Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Variables
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Linear Correlation Analysis
3.3. Non-Linear Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
WC | Waist Circumference |
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
HbA1c | Hemoglobin A1c |
T. Chol | Total Cholesterol |
HDL-c | High-Density Lipoprotein Cholesterol |
LDL-c | Low-Density Lipoprotein Cholesterol |
Hs-CRP | High-Sensitivity C-Reactive Protein |
DM | Diabetes Mellitus |
HTN | Hypertension |
TG | Triglycerides |
Cr | Serum Creatinine |
UA | Uric Acid |
VDR | Vitamin D Receptor |
PTH | Parathyroid Hormone |
URAT1 | Urate Transporter 1 |
ABCG2 | ATP-Binding Cassette Subfamily G Member 2 |
NPT1/4 | Sodium-Phosphate Cotransporter Type 1/4 |
RCS | Restricted Cubic Spline |
References
- Huang, G.; Xu, J.; Zhang, T.; Cai, L.; Liu, H.; Yu, X.; Wu, J. Hyperuricemia is associated with metabolic syndrome in the community very elderly in Chengdu. Sci. Rep. 2020, 10, 8678. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xie, D.; Yamamoto, T.; Koyama, H.; Cheng, J. Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond. Rev. Endocr. Metab. Disord. 2023, 24, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, F.; Yang, X.; Xia, Y. The Key Role of Uric Acid in Oxidative Stress, Inflammation, Fibrosis, Apoptosis, and Immunity in the Pathogenesis of Atrial Fibrillation. Front. Cardiovasc. Med. 2021, 8, 641136. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Luan, J.; Sofianopoulou, E.; Sharp, S.J.; Day, F.R.; Imamura, F.; Gundersen, T.E.; Lotta, L.A.; Sluijs, I.; Stewart, I.D.; et al. The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003394. [Google Scholar] [CrossRef] [PubMed]
- Szabo, T.M.; Nagy, E.E.; Kirchmaier, A.; Heidenhoffer, E.; Gabor-Kelemen, H.L.; Frasineanu, M.; Cseke, J.; German-Sallo, M.; Frigy, A. Total 25-Hydroxyvitamin D Is an Independent Marker of Left Ventricular Ejection Fraction in Heart Failure with Reduced and Mildly Reduced Ejection Fraction. Biomolecules 2023, 13, 1578. [Google Scholar] [CrossRef] [PubMed]
- Fenercioglu, A.K. The Anti-Inflammatory Roles of Vitamin D for Improving Human Health. Curr. Issues Mol. Biol. 2024, 46, 13514–13525. [Google Scholar] [CrossRef] [PubMed]
- Fayed, A.; El Nokeety, M.M.; Heikal, A.A.; Sadek, K.M.; Hammad, H.; Abdulazim, D.O.; Salem, M.M.; Sharaf El Din, U.A.; Vascular Calcification, G. Urine albumin and serum uric acid are important determinants of serum 25 hydroxyvitamin D level in pre-dialysis chronic kidney disease patients. Ren. Fail. 2019, 41, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Adi, M.; Ghanbari, F.; Downie, M.L.; Hung, A.; Robinson-Cohen, C.; Manousaki, D. Effects of 25-Hydroxyvitamin D Levels on Renal Function: A Bidirectional Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2023, 108, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Roncal-Jimenez, C.; Lanaspa, M.; Gerard, S.; Chonchol, M.; Johnson, R.J.; Jalal, D. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism 2014, 63, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Braga, T.T.; Forni, M.F.; Correa-Costa, M.; Ramos, R.N.; Barbuto, J.A.; Branco, P.; Castoldi, A.; Hiyane, M.I.; Davanso, M.R.; Latz, E.; et al. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci. Rep. 2017, 7, 39884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Qiu, H.B.; Tian, J.W. Association Between Vitamin D and Hyperuricemia Among Adults in the United States. Front. Nutr. 2020, 7, 592777. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Xiong, T.; Li, Y.; Kong, B.; Lu, W.; Zhang, Z.; Chen, L.; Tang, Y.; Yao, P.; Xiong, J.; et al. The Inverted U-Shaped Association between Serum Vitamin D and Serum Uric Acid Status in Children and Adolescents: A Large Cross-Sectional and Longitudinal Analysis. Nutrients 2024, 16, 1492. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.; Chen, Y.; Wang, N.; Xia, F.; Chen, C.; Han, B.; Lu, Y. Association between serum vitamin D and uric acid in the eastern Chinese population: A population-based cross-sectional study. BMC Endocr. Disord. 2020, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Han, K.; Zhang, Y.; Zeng, X. Serum 25-hydroxyvitamin D might be negatively associated with hyperuricemia in U.S. adults: An analysis of the National Health and Nutrition Examination Survey 2007–2014. J. Endocrinol. Investig. 2022, 45, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Isnuwardana, R.; Bijukchhe, S.; Thadanipon, K.; Ingsathit, A.; Thakkinstian, A. Association Between Vitamin D and Uric Acid in Adults: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2020, 52, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Ponvilawan, B.; Ungprasert, P. Vitamin D insufficiency and deficiency are associated with a higher level of serum uric acid: A systematic review and meta-analysis. Mod. Rheumatol. 2020, 30, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Li, H.; Li, C.; Chao, X.; Zhang, Q.; Zhang, Y. Association between vitamin D insufficiency and elevated serum uric acid among middle-aged and elderly Chinese Han women. PLoS ONE 2013, 8, e61159. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.K. Prevalence of vitamin D deficiency in Korea: Results from KNHANES 2010 to 2011. J. Nutr. Health 2013, 46, 540–551. [Google Scholar] [CrossRef]
- Park, H.Y.; Lim, Y.H.; Park, J.B.; Rhie, J.; Lee, S.J. Environmental and Occupation Factors Associated with Vitamin D Deficiency in Korean Adults: The Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2014. Int. J. Environ. Res. Public. Health 2020, 17, 9166. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Hong, I.Y.; Chung, J.W.; Choi, H.S. Vitamin D status in South Korean population: Seven-year trend from the KNHANES. Medicine 2018, 97, e11032. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Wang, Y.L.; Ni, F.H.; Sun, T. Association between 25 hydroxyvitamin D and serum uric acid level in the Chinese general population: A cross-sectional study. BMC Endocr. Disord. 2024, 24, 187. [Google Scholar] [CrossRef] [PubMed]
- Saedmocheshi, S.; Amiri, E.; Mehdipour, A.; Stefani, G.P. The Effect of Vitamin D Consumption on Pro-Inflammatory Cytokines in Athletes: A Systematic Review of Randomized Controlled Trials. Sports 2024, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Karampela, I.; Stratigou, T.; Antonakos, G.; Kounatidis, D.; Vallianou, N.G.; Tsilingiris, D.; Dalamaga, M. 25-hydroxyvitamin D and parathyroid hormone in new onset sepsis: A prospective study in critically ill patients. Metabol. Open 2024, 23, 100296. [Google Scholar] [CrossRef] [PubMed]
- Cojic, M.; Kocic, R.; Klisic, A.; Cvejanov-Kezunovic, L.; Kavaric, N.; Kocic, G. A novel mechanism of vitamin D anti-inflammatory/antioxidative potential in type 2 diabetic patients on metformin therapy. Arch. Med. Sci. 2020, 16, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Miyata, H.; Toyoda, Y.; Nakayama, A.; Ichida, K.; Matsuo, H. Regulation of Urate Homeostasis by Membrane Transporters. Gout Urate Cryst. Depos. Dis. 2024, 2, 206–219. [Google Scholar] [CrossRef]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Khichar, S.; Choudhary, S.; Singh, V.B.; Tater, P.; Arvinda, R.V.; Ujjawal, V. Serum uric acid level as a determinant of the metabolic syndrome: A case control study. Diabetes Metab. Syndr. 2017, 11, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Thimachai, P.; Supasyndh, O.; Chaiprasert, A.; Satirapoj, B. Efficacy of High vs. Conventional Ergocalciferol Dose for Increasing 25-Hydroxyvitamin D and Suppressing Parathyroid Hormone Levels in Stage III-IV CKD with Vitamin D Deficiency/Insufficiency: A Randomized Controlled Trial. J. Med. Assoc. Thai. 2015, 98, 643–648. [Google Scholar] [PubMed]
- Dhillon-Jhattu, S.; McGill, R.L.; Ennis, J.L.; Worcester, E.M.; Zisman, A.L.; Coe, F.L. Vitamin D and Parathyroid Hormone Levels in CKD. Am. J. Kidney Dis. 2023, 81, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.Y.; Choi, J.W.; Mount, D.B.; Zhu, Y.; Zhang, Y.; Choi, H.K. The independent association between parathyroid hormone levels and hyperuricemia: A national population study. Arthritis Res. Ther. 2012, 14, R56. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Nirwana, S.I.; Ngah, W.Z. Significant association between parathyroid hormone and uric acid level in men. Clin. Interv. Aging 2015, 10, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, R.; Watanabe, H.; Ikegami, K.; Enoki, Y.; Imafuku, T.; Sakaguchi, Y.; Murata, M.; Nishida, K.; Miyamura, S.; Ishima, Y.; et al. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism. Kidney Int. 2017, 91, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Cachau, R.; Shahsavari, S.; Cho, S.K. The in-silico evaluation of important GLUT9 residue for uric acid transport based on renal hypouricemia type 2. Chem. Biol. Interact. 2023, 373, 110378. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.V.; Ima-Nirwana, S.; Chin, K.Y. Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.Y.; Chen, S.; Du, Y. Estrogen and estrogen receptors in kidney diseases. Ren. Fail. 2021, 43, 619–642. [Google Scholar] [CrossRef] [PubMed]
- Budhiraja, R.; Kayyali, U.S.; Karamsetty, M.; Fogel, M.; Hill, N.S.; Chalkley, R.; Finlay, G.A.; Hassoun, P.M. Estrogen modulates xanthine dehydrogenase/xanthine oxidase activity by a receptor-independent mechanism. Antioxid. Redox Signal. 2003, 5, 705–711. [Google Scholar] [CrossRef] [PubMed]
- de Jongh, R.T.; van Schoor, N.M.; Lips, P. Changes in vitamin D endocrinology during aging in adults. Mol. Cell. Endocrinol. 2017, 453, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasulu, K.; Banerjee, M.; Tomo, S.; Shukla, K.; Selvi, M.K.; Garg, M.K.; Banerjee, S.; Sharma, P.; Shukla, R. Seasonal variation and Vitamin-D status in ostensibly healthy Indian population: An experience from a tertiary care institute. Metabol. Open 2024, 23, 100298. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (N = 10,864) | Quartiles of Serum † 25(OH)D Levels (ng/mL) | p Value | |||
---|---|---|---|---|---|---|
Q1 (N = 2718) (2.82–15.96) | Q2 (N = 2715) (15.96–23.21) | Q3 (N = 2716) (23.21–30.94) | Q4 (N = 2715) (30.94–128.46) | |||
Age (years) | 53.56 ± 16.88 | 46.44 ± 0.34 a | 51.61 ± 0.32 b | 55.75 ± 0.3 c | 60.47 ± 0.27 d | <0.001 |
Male (n, %) * | 4736 (43.59%) | 1255 (46.17%) | 1332 (49.06%) | 1265 (46.58%) | 884 (32.56%) | <0.001 |
BMI (kg/m2) | 24.07 ± 3.72 | 24.32 ± 0.08 a | 24.35 ± 0.07 | 24.1 ± 0.07 b | 23.5 ± 0.06 b | <0.001 |
WC (cm) | 84.04 ± 10.8 | 84.13 ± 0.23 a | 84.81 ± 0.21 | 84.39 ± 0.19 | 82.85 ± 0.19 b | <0.001 |
SBP (mmHg) | 119.6 ± 16.04 | 118.4 ± 0.31 a | 119.39 ± 0.31 a | 120.09 ± 0.3 | 120.52 ± 0.31 b | <0.001 |
DBP (mmHg) | 73.95 ± 9.59 | 73.8 ± 0.19 | 74.26 ± 0.19 | 74.13 ± 0.18 | 73.6 ± 0.18 | 0.048 |
≥1 drink/month (n, %) * | 5466 (51.01%) | 1511 (56.38%) | 1465 (54.5%) | 1398 (52.3%) | 1092 (40.82%) | <0.001 |
Glucose (mg/dL) | 101.21 ± 23.09 | 101.04 ± 0.49 | 101.53 ± 0.47 | 101.55 ± 0.43 | 100.73 ± 0.38 | 0.492 |
HbA1c (%) | 5.63 ± 0.79 | 5.56 ± 0.02 a | 5.64 ± 0.02 a | 5.63 ± 0.01 | 5.69 ± 0.01 b | <0.001 |
T. chol (mg/dL) | 186.38 ± 40.46 | 186.31 ± 0.76 | 187.31 ± 0.76 | 186.71 ± 0.78 | 185.18 ± 0.81 | 0.262 |
HDL-c (mg/dL) | 57.21 ± 15.49 | 56.11 ± 0.3 a | 56 ± 0.29 | 56.84 ± 0.29 a | 59.9 ± 0.31 b | <0.001 |
Triglycerides (mg/dL) | 126.76 ± 96.14 | 131.99 ± 1.99 a | 130.52 ± 1.82 a | 126.85 ± 2.05 | 117.68 ± 1.46 b | <0.001 |
LDL-c (mg/dL) | 113 ± 36.79 | 113.36 ± 0.69 a | 114.76 ± 0.7 a | 113.63 ± 0.71 | 110.24 ± 0.72 b | <0.001 |
Creatinine (mg/dL) | 0.8 ± 0.24 | 0.79 ± 0 a | 0.81 ± 0.01 b | 0.8 ± 0 | 0.79 ± 0 | 0.002 |
Uric acid (mg/dL) | 4.98 ± 1.4 | 5.04 ± 0.03 a | 5.13 ± 0.03 a | 4.98 ± 0.03 | 4.79 ± 0.03 b | <0.001 |
Hs-CRP (mg/L) | 1.5 ± 4.61 | 1.47 ± 0.08 | 1.46 ± 0.08 | 1.49 ± 0.08 | 1.55 ± 0.11 | 0.916 |
Carbohydrate Intake (g/day) | 255.96 ± 108 | 254.86 ± 2.16 a | 260.75 ± 2.07 b | 259.41 ± 2.04 | 248.92 ± 2.01 a | <0.001 |
Fat intake (g/day) | 46.8 ± 33.31 | 48.51 ± 0.67 a | 48.59 ± 0.68 a | 46.81 ± 0.63 a | 43.33 ± 0.58 b | <0.001 |
Protein intake (g/day) | 67.39 ± 34.55 | 67.03 ± 0.67 a | 69.34 ± 0.71 b | 68.6 ± 0.65 | 64.64 ± 0.62 a | <0.001 |
† 25(OH)D | 24.46 ± 11.35 | 11.8 ± 0.05 | 19.58 ± 0.04 | 26.88 ± 0.04 | 39.58 ± 0.17 | <0.001 |
25(OH)D2 | 0.3 ± 0.68 | 0.26 ± 0.01 | 0.35 ± 0.01 | 0.31 ± 0.01 | 0.27 ± 0.02 | <0.001 |
25(OH)D3 | 24.16 ± 11.38 | 11.54 ± 0.05 | 19.24 ± 0.04 | 26.57 ± 0.04 | 39.32 ± 0.17 | <0.001 |
Model | Adjusted Variables | Beta Coefficient | p-Value | R-Squared |
---|---|---|---|---|
Model 1 | Age; Sex | 0.0017 | 0.132 | 0.28 |
Model 2 | Model 1 + BMI | 0.0050 | <0.001 | 0.34 |
Model 3 | Model 2 + Alcohol Use; Cr; Chronic Disease (HTN, DM); Nutritional Intake (Carbohydrate, Fat, Protein); Lipid Levels (HDL-c, TG, LDL-c) | 0.0042 | <0.001 | 0.39 |
Model 4 | Model 3 + Dietary Antioxidants (Vitamin C, E, A [RAE]); Aerobic Physical Activity | 0.0044 | <0.001 | 0.39 |
Quartile | Range (ng/mL) | Coefficient | Standard Error | p-Value |
---|---|---|---|---|
Q1 (1st quartile) | <15.96 | 0.292 | 0.083 | <0.001 |
Q2 (2nd quartile) | 15.96–23.2 | 0.368 | 0.096 | <0.001 |
Q3 (3rd quartile) | 23.2–30.92 | 0.769 | 0.217 | <0.001 |
Q4 (4th quartile) | >30.92 | 0.184 | 0.251 | 0.465 |
Quartile | Range (ng/mL) | Coefficient | Standard Error | p-Value |
---|---|---|---|---|
Q1 (1st quartile) | <15.61 | 0.265 | 0.081 | 0.001 |
Q2 (2nd quartile) | 15.61–22.88 | 0.351 | 0.095 | <0.001 |
Q3 (3rd quartile) | 22.88–30.61 | 0.708 | 0.214 | <0.001 |
Q4 (4th quartile) | >30.61 | 0.188 | 0.252 | 0.456 |
Quartile | Range (ng/mL) | Coefficient | Standard Error | p-Value |
---|---|---|---|---|
Q1 (1st quartile) | <15.96 | 0.307 | 0.085 | <0.001 |
Q2 (2nd quartile) | 15.96–23.2 | 0.369 | 0.099 | <0.001 |
Q3 (3rd quartile) | 23.2–30.92 | 0.837 | 0.223 | <0.001 |
Q4 (4th quartile) | >30.92 | 0.274 | 0.259 | 0.291 |
Quartile | Range (ng/mL) | Coefficient | Standard Error | p-Value |
---|---|---|---|---|
Q1 (1st quartile) | <15.96 | 0.567 | 0.210 | 0.007 |
Q2 (2nd quartile) | 15.96–23.2 | 0.523 | 0.157 | <0.001 |
Q3 (3rd quartile) | 23.2–30.92 | 1.281 | 0.485 | 0.008 |
Q4 (4th quartile) | >30.92 | 0.135 | 0.262 | 0.606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-R.; Joo, N.-S. Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data. Nutrients 2025, 17, 2398. https://doi.org/10.3390/nu17152398
Lee H-R, Joo N-S. Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data. Nutrients. 2025; 17(15):2398. https://doi.org/10.3390/nu17152398
Chicago/Turabian StyleLee, Hyang-Rae, and Nam-Seok Joo. 2025. "Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data" Nutrients 17, no. 15: 2398. https://doi.org/10.3390/nu17152398
APA StyleLee, H.-R., & Joo, N.-S. (2025). Non-Linear Associations Between Serum Vitamin D and Uric Acid in Korean Adults: 2022–2023 KNHANES Data. Nutrients, 17(15), 2398. https://doi.org/10.3390/nu17152398