Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth
Abstract
1. Introduction and Main Results
- (a) the ground state energy map is strictly decreasing;
- (b) if ,
- (1) the map is continuous;
- (2) as .
2. Preliminaries
3. Proof of Theorem 1
- (i) for any and the strict inequality holds for .
- (ii)
4. Proof of Theorem 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Narashima, R. Nonlinear vibration of an elastic string. J. Sound Vib. 1968, 8, 134–146. [Google Scholar] [CrossRef]
- Oplinger, D.W. Frequency response of a nonlinear stretched string. J. Acoust. Soc. Am. 1960, 32, 1529–1538. [Google Scholar] [CrossRef]
- Arosio, A.; Panizzi, S. On the Well-Posedness of the Kirchhoff String. Trans. Am. Math. Soc. 2002, 305–330. [Google Scholar] [CrossRef]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Autuori, G.; Fiscella, A.; Pucci, P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 2015, 125, 699–714. [Google Scholar] [CrossRef]
- Pucci, P.; Saldi, S. Critical stationary Kirchhoff equations in N involving nonlocal operators. Rev. Mat. Iberoam. 2016, 32, 1–22. [Google Scholar] [CrossRef]
- Figueiredo, G.; Ikoma, N.; Júnior, J. Existence and cocentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 2014, 213, 931–979. [Google Scholar] [CrossRef]
- Pucci, P.; Rădulescu, V. Progress in nonlinear Kirchhoff problems. Nonlinear Anal. 2019, 186, 1–5. [Google Scholar] [CrossRef]
- Lu, S.Y.; Mao, A.M. Existence and concentration behavior of normalized solutions for critical Kirchhoff type equations with general nonlinearities. Z. Angew. Math. Phys. 2024, 75, 153. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Domingos Cavalcanti, V.N.; Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 2001, 6, 701–730. [Google Scholar] [CrossRef]
- Ambrosio, V.; Isernia, T. A multiplicity result for a fractional Kirchhoff equation in N with a general nonlinearity. Commun. Contemp. Math. 2018, 20, 1750054. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Yang, M.M. A fractional Kirchhoff-type problem in N without the (AR) condition. Complex Var. Elliptic Equ. 2016, 61, 1481–1493. [Google Scholar] [CrossRef]
- Jin, H.; Liu, W. Fractional Kirchhoff equation with a general critical nonlinearity. Appl. Math. Lett. 2017, 74, 140–146. [Google Scholar] [CrossRef]
- Li, K.X. Ground state solutions for fractional Kirchhoff type equations with critical growth. Electron. J. Differ. Equ. 2024, 10, 1–14. [Google Scholar] [CrossRef]
- Gu, G.Z.; Mu, C.Y.; Yang, Z.P. Existence of Ground State Solutions for a Class of Non-Autonomous Fractional Kirchhoff Equations. Fractal Fract. 2024, 8, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y. Positive and negative solutions for the nonlinear fractional kirchhoff equation in N. SN Part. Differ. Equ. Appl. 2020, 1, 25. [Google Scholar] [CrossRef]
- Bieganowski, B.; Mederski, J. Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 2021, 280, 108989. [Google Scholar] [CrossRef]
- Li, Q.Q.; Rădulescu, V.; Zhang, W. Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth. Nonlinearity 2024, 37, 025018. [Google Scholar] [CrossRef]
- Lu, G.Z.; Shen, Y.S. Existence of Solutions to Fractional p-Laplacian Systems with Homogeneous Nonlinearities of Critical Sobolev Growth. Adv. Nonlinear Stud. 2020, 20, 579–597. [Google Scholar] [CrossRef]
- Cotsiolis, A.; Tavoularis, N.K. Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 2004, 295, 225–236. [Google Scholar] [CrossRef]
- Li, G.; Ye, H. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in 3. J. Differ. Equ. 2014, 257, 566–600. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 2014, 367, 67–102. [Google Scholar] [CrossRef]
- Teng, K. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J. Differ. Equ. 2016, 261, 3061–3106. [Google Scholar] [CrossRef]
- Frank, R.L.; Lenzmann, E.; Silvestre, L. Uniqueness of Radial Solutions for the Fractional Laplacian. Commun. Pure Appl. Math. 2016, 69, 1671–1726. [Google Scholar] [CrossRef]
- Luo, H.J.; Zhang, Z.T. Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Part. Differ. Equ. 2020, 59, 1–35. [Google Scholar] [CrossRef]
- Bartsch, T.; Wang, Z.; Willem, M. The Dirichlet problem for superlinear elliptic equations. In Handbook of Differential Equations: Stationary Partial Differential Equations; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 1–55. [Google Scholar]
- Devillanova, G.; Solimini, S. Some Remarks on Profile Decomposition Theorems. Adv. Nonlinear Stud. 2016, 16, 795–805. [Google Scholar] [CrossRef]
- Mederski, J. Nonradial Solutions of Nonlinear Scalar Field Equations. Nonlinearity 2017, 33, 6349–6380. [Google Scholar] [CrossRef]
- Liu, Z.; Squassina, M.; Zhang, J. Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. Nonlinear Differ. Equ. Appl. Nodea 2017, 24, 50. [Google Scholar] [CrossRef]
- Berestycki, H.; Lions, P.L. Nonlinear scalar field equations, I existence of a ground state. Arch. Ration. Mech. Anal. 1983, 82, 313–346. [Google Scholar] [CrossRef]
- Jeanjean, L.; Lu, S.S. A mass supercritical problem revisited. Calc. Var. Part. Differ. Equ. 2020, 59, 174–217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, P.; Chen, F. Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth. Fractal Fract. 2025, 9, 482. https://doi.org/10.3390/fractalfract9080482
Ji P, Chen F. Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth. Fractal and Fractional. 2025; 9(8):482. https://doi.org/10.3390/fractalfract9080482
Chicago/Turabian StyleJi, Peng, and Fangqi Chen. 2025. "Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth" Fractal and Fractional 9, no. 8: 482. https://doi.org/10.3390/fractalfract9080482
APA StyleJi, P., & Chen, F. (2025). Normalized Ground States for the Sobolev Critical Fractional Kirchhoff Equation with at Least Mass Critical Growth. Fractal and Fractional, 9(8), 482. https://doi.org/10.3390/fractalfract9080482