20 females and 20 males. Participants were monitored for their daily coffee consumption over a 12-month period, being assessed every 3 months. Linear regression was utilized to assess interactions and relationships between variables, providing insights into potential predictive associations. Additionally, correlation analysis was performed using Pearson’s and Spearman’s tests to evaluate the strength and direction of linear and non-linear relationships. Statistical significance was set at p < 0.05. Results: Significant changes were observed in fasting blood glucose (FBG), glycated hemoglobin (HbA1c), body weight, body mass index, sleep duration, nocturnal awakenings, and waist-to-hip ratio (p < 0.05) over the 12-month study in both sexes. No significant differences were noted in the remaining parameters (p > 0.05). The coffee consumed by the participants was of the “traditional type” and contained sugar (2g per cup) for 100% of the participants. An intake of 4.17 ± 0.360 cups per day was found at baseline and 5.41 ± 0.316 cups at 12 months (p > 0.05). Regarding correlation analysis, a higher coffee intake was significantly associated with shorter sleep duration in women (r = −0.731; p = 0.037). Conversely, greater coffee consumption correlated with lower LDL cholesterol (LDL-C) levels in women (r = −0.820; p = 0.044). Additionally, a longer sleep duration was linked to lower FBG (r = -0.841; p = 0.031), HbA1c (r = -0.831; p = 0.037), and LDL-C levels in women (r = -0.713; p = 0.050). No significant correlations were observed for the other parameters in both sexes (p > 0.05). Conclusions: In women, coffee consumption may negatively affect sleep duration while potentially offering beneficial effects on LDL-C levels, even when sweetened with sugar. Additionally, a longer sleep duration in women appears to be associated with improvements in FBG, HbA1c, and LDL-C. These correlations emphasize the importance of a balanced approach to coffee consumption, weighing both its potential health benefits and drawbacks in postmenopausal women. However, since this study does not establish causality, further randomized clinical trials are warranted to investigate the underlying mechanisms and long-term implications—particularly in the context of T2D and hypertension. Full article
(This article belongs to the Special Issue Diabetes: Comorbidities, Therapeutics and Insights (3rd Edition))
14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 (registering DOI) - 31 Jul 2025
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

28 pages, 5503 KiB  
Article
Feature Selection Framework for Improved UAV-Based Detection of Solenopsis invicta Mounds in Agricultural Landscapes
by Chun-Han Shih, Cheng-En Song, Su-Fen Wang and Chung-Chi Lin
Insects 2025, 16(8), 793; https://doi.org/10.3390/insects16080793 (registering DOI) - 31 Jul 2025
Abstract
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant [...] Read more.
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant mounds was evaluated in Fenlin Township, Hualien, Taiwan. A DJI Phantom 4 multispectral drone collected reflectance in five bands (blue, green, red, red-edge, and near-infrared), derived indices (normalized difference vegetation index, NDVI, soil-adjusted vegetation index, SAVI, and photochemical pigment reflectance index, PPR), and textural features. According to analysis of variance F-scores and random forest recursive feature elimination, vegetation indices and spectral features (e.g., NDVI, NIR, SAVI, and PPR) were the most significant predictors of ecological characteristics such as vegetation density and soil visibility. Texture features exhibited moderate importance and the potential to capture intricate spatial patterns in nonlinear models. Despite limitations in the analytics, including trade-offs related to flight height and environmental variability, the study findings suggest that UAVs are an inexpensive, high-precision means of obtaining multispectral data for RIFA monitoring. These findings can be used to develop efficient mass-detection protocols for integrated pest control, with broader implications for invasive species monitoring. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

22 pages, 5254 KiB  
Article
Exploring Simulation Methods to Counter Cyber-Attacks on the Steering Systems of the Maritime Autonomous Surface Ship (MASS)
by Igor Astrov, Sanja Bauk and Pentti Kujala
J. Mar. Sci. Eng. 2025, 13(8), 1470; https://doi.org/10.3390/jmse13081470 - 31 Jul 2025
Viewed by 57
Abstract
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS [...] Read more.
This paper presents a simulation-based investigation into control strategies for mitigating the consequences of cyber-assault on the steering systems of the Maritime Autonomous Surface Ships (MASS). The study focuses on two simulation experiments conducted within the Simulink/MATLAB environment, utilizing the catamaran “Nymo” MASS mathematical model to represent vessel dynamics. Cyber-attacks are modeled as external disturbances affecting the rudder control signal, emulating realistic interference scenarios. To assess control resilience, two configurations are compared during a representative turning maneuver to a specified heading: (1) a Proportional–Integral–Derivative (PID) regulator augmented with a Least Mean Squares (LMS) adaptive filter, and (2) a Nonlinear Autoregressive Moving Average with Exogenous Input (NARMA-L2) neural network regulator. The PID and LMS configurations aim to enhance the disturbance rejection capabilities of the classical controller through adaptive filtering, while the NARMA-L2 approach represents a data-driven, nonlinear control alternative. Simulation results indicate that although the PID and LMS setups demonstrate improved performance over standalone PID in the presence of cyber-induced disturbances, the NARMA-L2 controller exhibits superior adaptability, accuracy, and robustness under adversarial conditions. These findings suggest that neural network-based control offers a promising pathway for developing cyber-resilient steering systems in autonomous maritime vessels. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 124
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 209
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

21 pages, 5335 KiB  
Article
Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits
by Khaled Al-Souqi, Samir Emam and Khaled Kadri
Appl. Sci. 2025, 15(15), 8378; https://doi.org/10.3390/app15158378 - 28 Jul 2025
Viewed by 132
Abstract
This paper investigates the vibration suppression of cantilevered beams using nonlinear shunted piezoelectric circuits. The beam’s inertia and geometric nonlinearities are considered. A quadratic nonlinear piezoelectric capacitance is used such that there exists a two-to-one internal resonance between the mechanical and electrical modes. [...] Read more.
This paper investigates the vibration suppression of cantilevered beams using nonlinear shunted piezoelectric circuits. The beam’s inertia and geometric nonlinearities are considered. A quadratic nonlinear piezoelectric capacitance is used such that there exists a two-to-one internal resonance between the mechanical and electrical modes. The internal resonance coupling is exploited to trigger the saturation phenomenon such that the beam’s vibration reaches a limit beyond an excitation amplitude threshold. The equations governing the nonlinear vibration of the beam coupled with the shunt circuit are derived, and modal analysis is used to obtain a system of two nonlinearly coupled modal equations. The equations are then numerically integrated to obtain the results. A parametric study is performed to assess the significance of system parameters, such as the location of the piezoelectric patch, its size, circuit resistance, and nonlinear gain, on the effectiveness of vibration suppression. The results show that the proposed design effectively suppresses the linear and nonlinear vibrations of the beam. The proposed absorber is space-efficient and does not add mass to the primary system, and hence, it has the potential in systems where the weight matters, such as aerospace applications. Full article
Show Figures

Figure 1

25 pages, 3545 KiB  
Article
Combined Effects of PFAS, Social, and Behavioral Factors on Liver Health
by Akua Marfo and Emmanuel Obeng-Gyasi
Med. Sci. 2025, 13(3), 99; https://doi.org/10.3390/medsci13030099 - 28 Jul 2025
Viewed by 215
Abstract
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education [...] Read more.
Background: Environmental exposures, such as per- and polyfluoroalkyl substances (PFAS), in conjunction with social and behavioral factors, can significantly impact liver health. This research investigates the combined effects of PFAS (perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), alcohol consumption, smoking, income, and education on liver function among the U.S. population, utilizing data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES). Methods: PFAS concentrations in blood samples were analyzed using online solid-phase extraction combined with liquid chromatography–tandem mass spectrometry (LC-MS/MS), a highly sensitive and specific method for detecting levels of PFAS. Liver function was evaluated using biomarkers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin, and the fatty liver index (FLI). Descriptive statistics and multivariable linear regression analyses were employed to assess the associations between exposures and liver outcomes. Bayesian Kernel Machine Regression (BKMR) was utilized to explore the nonlinear and interactive effects of these exposures. To determine the relative influence of each factor on liver health, Posterior Inclusion Probabilities (PIPs) were calculated. Results: Linear regression analyses indicated that income and education were inversely associated with several liver injury biomarkers, while alcohol use and smoking demonstrated stronger and more consistent associations. Bayesian Kernel Machine Regression (BKMR) further highlighted alcohol and smoking as the most influential predictors, particularly for GGT and total bilirubin, with posterior inclusion probabilities (PIPs) close to 1.0. In contrast, PFAS showed weaker associations. Regression coefficients were small and largely non-significant, and PIPs were comparatively lower across most liver outcomes. Notably, education had a higher PIP for ALT and GGT than PFAS, suggesting a more protective role in liver health. People with higher education levels tend to live healthier lifestyles, have better access to healthcare, and are generally more aware of health risks. These factors can all help reduce the risk of liver problems. Overall mixture effects demonstrated nonlinear trends, including U-shaped relationships for ALT and GGT, and inverse associations for AST, FLI, and ALP. Conclusion: These findings underscore the importance of considering both environmental and social–behavioral determinants in liver health. While PFAS exposures remain a long-term concern, modifiable lifestyle and structural factors, particularly alcohol, smoking, income, and education, exert more immediate and pronounced effects on hepatic biomarkers in the general population. Full article
Show Figures

Figure 1

15 pages, 1420 KiB  
Article
Spectral Dimensionality of Spacetime Around a Radiating Schwarzschild Black-Hole
by Mauricio Bellini, Juan Ignacio Musmarra, Pablo Alejandro Sánchez and Alan Sebastián Morales
Universe 2025, 11(8), 243; https://doi.org/10.3390/universe11080243 - 24 Jul 2025
Viewed by 112
Abstract
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe [...] Read more.
In this work we study the spectral dimensionality of spacetime around a radiating Schwarzschild black hole using a recently introduced formalism of quantum gravity, where the alterations of the gravitational field produced by the radiation are represented on an extended manifold, and describe a non-commutative and nonlinear quantum algebra. The relation between classical and quantum perturbations of spacetime can be measured by the parameter z0. In this work we have found that when z=(1+3)/21.3660, a relativistic observer approaching the Schwarzschild horizon perceives a spectral dimension N(z)=4θ(z)12.8849, which is related to quantum gravitational interference effects in the environment of the black hole. Under these conditions, all studied Schwarzschild black holes with masses ranging from the Planck mass to 1046 times the Planck mass present the same stability configuration, which suggests the existence of a universal property of these objects under those particular conditions. The difference from the spectral dimension previously obtained at cosmological scales leads to the conclusion that the spacetime dimensionality is scale-dependent. Another important result presented here is the fundamental alteration of the effective gravitational potential near the horizon due to Hawking radiation. This quantum phenomenon prevents the potential from diverging to negative infinity as the observer approaches the Schwarzschild horizon. Full article
Show Figures

Figure 1

21 pages, 13986 KiB  
Article
Seismic Response Analysis of Nuclear Island Structures Considering Complex Soil–Pile–Structure Dynamic Interaction
by Xunqiang Yin, Junkai Zhang, Min Zhao and Weilong Yang
Buildings 2025, 15(15), 2620; https://doi.org/10.3390/buildings15152620 - 24 Jul 2025
Viewed by 290
Abstract
Seismic responses of Nuclear Island (NI) structures have great significance in the foundation adaptability analysis and the seismic design of equipment. However, with the increasing complexity of nuclear power site conditions, establishing a reasonable and effective soil–pile–structure dynamic interaction model has become the [...] Read more.
Seismic responses of Nuclear Island (NI) structures have great significance in the foundation adaptability analysis and the seismic design of equipment. However, with the increasing complexity of nuclear power site conditions, establishing a reasonable and effective soil–pile–structure dynamic interaction model has become the key technical problem that needs to be solved. In this study, a pseudo three-dimensional soil–pile–structure dynamic interaction model considering soil nonlinearity and heterogeneity is developed for seismic response analysis of NI structures. Specifically, the nonlinearity of the near-field soil is described via the equivalent linear method, the radiation damping effect of half space is simulated through viscous boundary, and the displacement/stress conditions at lateral boundaries of the heterogeneous site are derived from free-field response analysis. Meanwhile, an equivalent stiffness–mass principle is established to simplify NI superstructures, while pile group effects are incorporated via a node-coupling scheme within the finite-element framework. Two validation examples are presented to demonstrate the accuracy and efficiency of the proposed model. Finally, seismic response analysis of two typical NI structure of reactor types (CPR1000 and AP1000) based on the actual complex site conditions in China is also presented to study the effect of radiation damping, soil conditions, and pile foundation. Key findings demonstrate the necessity of integrating SSI effects and nonlinear characteristics of non-rock foundations. While the rock-socketed pile exhibits superior performance compared to the CFG pile alternative; this advantage is offset by higher costs and construction complexity. The research findings can serve as a valuable reference for the foundation adaptability analysis and optimizing the design of equipment under the similar complex condition of the soil site. Full article
(This article belongs to the Special Issue Dynamic Response of Civil Engineering Structures under Seismic Loads)
Show Figures

Figure 1

19 pages, 349 KiB  
Article
Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth
by Peng Ji and Fangqi Chen
Fractal Fract. 2025, 9(8), 482; https://doi.org/10.3390/fractalfract9080482 - 24 Jul 2025
Viewed by 192
Abstract
In this paper, we delve into the following nonlinear fractional Kirchhoff-type problem [...] Read more.
In this paper, we delve into the following nonlinear fractional Kirchhoff-type problem (a+b||(Δ)s2u||22)(Δ)su+λu=g(u)+|u|2s*2u in R3 with prescribed mass R3|u|2dx=ρ>0, where s(34,1),λR,2s*=632s. Under some general growth assumptions imposed on g, we employ minimization of the energy functional on the linear combination of Nehari and Pohoz˘aev constraints intersected with the closed ball in the L2(R3) of radius ρ to prove the existence of normalized ground state solutions to the equation. Moreover, we provide a detailed description for the asymptotic behavior of the ground state energy map. Full article
14 pages, 737 KiB  
Article
Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data
by Hyang-Rae Lee and Nam-Seok Joo
Nutrients 2025, 17(15), 2398; https://doi.org/10.3390/nu17152398 - 22 Jul 2025
Viewed by 211
Abstract
Objectives: This study aimed to investigate both the linear and non-linear associations between serum 25-hydroxyvitamin D [25(OH)D] levels and serum uric acid concentrations in Korean adults, with a particular focus on the vitamin D-insufficient range (<30 ng/mL), and to explore the potential metabolic [...] Read more.
Objectives: This study aimed to investigate both the linear and non-linear associations between serum 25-hydroxyvitamin D [25(OH)D] levels and serum uric acid concentrations in Korean adults, with a particular focus on the vitamin D-insufficient range (<30 ng/mL), and to explore the potential metabolic implications of this relationship. Methods: Using data from the Korea National Health and Nutrition Examination Survey (KNHANES), we analyzed 10,864 adults aged 19 years and older. Serum vitamin D levels were categorized into quartiles (Q1–Q4), and their relationships with uric acid concentrations were examined using Pearson correlation, analysis of variance (ANOVA), and restricted cubic spline regression. Multivariate models were adjusted for potential confounders including age, sex, body mass index (BMI), kidney function, chronic disease status, and macronutrient intake. Results: In unadjusted analysis, a statistically significant but weak negative correlation was observed between serum 25(OH)D and uric acid levels (Pearson’s r = −0.092, p < 0.001). However, in multivariate regression adjusting for confounders, a weak positive association emerged. Restricted cubic spline analysis revealed significant positive associations in the lower quartiles (Q1–Q3), with the strongest association in Q3 (β = 0.769, 95% CI: 0.34–1.19, p < 0.001). No significant association was observed in the highest quartile (Q4). Conclusions: Serum vitamin D and uric acid concentrations show a non-linear relationship, with a significant positive association within the vitamin D-insufficient range (<30 ng/mL). These findings provide new insights into the potential metabolic role of vitamin D and highlight the need for longitudinal and interventional studies to clarify causality and clinical significance. Full article
(This article belongs to the Special Issue Vitamin D and Age-Related Diseases)
Show Figures

Figure 1

Back to TopTop