Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits
Abstract
1. Introduction
2. Problem Formulation
Inducing an Internal Resonance into the System
Parameter | Material | |
---|---|---|
Structure | PZT-P (ZrTi) O3 C-82 | |
Length (mm) | 260 | 100 |
Width (mm) | 15 | 15 |
Thickness (mm) | 1 | 0.5 |
Elastic modulus (GPa) | 210 | -- |
Density (kg/ | 7850 | -- |
Permittivity | -- | 3650 |
Piezoelectric coefficient (C/N) | -- | 266 |
3. Results and Discussion
3.1. Response of the Linear Structure Coupled with the Shunt Circuit
3.2. Selection of the Design Parameters
3.3. Response of the Nonlinear Structure Coupled with the Shunt Circuit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Al-Bahkali, E.A.; Elkenani, H.; Souli, M. Failure and fatigue life due to random vibration in aircraft applications. In Multiphysics Simulations in Automotive and Aerospace Applications Anonymous; Academic Press: Cambridge, MA, USA, 2021; pp. 131–154. [Google Scholar]
- Griffin, S.F.; Inman, D.J. Design and test of dynamic vibration absorbers. In Synthesis Lectures on Mechanical Engineering; Springer Nature: Aargau, Switzerland, 2024. [Google Scholar]
- Forward, R.L. Electronic damping of vibrations in optical structures. Appl. Opt. 1979, 18, 690–697. [Google Scholar] [CrossRef]
- Chung, D.D.L. Review: Materials for vibration damping. J. Mater. Sci. 2001, 36, 5733–5737. [Google Scholar] [CrossRef]
- Ji, H.; Qiu, J.; Wu, Y.; Zhang, C. Semi-active vibration control based on synchronously switched piezoelectric actuators. Int. J. Appl. Electromagn. Mech. 2019, 59, 299–307. [Google Scholar] [CrossRef]
- Baz, A. Active and Passive Vibration Damping; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Mangussi, F.; Zanette, D.H. Internal resonance in a vibrating beam: A zoo of nonlinear resonance peaks. PLoS ONE 2016, 11, e0162365. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Mook, D.T.; Marshall, L.R. Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 1973, 7, 145–152. [Google Scholar] [CrossRef]
- Ji, J.C. Design of a nonlinear vibration absorber using three-to-one internal resonances. Mech. Syst. Signal Process. 2014, 42, 236–246. [Google Scholar] [CrossRef]
- Hagood, N.W.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991, 146, 243–268. [Google Scholar] [CrossRef]
- Wu, S. Piezoelectric shunts with a parallel RL circuit for structural damping and vibration control. In Smart Structures and Materials: Passive Damping and Isolation; SPIE: Bellingham, WA, USA, 1996. [Google Scholar]
- Yamada, K. Complete passive vibration suppression using multi-layered piezoelectric element, inductor, and resistor. J. Sound Vib. 2017, 387, 16–35. [Google Scholar] [CrossRef]
- Lossouarn, B.; Aucejo, M.; Deü, J.F.; Multon, B. Design of inductors with high inductance values for resonant piezoelectric damping. Sens. Actuators A Phys. 2017, 259, 68–76. [Google Scholar] [CrossRef]
- Hollkamp, J.J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct. 1994, 5, 49–57. [Google Scholar] [CrossRef]
- Wu, S. Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control. J. Intell. Mater. Syst. Struct. 1998, 9, 991–998. [Google Scholar] [CrossRef]
- Wu, S. Method for multiple-mode shunt damping of structural vibration using a single PZT transducer. In Smart Structures and Materials: Passive Damping and Isolation; SPIE: Bellingham, WA, USA, 1998. [Google Scholar]
- Behrens, S.; Moheimani, S.R. Current flowing multiple-mode piezoelectric shunt dampener. In Smart Structures and Materials: Damping and Isolation; SPIE: Bellingham, WA, USA, 2002. [Google Scholar]
- Behrens, S.; Moheimani, S.R.; Fleming, A.J. Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib. 2003, 266, 929–942. [Google Scholar] [CrossRef]
- Gripp, J.; Rade, D.A. Vibration and noise control using shunted piezoelectric transducers: A review. Mech. Syst. Signal Process. 2018, 112, 359–383. [Google Scholar] [CrossRef]
- Raze, G.; Paknejad, A.; Zhao, G.; Collette, C.; Kerschen, G. Multimodal vibration damping using a simplified current blocking shunt circuit. J. Intell. Mater. Syst. Struct. 2020, 31, 1731–1747. [Google Scholar] [CrossRef]
- Wahid, A.N.; Muthalif, A.G.; Nor, K.A. Investigating negative capacitance shunt circuit for broadband vibration damping and utilizing ACO for optimization. Int. J. Circuits Electron. 2016, 1, 168–173. [Google Scholar]
- Jeon, J. Passive vibration damping enhancement of piezoelectric shunt damping system using optimization approach. J. Mech. Sci. Technol. 2009, 23, 1435–1445. [Google Scholar] [CrossRef]
- Jeon, J. Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm. J. Mech. Sci. Technol. 2009, 23, 1446–1455. [Google Scholar] [CrossRef]
- Caruso, G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping. Smart Mater. Struct. 2001, 10, 1059. [Google Scholar] [CrossRef]
- Soltani, P.; Kerschen, G.; Tondreau, G.; Deraemaeker, A. Piezoelectric vibration damping using resonant shunt circuits: An exact solution. Smart Mater. Struct. 2014, 23, 125014. [Google Scholar] [CrossRef]
- Haxton, R.S.; Barr, A.D.S. The autoparametric vibration absorber. J. Eng. Ind. 1972, 94, 119–125. [Google Scholar] [CrossRef]
- Sayed, M.; Kamel, M. 1:2 and 1:3 internal resonance active absorber for non-linear vibrating system. Appl. Math. Model. 2012, 36, 310–332. [Google Scholar] [CrossRef]
- El-Serafi, S.; Eissa, M.; El-Ghareeb, T. 1:4 Internal resonance active absorber for non-linear vibrating system. Int. J. Pure Appl. Math. 2006, 28, 515–537. [Google Scholar]
- Oueini, S.S.; Nayfeh, A.H.; Pratt, J.R. A nonlinear vibration absorber for flexible structures. Nonlinear Dyn. 1998, 15, 259–282. [Google Scholar] [CrossRef]
- Taşkıran, M.A.; Özer, M.B. Experimentally validated passive nonlinear capacitor in piezoelectric vibration applications. Smart Mater. Struct. 2024, 33, 105003. [Google Scholar] [CrossRef]
- Obaidullah, A.; Erturk, A. Programmable hardening softening cubic inductive shunts for piezoelectric structures: Harmonic balance analysis experiments. J. Sound. Vibr. 2024, 571, 118029. [Google Scholar]
- Qi, R.; Wang, L.; Jin, J.; Yuan, L.; Zhang, D.; Ge, Y. Enhanced Semi-active piezoelectric vibration control method with shunt circuit by energy dissipations switching. Mech. Syst. Signal Process. 2023, 201, 110671. [Google Scholar] [CrossRef]
- Shami, Z.A.; Giraud-Audine, C.; Thomas, O. A nonlinear piezoelectric shunt absorber with a 2: 1 internal resonance: Theory. Mech. Syst. Signal Process. 2022, 170, 108768. [Google Scholar] [CrossRef]
- Arafat, H.N.; Nayfeh, A.H.; Chin, C. Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 1998, 15, 31–61. [Google Scholar] [CrossRef]
- Akaike, M.; Ohira, T.; Inagaki, K.; Han, Q. An analysis of nonlinear terms in capacitance-voltage characteristic for anti-series-connected varactor-diode pair. Int. J. RF Microw. Comput.-Aided Eng. 2004, 14, 274–282. [Google Scholar] [CrossRef]
- Gluskin, E. A nonlinear resistor and nonlinear inductor using a nonlinear capacitor. J. Frankl. Inst. 1999, 336, 1035–1047. [Google Scholar] [CrossRef]
- Götz, B.; Platz, R.; Melz, T. Effect of uncertain boundary conditions and uncertain axial loading on lateral vibration attenuation of a beam with shunted piezoelectric transducers. In Proceedings of the ISMA2014 Including USD2014 International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium, 15–17 September 2014. [Google Scholar]
- The Material Characteristics of Piezoceramics. Available online: https://www.fujicera.co.jp (accessed on 1 May 2025).
- Park, C.H. Dynamics modelling of beams with shunted piezoelectric elements. J. Sound Vib. 2003, 268, 115–129. [Google Scholar] [CrossRef]
Patch. | Surface Area | PZT Capacitance | ||
---|---|---|---|---|
A | 0.09 m × 0.014 m | 0.00126 m2 | 2.71% | 81.13 |
B | 0.12 m × 0.0117 m | 0.00140 m2 | 2.90% | 90.17 |
C | 0.10 m × 0.015 m | 0.00150 m2 | 2.97% | 96.58 |
D | 0.11 m × 0.016 m | 0.00176 m2 | 3.23% | 113.3 |
Patch | (mm) | Electromechanical Factor | PZT Capacitance: (nF) |
---|---|---|---|
A | 0.3 | 2.00% | 161.0 |
B | 0.5 | 2.97% | 96.58 |
C | 0.7 | 3.98% | 68.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Souqi, K.; Emam, S.; Kadri, K. Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits. Appl. Sci. 2025, 15, 8378. https://doi.org/10.3390/app15158378
Al-Souqi K, Emam S, Kadri K. Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits. Applied Sciences. 2025; 15(15):8378. https://doi.org/10.3390/app15158378
Chicago/Turabian StyleAl-Souqi, Khaled, Samir Emam, and Khaled Kadri. 2025. "Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits" Applied Sciences 15, no. 15: 8378. https://doi.org/10.3390/app15158378
APA StyleAl-Souqi, K., Emam, S., & Kadri, K. (2025). Exploiting the Internal Resonance for the Vibration Suppression of Beams via Piezoelectric Shunt Circuits. Applied Sciences, 15(15), 8378. https://doi.org/10.3390/app15158378