Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,636)

Search Parameters:
Keywords = noninvasive biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 8518 KiB  
Review
Cutting-Edge Sensor Technologies for Exosome Detection: Reviewing Role of Antibodies and Aptamers
by Sumedha Nitin Prabhu and Guozhen Liu
Biosensors 2025, 15(8), 511; https://doi.org/10.3390/bios15080511 (registering DOI) - 6 Aug 2025
Abstract
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have [...] Read more.
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have a distinct bilipid protein structure and can be as small as 30–150 nm in diameter. They may transport and exchange multiple cellular messenger cargoes across cells and are used as a non-invasive biomarker for various illnesses. Due to their unique features, exosomes are recognized as the most effective biomarkers for cancer and other disease detection. We give a review of the most current applications of exosomes derived from various sources in the prognosis and diagnosis of multiple diseases. This review also briefly examines the significance of exosomes and their applications in biomedical research, including the use of aptamers and antibody–antigen functionalized biosensors. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

25 pages, 4450 KiB  
Article
Analyzing Retinal Vessel Morphology in MS Using Interpretable AI on Deep Learning-Segmented IR-SLO Images
by Asieh Soltanipour, Roya Arian, Ali Aghababaei, Fereshteh Ashtari, Yukun Zhou, Pearse A. Keane and Raheleh Kafieh
Bioengineering 2025, 12(8), 847; https://doi.org/10.3390/bioengineering12080847 (registering DOI) - 6 Aug 2025
Abstract
Multiple sclerosis (MS), a chronic disease of the central nervous system, is known to cause structural and vascular changes in the retina. Although optical coherence tomography (OCT) and fundus photography can detect retinal thinning and circulatory abnormalities, these findings are not specific to [...] Read more.
Multiple sclerosis (MS), a chronic disease of the central nervous system, is known to cause structural and vascular changes in the retina. Although optical coherence tomography (OCT) and fundus photography can detect retinal thinning and circulatory abnormalities, these findings are not specific to MS. This study explores the potential of Infrared Scanning-Laser-Ophthalmoscopy (IR-SLO) imaging to uncover vascular morphological features that may serve as MS-specific biomarkers. Using an age-matched, subject-wise stratified k-fold cross-validation approach, a deep learning model originally designed for color fundus images was adapted to segment optic disc, optic cup, and retinal vessels in IR-SLO images, achieving Dice coefficients of 91%, 94.5%, and 97%, respectively. This process included tailored pre- and post-processing steps to optimize segmentation accuracy. Subsequently, clinically relevant features were extracted. Statistical analyses followed by SHapley Additive exPlanations (SHAP) identified vessel fractal dimension, vessel density in zones B and C (circular regions extending 0.5–1 and 0.5–2 optic disc diameters from the optic disc margin, respectively), along with vessel intensity and width, as key differentiators between MS patients and healthy controls. These findings suggest that IR-SLO can non-invasively detect retinal vascular biomarkers that may serve as additional or alternative diagnostic markers for MS diagnosis, complementing current invasive procedures. Full article
(This article belongs to the Special Issue AI in OCT (Optical Coherence Tomography) Image Analysis)
Show Figures

Figure 1

13 pages, 1424 KiB  
Article
Comparison of Artificial Intelligence–Derived Heart Age with Chronological Age Using Normal Sinus Electrocardiograms in Patients with No Evidence of Cardiac Disease
by Myoung Jung Kim, Sung-Hee Song, Young Jun Park, Young-Hyun Lee, Jongwoo Kim, JaeHu Jeon, KyungChang Woo, Juwon Kim, Ju Youn Kim, Seung-Jung Park, Young Keun On and Kyoung-Min Park
J. Clin. Med. 2025, 14(15), 5548; https://doi.org/10.3390/jcm14155548 - 6 Aug 2025
Abstract
Background/Objectives: Chronological age (CA) is commonly used in clinical decision-making, yet it may not accurately reflect biological aging. Recent advances in artificial intelligence (AI) allow estimation of electrocardiogram (ECG)-derived heart age, which may serve as a non-invasive biomarker for physiological aging. This [...] Read more.
Background/Objectives: Chronological age (CA) is commonly used in clinical decision-making, yet it may not accurately reflect biological aging. Recent advances in artificial intelligence (AI) allow estimation of electrocardiogram (ECG)-derived heart age, which may serve as a non-invasive biomarker for physiological aging. This study aimed to develop and validate a deep learning model to predict ECG-heart age in individuals with no structural heart disease. Methods: We trained a convolutional neural network (DenseNet-121) using 12-lead ECGs from 292,484 individuals (mean age: 51.4 ± 13.8 years; 42.3% male) without significant cardiac disease. Exclusion criteria included missing age data, age <18 or >90 years, and structural abnormalities. CA was used as the target variable. Model performance was evaluated using the coefficient of determination (R2), Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean square error (RMSE). External validation was conducted using 1191 independent ECGs. Results: The model demonstrated strong predictive performance (R2 = 0.783, PCC = 0.885, MAE = 5.023 years, RMSE = 6.389 years). ECG-heart age tended to be overestimated in younger adults (≤30 years) and underestimated in older adults (≥70 years). External validation showed consistent performance (R2 = 0.703, PCC = 0.846, MAE = 5.582 years, RMSE = 7.316 years). Conclusions: The proposed AI-based model accurately estimates ECG-heart age in individuals with structurally normal hearts. ECG-derived heart age may serve as a reliable biomarker of biological aging and support future risk stratification strategies. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Difficulties of Eating and Masticating Solid Food in Children with Spinal Muscular Atrophy—Preliminary Study
by Ewa Winnicka, Adrianna Łabuz, Zbigniew Kułaga, Tomasz Grochowski and Piotr Socha
Nutrients 2025, 17(15), 2561; https://doi.org/10.3390/nu17152561 - 6 Aug 2025
Abstract
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: [...] Read more.
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: This study aimed to evaluate mastication and swallowing performance in children with SMA undergoing treatment, and to investigate the association between tongue strength and feeding efficiency. Methods: Twenty-two children with SMA types 1–3 were assessed using the Test of Masticating and Swallowing Solids in Children (TOMASS-C) and the Iowa Oral Performance Instrument (IOPI). Key TOMASS-C outcomes included the number of bites, chewing cycles, swallows, and total eating time. Tongue strength was measured in kilopascals. Results: Most participants showed deviations from age-specific normative values in at least one TOMASS-C parameter. Tongue strength was significantly lower than reference values in 86% of participants and correlated negatively with all TOMASS-C outcomes (p < 0.001). Children with weaker tongue pressure required more swallows, more chewing cycles, and longer eating times. Conclusions: Despite pharmacological treatment, children with SMA experience persistent difficulties in eating solid foods. Tongue strength may serve as a non-invasive biomarker for bulbar dysfunction and support dietary decision-making and therapeutic planning. Full article
Show Figures

Figure 1

13 pages, 1291 KiB  
Article
Preoperative Expression Profiles of miR-146a and miR-221 as Potential Biomarkers for Differentiating Benign from Malignant Thyroid Nodules
by Mervat Matei, Sergiu-Ciprian Matei, Cristina Stefania Dumitru, Roxana Popescu, Ligia Petrica, Ioana Golu, Marioara Cornianu, Isabella Ionela Stoian and Mihaela Maria Vlad
Int. J. Mol. Sci. 2025, 26(15), 7564; https://doi.org/10.3390/ijms26157564 - 5 Aug 2025
Abstract
Thyroid cancer is the most common endocrine malignancy, and preoperative distinction between benign and malignant nodules remains challenging, especially in cytologically indeterminate cases. Circulating microRNAs (miRNAs) have gained interest as non-invasive biomarkers due to their stability and involvement in tumorigenesis. This study aimed [...] Read more.
Thyroid cancer is the most common endocrine malignancy, and preoperative distinction between benign and malignant nodules remains challenging, especially in cytologically indeterminate cases. Circulating microRNAs (miRNAs) have gained interest as non-invasive biomarkers due to their stability and involvement in tumorigenesis. This study aimed to assess the preoperative diagnostic value of circulating miR-146a and miR-221 in patients undergoing thyroidectomy. A total of 56 patients were included, of whom 24 had malignant and 32 had benign thyroid lesions confirmed by histopathology. Preoperative plasma levels of miR-146a and miR-221 were quantified using qRT-PCR, and relative expression was calculated with the 2−ΔΔCt method. miR-221 expression was significantly higher in malignant cases, with an area under the ROC curve of 1.00, achieving 100% sensitivity and specificity at the optimal threshold. miR-146a showed no significant discriminatory ability. Weak correlations were observed between miRNA expression and clinical parameters such as age, TIRADS score, or thyroid volume. Logistic regression including miR-221 led to perfect separation, indicating strong predictive capacity but precluding multivariate modeling. These findings suggest that circulating miR-221 may serve as a highly accurate biomarker for thyroid malignancy and warrant further validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

16 pages, 390 KiB  
Review
The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease
by Vasileios Papaliagkas
Diagnostics 2025, 15(15), 1965; https://doi.org/10.3390/diagnostics15151965 - 5 Aug 2025
Abstract
Alzheimer’s disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline and functional impairment. Although advanced neuroimaging and cerebrospinal fluid biomarkers have improved early detection, their high costs, invasiveness, and limited accessibility restrict universal screening. Quantitative electroencephalography (qEEG) offers a non-invasive [...] Read more.
Alzheimer’s disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline and functional impairment. Although advanced neuroimaging and cerebrospinal fluid biomarkers have improved early detection, their high costs, invasiveness, and limited accessibility restrict universal screening. Quantitative electroencephalography (qEEG) offers a non-invasive and cost-effective alternative for assessing neurophysiological changes associated with AD. This review critically evaluates current evidence on EEG biomarkers, including spectral, connectivity, and complexity measures, discussing their pathophysiological basis, diagnostic accuracy, and clinical utility in AD. Limitations and future perspectives, especially in developing standardized protocols and integrating machine learning techniques, are also addressed. Full article
(This article belongs to the Special Issue EEG Analysis in Diagnostics)
Show Figures

Figure 1

25 pages, 1035 KiB  
Review
Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives
by Anne Aries, Bernard Drénou and Rachid Lahlil
Int. J. Mol. Sci. 2025, 26(15), 7547; https://doi.org/10.3390/ijms26157547 - 5 Aug 2025
Abstract
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive [...] Read more.
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive monitoring offers a promising avenue for tumor detection, screening, and prognostication. While the identification of oncogenes and biomarkers from circulating tumor cells or tissue biopsies is currently standard practice for cancer diagnosis and classification, accumulating evidence underscores the significant role of epigenetics in regulating stem cell fate, including proliferation, self-renewal, and malignant transformation. This highlights the importance of analyzing the methylome, exosomes, and circulating RNA for detecting cellular transformation. The development of diagnostic assays that integrate liquid biopsies with epigenetic analysis holds immense potential for revolutionizing tumor management by enabling rapid, non-invasive diagnosis, real-time monitoring, and personalized treatment decisions. This review covers current studies exploring the use of epigenetic regulation, specifically the methylome and circulating RNA, as diagnostic tools derived from liquid biopsies. This approach shows promise in facilitating the differentiation between primary central nervous system lymphoma and other central nervous system tumors and may enable the detection and monitoring of acute myeloid/lymphoid leukemia. We also discuss the current limitations hindering the rapid clinical translation of these technologies. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

18 pages, 1102 KiB  
Review
Exploring Human Sperm Metabolism and Male Infertility: A Systematic Review of Genomics, Proteomics, Metabolomics, and Imaging Techniques
by Achraf Zakaria, Idrissa Diawara, Amal Bouziyane and Noureddine Louanjli
Int. J. Mol. Sci. 2025, 26(15), 7544; https://doi.org/10.3390/ijms26157544 - 5 Aug 2025
Abstract
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions [...] Read more.
Male infertility is a multifactorial condition often associated with disruptions in sperm metabolism and mitochondrial function, yet traditional semen analysis provides limited insight into these molecular mechanisms. Understanding sperm bioenergetics and metabolic dysfunctions is crucial for improving the diagnosis and treatment of conditions such as asthenozoospermia and azoospermia. This systematic review synthesizes recent literature, focusing on advanced tools and techniques—including omics technologies, advanced imaging, spectroscopy, and functional assays—that enable comprehensive molecular assessment of sperm metabolism and development. The reviewed studies highlight the effectiveness of metabolomics, proteomics, and transcriptomics in identifying metabolic biomarkers linked to male infertility. Non-invasive imaging modalities such as Raman and magnetic resonance spectroscopy offer real-time metabolic profiling, while the seminal microbiome is increasingly recognized for its role in modulating sperm metabolic health. Despite these advances, challenges remain in clinical validation and implementation of these techniques in routine infertility diagnostics. Integrating molecular metabolic assessments with conventional semen analysis promises enhanced diagnostic precision and personalized therapeutic approaches, ultimately improving reproductive outcomes. Continued research is needed to standardize biomarkers and validate clinical utility. Furthermore, these metabolic tools hold significant potential to elucidate the underlying causes of previously misunderstood and unexplained infertility cases, offering new avenues for diagnosis and treatment. Full article
Show Figures

Figure 1

14 pages, 278 KiB  
Review
Novel Biomarkers for Rejection in Kidney Transplantation: A Comprehensive Review
by Michael Strader and Sam Kant
J. Clin. Med. 2025, 14(15), 5489; https://doi.org/10.3390/jcm14155489 - 4 Aug 2025
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage kidney disease. Despite significant advances in graft survival, rejection continues to pose a major clinical challenge. Conventional monitoring tools, such as serum creatinine, donor-specific antibodies, and proteinuria, lack sensitivity and specificity for [...] Read more.
Kidney transplantation is the treatment of choice for patients with end-stage kidney disease. Despite significant advances in graft survival, rejection continues to pose a major clinical challenge. Conventional monitoring tools, such as serum creatinine, donor-specific antibodies, and proteinuria, lack sensitivity and specificity for early detection of graft injury. Moreover, while biopsy remains the current gold standard for diagnosing rejection, it is prone to confounders, invasive, and associated with procedural risks. However, non-invasive novel biomarkers have emerged as promising alternatives for earlier rejection detection and improved immunosuppression management. This review focuses on the leading candidate biomarkers currently under clinical investigation, with an emphasis on their diagnostic performance, prognostic value, and potential to support personalised immunosuppressive strategies in kidney transplantation. Full article
(This article belongs to the Special Issue Clinical Advancements in Kidney Transplantation)
13 pages, 745 KiB  
Review
Salivary Biomarkers for Early Detection of Autism Spectrum Disorder: A Scoping Review
by Margherita Tumedei, Niccolò Cenzato, Sourav Panda, Funda Goker and Massimo Del Fabbro
Oral 2025, 5(3), 56; https://doi.org/10.3390/oral5030056 - 4 Aug 2025
Abstract
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and [...] Read more.
Background: Autism spectrum disorder (ASD) represents a neurobiological disorder with a high prevalence in the children’s population. The aim of the present review was to assess the current evidence on the use of salivary biomarkers for the early diagnosis of ASD. Materials and methods: A search was conducted on the electronic databases PUBMED/Medline, Google Scholar and Scopus for the retrieval of articles concerning the study topic. Results: A total of 22 studies have been included in the present review considering 21 articles identified from databases and 1 article included using a manual search. A wide range of biomarkers have been proposed for early detection of ASD diseases including nonspecific inflammation markers like interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNFα), oxidative stress markers like superoxide dismutase and glutathione peroxidase, hormones such as cortisol and oxytocin, various microRNAs including miR-21, miR-132 and miR-137, and exosomes. The techniques used for biomarke detection may vary according to molecule type and concentration. Conclusions: salivary biomarkers could represent a potential useful tool for the primary detection of several systemic diseases including ASD, taking advantage of non-invasiveness and cost-effective capability compared to other biofluid-based diagnostic techniques. Full article
Show Figures

Figure 1

12 pages, 677 KiB  
Review
Prognostic Utility of Arterial Spin Labeling in Traumatic Brain Injury: From Pathophysiology to Precision Imaging
by Silvia De Rosa, Flavia Carton, Alessandro Grecucci and Paola Feraco
NeuroSci 2025, 6(3), 73; https://doi.org/10.3390/neurosci6030073 - 4 Aug 2025
Viewed by 106
Abstract
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a [...] Read more.
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a non-invasive MRI technique, in adult and pediatric TBI, with a focus on quantitative cerebral blood flow (CBF) and arterial transit time (ATT) measures. A comprehensive literature search was conducted across PubMed, Embase, Scopus, and IEEE databases, including observational studies and clinical trials that applied ASL techniques (pCASL, PASL, VSASL, multi-PLD) in TBI patients with functional or cognitive outcomes, with outcome assessments conducted at least 3 months post-injury. Results: ASL-derived CBF and ATT parameters demonstrate potential as prognostic indicators across both acute and chronic stages of TBI. Hypoperfusion patterns correlate with worse neurocognitive outcomes, while region-specific perfusion alterations are associated with affective symptoms. Multi-delay and velocity-selective ASL sequences enhance diagnostic sensitivity in TBI with heterogeneous perfusion dynamics. Compared to conventional perfusion imaging, ASL provides absolute quantification without contrast agents, making it suitable for repeated monitoring in vulnerable populations. ASL emerges as a promising prognostic biomarker for clinical use in TBI. Conclusion: Integrating ASL into multiparametric models may improve risk stratification and guide individualized therapeutic strategies. Full article
(This article belongs to the Topic Neurological Updates in Neurocritical Care)
Show Figures

Figure 1

21 pages, 632 KiB  
Review
DNA Methylation in Bladder Cancer: Diagnostic and Therapeutic Perspectives—A Narrative Review
by Dragoş Puia, Marius Ivănuță and Cătălin Pricop
Int. J. Mol. Sci. 2025, 26(15), 7507; https://doi.org/10.3390/ijms26157507 - 3 Aug 2025
Viewed by 220
Abstract
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current [...] Read more.
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current evidence on the role of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and the hypermethylation of key tumour suppressor genes, including A2BP1, NPTX2, SOX11, PENK, NKX6-2, DBC1, MYO3A, and CA10, in bladder cancer. It also evaluates the therapeutic application of DNA-demethylating agents such as 5-azacytidine and highlights the impact of chronic inflammation on epigenetic regulation. Promoter hypermethylation of tumour suppressor genes leads to transcriptional silencing and unchecked cell proliferation. Urine-based DNA methylation assays provide a sensitive and specific method for non-invasive early detection, with single-target approaches offering high diagnostic precision. Animal models are increasingly employed to validate these findings, allowing the study of methylation dynamics and gene–environment interactions in vivo. DNA methylation represents a key epigenetic mechanism in bladder cancer, with significant diagnostic, prognostic, and therapeutic implications. Integration of human and experimental data supports the use of methylation-based biomarkers for early detection and targeted treatment, paving the way for personalized approaches in bladder cancer management. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Circulating Lipid Profiles Indicate Incomplete Metabolic Recovery After Weight Loss, Suggesting the Need for Additional Interventions in Severe Obesity
by Alina-Iuliana Onoiu, Vicente Cambra-Cortés, Andrea Jiménez-Franco, Anna Hernández-Aguilera, David Parada, Francesc Riu, Antonio Zorzano, Jordi Camps and Jorge Joven
Biomolecules 2025, 15(8), 1112; https://doi.org/10.3390/biom15081112 - 1 Aug 2025
Viewed by 117
Abstract
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies [...] Read more.
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies before and after weight loss. Using mass spectrometry, 275 lipid species were analysed in non-obese controls, patients with severe obesity, and patients one year after bariatric surgery. The results showed that severe obesity disrupts lipid pathways, contributing to lipotoxicity, inflammation, mitochondrial stress, and abnormal lipid metabolism. Although weight loss improved these disturbances, surgery did not fully normalise the lipid profiles of all patients. Outcomes varied depending on their baseline liver health and genetic differences. Persistent alterations in cholesterol handling, membrane composition, and mitochondrial function were observed in partial responders. Elevated levels of sterol lipids, glycerophospholipids, and sphingolipids emerged as markers of complete metabolic recovery, identifying candidates for targeted post-surgical interventions. These findings support the use of lipidomics to personalise obesity treatment and follow-up. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 - 1 Aug 2025
Viewed by 246
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

Back to TopTop