Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives
Abstract
1. Introduction
2. Non-Invasive Diagnosis of Tumors and the Associated Challenges
2.1. DNA Methylation Screening from Liquid Biopsy as a Promising Biomarker for Early Tumor Diagnosis and Prognosis
2.1.1. Acute Myeloid Leukemia
2.1.2. Lymphoma and Acute Lymphoblastic Leukemia
2.1.3. Central Nervous System Tumors
Biomarker | Origin | Disease | Hypo/Hyper | Method | Ref. |
---|---|---|---|---|---|
LDH2 and SPATS2L | bone marrow | AML | Hypo | TCGA/GEO | [24] |
9 specific DNA sites (key genes: UBE4A, MTMR1, ST6GALNAC1, CDK14, CA6, PDCD6IP, LCN6, FHL2, ITIH4) | blood | AML | Hypo | WGBS | [26] |
GNAS | bone marrow | AML | Hypo | WGBS | [27] |
GRHL2 | blood | AML | Hyper | ddPCR | [28] |
HOX9A | bone marrow | AML | Hypo | TCGA, qMSP | [29] |
miR-182 promoter | bone marrow | AML | Hyper | B-Pyro-Seq qMSP | [30] |
WTN10A and GATA-3 | bone marrow | AML | Hyper | MeDIP-Seq qMSP | [31] |
12 key biomarkers Hypo: HOXB-AS3, HOXB3, MEG8 Hyper: SLC9C2, CPNE8, S1PR5, MIR196B | bone marrow | AML | Hypo/hyper | TCGA | [33] |
TRIM58 | cells | AML | Hyper | 850K array, qMSP | [34] |
GCNT2 | Bone marrow | AML | hypo | TCGA/GEO | [36] |
SCL45A4, S100PBP, TSPAN9, PT | Bone marrow | AML | hyper | GEO | [37] |
6 promoters DMRs (ZIC1, TSHZ2, CDC42BPB, RBM24, C10orf53, MACROD2) | tissue | T-LBL/Thymomas | Hyper | EPICB array qMSP | [42] |
DKK3, sFRP2, PTEN, and P73 | bone marrow | childhood ALL | Hyper | qMSP, B-Seq | [44] |
CDKN2A, CDKN2B, PTEN, SHOX2, WT1, RASSF1A, TLX3 | bone marrow | ALL | Hyper | IE array | [45] |
CDKN2A, PTEN, SPI1, RUNX1, LEF1, CEBPA | blood, bone marrow | ALL | Hyper | WGBS | [46] |
VTRNA2-1 | blood | Pre-B ALL | Hyper | IE array ddPCR | [47] |
several biomarkers | CSF | CNS | hyper | IE array | [50] |
SCG3, NCOR2, KCNH7, DOCK1 cg05491001, cg25567674, ZFPM2, GRIK1 | tissue, plasma | PCNLS | hyper | TAM-MSP assay | [51] |
HOXA9 and GABRG3 | plasma | brain tumor | hyper | IE array qPCR | [52] |
347 critical CpG sites (key genes: MGMT, TERT, CDKN2A, PTEN, NF1...) | tissue | GBM | 110 hyper 153 hypo | IE array | [54] |
ASPM, CCNB2, CDK1, AURKA, TOP2A, CHEK1, CDCA8, MCM10, RAD51AP1 | tissue | GBM | hypo | TCGA | [60] |
2.2. Exosomes and Circulating RNA as Biomarkers for Early Tumor Detection and Prognosis
2.2.1. Acute Myeloid Leukemia
2.2.2. Acute Lymphoblastic Leukemia
2.2.3. Central Nervous System Tumors
Biomarker | Type | Origin | Disease | Hypo/Hyper | Method | Ref. |
---|---|---|---|---|---|---|
miR-155, miR-150 | miRNA | Serum exosomes, EVs | AML | up | TLDA qRT-PCR | [74,75] |
miR-370 | miRNA | blood | AML | down | qRT-PCR | [76] |
miR-181a, miR-155 | miRNA | serum, bone marrow | AML | up | NGS qRT-PCR | [77] |
miR-182 | miRNA | cell lines | AML | down | qRT-PCR | [78,79] |
miR-548a, miR-6511b, miR-455, miR-5787, miR-638, miR-3613 | miRNA | plasma | AML | up down | qRT-PCR | [80] |
HOTAIR, MALAT1A | lncRNA | bone marrow | AML | up | RNA-Seq qRT-PCR | [81,82,85] |
MEG3 | lncRNA | cells, bone marrow | AML | down | RNA-Seq qRT-PCR | [81,82,85] |
LINC00152 | lncRNA | cell lines, bone marrow | AML | up | RNA-Seq qRT-PCR | [81,82,85] |
XIST, TUG1, GABPB1-AS1 | lncRNA | cell lines | CN-AML | up | RNA-Seq TCGA | [84] |
LINC00461, RP11-309M23.1, AC016735.2, RP11-61I13.3, KIAA0087, RORB-AS1, and AC012354.6 | lncRNA | bone marrow | AML | up | RNA-Seq | [86] |
69-lncRNA | lncRNA | bone marrow | AML | up | RNA-Seq | [87] |
circRUNX1, cirWHSC, circFLT3 | circRNAs | bone marrow | AML | up | RNA-Seq | [88] |
miR-146a | miRNA | plasma | ALL | up | qRT-PCR | [89] |
miR-128-3p | miRNA | blood | ALL | up | qRT-PCR | [90] |
miRNAs-181b-5p | miRNA | blood | ALL | up | qRT-PCR | [91] |
miR-326 | miRNA | exosome | ALL | up | qRT-PCR | [92] |
miR-125b-5p, miR-150-5p, miR99a-5p | miRNA | Bone marrow | ALL | down | qRTP-CR | [93] |
TCONS_00026679, uc002ubt.1, ENST00000411904, ENST00000547644 | lncRNA | Bone marrow | ALL | down | RNA-Seq | [94] |
circPVT1, circHIPK3 | circRNA | Cells lines | ALL | up | qRT-PCR | [95,96] |
circ-0000745 | circRNA | bone marrow, cell lines | ALL | up | qRT-PCR | [97] |
circWASHC2A | circRNA | bone marrow | ALL | up | qRT-PCR | [99] |
circANSK1B, CircBARD1, cirMAN1A2 | circRNA | Bone marrow | ALL | up | RNA-Seq | [100] |
miR-10b, miR-130a, miR-210 | miRNA | serum | glioma | up | Databases (Scopus, Pubmed) | [101] |
miR-21, mi-R19, and miR-92a | miRNA | CSF | PCNSL | up | qRT-PCR | [103] |
miR-30c | miRNA | CSF | SCNLS | up | qRT-PCR | [104] |
miR-16-5p, miR-21-5p, miR-92a-3p, miR-423-5p | miRNA | CSF | PCNSL | up | qRT-PCR | [105] |
miR-124 | miRNA | serum, plasma, tissue | glioma | down | - | [106] |
miR-21, miR-221 | miRNA | CSF, serum | glioma | up | - | [107] |
miR-29a, miR-106a, miR-200 | miRNA | blood | GBM | up | qRT-PCR | [108] |
miR-16-5p, miR-34a-5p, miR-205-5p, miR-124-3p, and miR-147a | miRNA | CSF | GBM | down | TCGA-GEO | [60] |
miR-3180-3p, miR-5739 | miRNA | plasma | GBM | up | NGS qRT-PCR | [109] |
HOTAIR, MALAT1, TUG1, NEAT1 | lncRNA | CSF, serum | glioma, GBM | up | - | [110] |
SLCO4A1-AS1 | lncRNA | tissue | GBM | up | RNA-Seq | [111] |
ZNF503-AS2 | lncRNA | tissue | GBM | up | RNA-Seq qRT-PCR | [112] |
LINC00565, LINC00641 | lncRNA | blood | GBM | up | qRT-PCR | [113] |
CircHIPK3 | cirRNA | tissue, cells | Glioma | up | qRT-PCR | [114,115] |
CircHIPK3, circSMARC5 | cirRNA | serum | GBM | up | qRT-PCR | [67,116] |
CircFBXW7 | cirRNA | tissue | Glioma | down | RNA-Seq | [114,117] |
3. Prospect and Future Direction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Watanabe, Y.; Maekawa, M. Methylation of DNA in Cancer. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2010; Volume 52, pp. 145–167. ISBN 978-0-12-380948-3. [Google Scholar]
- Ibrahim, J.; Peeters, M.; Van Camp, G.; Op De Beeck, K. Methylation Biomarkers for Early Cancer Detection and Diagnosis: Current and Future Perspectives. Eur. J. Cancer 2023, 178, 91–113. [Google Scholar] [CrossRef]
- Gao, J.; Shi, W.; Wang, J.; Guan, C.; Dong, Q.; Sheng, J.; Zou, X.; Xu, Z.; Ge, Y.; Yang, C.; et al. Research Progress and Applications of Epigenetic Biomarkers in Cancer. Front. Pharmacol. 2024, 15, 1308309. [Google Scholar] [CrossRef]
- Galbraith, K.; Snuderl, M. DNA Methylation as a Diagnostic Tool. Acta Neuropathol. Commun. 2022, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Nejati-Koshki, K.; Roberts, C.-T.; Babaei, G.; Rastegar, M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers 2023, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Bie, F.; Wang, Z.; Li, Y.; Guo, W.; Hong, Y.; Han, T.; Lv, F.; Yang, S.; Li, S.; Li, X.; et al. Multimodal Analysis of Cell-Free DNA Whole-Methylome Sequencing for Cancer Detection and Localization. Nat. Commun. 2023, 14, 6042. [Google Scholar] [CrossRef]
- Bruhm, D.C.; Vulpescu, N.A.; Foda, Z.H.; Phallen, J.; Scharpf, R.B.; Velculescu, V.E. Genomic and Fragmentomic Landscapes of Cell-Free DNA for Early Cancer Detection. Nat. Rev. Cancer 2025, 25, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Jonas, S.; Izaurralde, E. Towards a Molecular Understanding of microRNA-Mediated Gene Silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; et al. exoRBase: A Database of circRNA, lncRNA and mRNA in Human Blood Exosomes. Nucleic Acids Res. 2018, 46, D106–D112. [Google Scholar] [CrossRef]
- Therkelsen, K.E.; Omuro, A. Advances in Primary Central Nervous System Lymphoma. Curr. Neurol. Neurosci. Rep. 2024, 25, 5. [Google Scholar] [CrossRef]
- Reifenberger, G.; Wirsching, H.-G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the Molecular Genetics of Gliomas—Implications for Classification and Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 434–452. [Google Scholar] [CrossRef]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA Methylation-Based Classification of Central Nervous System Tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef]
- Liu, C.; Tang, H.; Hu, N.; Li, T. Methylomics and Cancer: The Current State of Methylation Profiling and Marker Development for Clinical Care. Cancer Cell Int. 2023, 23, 242. [Google Scholar] [CrossRef]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem Cells, Cancer, and Cancer Stem Cells. Nature 2001, 414, 105–111. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef]
- Assi, S.A.; Imperato, M.R.; Coleman, D.J.L.; Pickin, A.; Potluri, S.; Ptasinska, A.; Chin, P.S.; Blair, H.; Cauchy, P.; James, S.R.; et al. Subtype-Specific Regulatory Network Rewiring in Acute Myeloid Leukemia. Nat. Genet. 2019, 51, 151–162. [Google Scholar] [CrossRef]
- Krivtsov, A.V.; Twomey, D.; Feng, Z.; Stubbs, M.C.; Wang, Y.; Faber, J.; Levine, J.E.; Wang, J.; Hahn, W.C.; Gilliland, D.G.; et al. Transformation from Committed Progenitor to Leukaemia Stem Cell Initiated by MLL–AF9. Nature 2006, 442, 818–822. [Google Scholar] [CrossRef]
- Metzeler, K.H.; Herold, T.; Rothenberg-Thurley, M.; Amler, S.; Sauerland, M.C.; Görlich, D.; Schneider, S.; Konstandin, N.P.; Dufour, A.; Bräundl, K.; et al. Spectrum and Prognostic Relevance of Driver Gene Mutations in Acute Myeloid Leukemia. Blood 2016, 128, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Snyder, T.M.; Corces-Zimmerman, M.R.; Vyas, P.; Weissman, I.L.; Quake, S.R.; Majeti, R. Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Sci. Transl. Med. 2012, 4, 149ra118. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-S.; Kim, H.-J.; Kim, Y.-K.; Lee, S.-S.; Ahn, S.-Y.; Jung, S.-H.; Yang, D.-H.; Lee, J.-J.; Park, H.J.; Lee, J.-Y.; et al. Assessment of a New Genomic Classification System in Acute Myeloid Leukemia with a Normal Karyotype. Oncotarget 2017, 9, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Cavattoni, I.; Villiers, W.; Cugno, C.; Deola, S.; Mifsud, B. Multi-Omic Analysis of Longitudinal Acute Myeloid Leukemia Patient Samples Reveals Potential Prognostic Markers Linked to Disease Progression. Front. Genet. 2024, 15, 1442539. [Google Scholar] [CrossRef]
- Lee, D.; Koo, B.; Kim, S.; Byun, J.; Hong, J.; Shin, D.-Y.; Sun, C.-H.; Kim, J.; Song, J.-J.; Jaiswal, S.; et al. Increased Local DNA Methylation Disorder in AMLs with DNMT3A-Destabilizing Variants and Its Clinical Implication. Nat. Commun. 2025, 16, 560. [Google Scholar] [CrossRef]
- Zhang, L.-Q.; Liang, Y.-C.; Wang, J.-X.; Zhang, J.; La, T.; Li, Q.-Z. Unlocking the Potential: A Novel Prognostic Index Signature for Acute Myeloid Leukemia. Comput. Biol. Med. 2024, 173, 108396. [Google Scholar] [CrossRef]
- Gao, H.; He, X.; Li, Q.; Wang, Y.; Tian, Y.; Chen, X.; Wang, J.; Guo, Y.; Wang, W.; Li, X. Genome-Wide DNA Methylome Analysis Reveals Methylation Subtypes with Different Clinical Outcomes for Acute Myeloid Leukemia Patients. Cancer Med. 2020, 9, 6296–6305. [Google Scholar] [CrossRef]
- Cardoso, C.; Pestana, D.; Gokuladhas, S.; Marreiros, A.D.; O’Sullivan, J.M.; Binnie, A.; TFernandes, M.; Castelo-Branco, P. Identification of Novel DNA Methylation Prognostic Biomarkers for AML With Normal Cytogenetics. JCO Clin. Cancer Inform. 2024, 8, e2300265. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Wang, L.; Li, Y.; Xu, L.; Cai, D.; Zhou, J.; Yu, L. DNA Methylation Landscape Reveals GNAS as a Decitabine-Responsive Marker in Patients with Acute Myeloid Leukemia. Neoplasia 2024, 49, 100965. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Chu, M.; Wang, C.; Zhang, H.; Luan, J.; Zhang, Y.; Li, Q.; Xiao, T.; Zhu, C.; Li, X.; et al. Digital PCR-Based GRHL2 Methylation Testing in Acute Myeloid Leukemia: Diagnosis, Prognosis and Monitoring. Epigenomics 2024, 16, 233–247. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Zhang, X.; Xu, Z.; Qiao, L.; Wang, Y.; Zhao, Y.; Qian, J.; Zhou, J. Identification of HOXA9 Methylation as an Epigenetic Biomarker Predicting Prognosis and Guiding Treatment Choice in Acute Myeloid Leukemia. BMC Cancer 2025, 25, 215. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, D.; Wang, N.; Ge, B.; Meng, C.; Zhao, M.; Lin, Z.; Li, M.; Yuan, Y.; Cai, Y.; et al. miR-182 Promoter Hypermethylation Predicts the Better Outcome of AML Patients Treated with AZA + VEN in a Real-World Setting. Clin. Epigenetics 2025, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, M.; Zucknick, M.; Schlenk, R.F.; Mertens, D.; Benner, A.; Weichenhan, D.; Mücke, O.; Döhner, K.; Plass, C.; Bullinger, L.; et al. Predictive Value of DNA Methylation Patterns in AML Patients Treated with an Azacytidine Containing Induction Regimen. Clin. Epigenetics 2023, 15, 171. [Google Scholar] [CrossRef]
- Jian, J.; Yuan, C.; Ji, C.; Hao, H.; Lu, F. DNA Methylation-Based Subtypes of Acute Myeloid Leukemia with Distinct Prognosis and Clinical Features. Clin. Exp. Med. 2023, 23, 2639–2649. [Google Scholar] [CrossRef]
- Jian, J.; Yuan, C.; Hao, H. Identifying Key Genes and Functionally Enriched Pathways in Acute Myeloid Leukemia by Weighted Gene Co-Expression Network Analysis. J. Appl. Genet. 2024, 66, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jian, J.; Tang, X.; Zhao, L.; Liu, B. Comprehensive Analysis of DNA Methylation and Gene Expression to Identify Tumor Suppressor Genes Reactivated by MLN4924 in Acute Myeloid Leukemia. Anticancer Drugs 2025, 36, 199–207. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Zhang, G.; Hou, J.; Liu, K.; Wei, S.; Li, Y.; Zhou, C.; Lin, D.; Wang, M.; et al. Classification of Acute Myeloid Leukemia Based on Multi-Omics and Prognosis Prediction Value. Mol. Oncol. 2025, 19, 1836–1854. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Qiu, H.; Xu, J.; Lin, J.; Qian, J. Hypomethylation of GCNT2 Isoform A Correlates with Transcriptional Expression and Is Associated with Poor Survival in Acute Myeloid Leukemia. Front. Immunol. 2025, 16, 1490330. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, H.; Huang, F.; Bao, Y.; Guo, W.; Tan, Z. Machine Learning Approaches Reveal Methylation Signatures Associated with Pediatric Acute Myeloid Leukemia Recurrence. Sci. Rep. 2025, 15, 15815. [Google Scholar] [CrossRef]
- The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A Predictive Model for Aggressive Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [Google Scholar] [CrossRef]
- Alexander, T.B.; Mullighan, C.G. Molecular Biology of Childhood Leukemia. Annu. Rev. Cancer Biol. 2021, 5, 95–117. [Google Scholar] [CrossRef]
- Hetzel, S.; Mattei, A.L.; Kretzmer, H.; Qu, C.; Chen, X.; Fan, Y.; Wu, G.; Roberts, K.G.; Luger, S.; Litzow, M.; et al. Acute Lymphoblastic Leukemia Displays a Distinct Highly Methylated Genome. Nat. Cancer 2022, 3, 768–782. [Google Scholar] [CrossRef]
- Milani, L.; Lundmark, A.; Kiialainen, A.; Nordlund, J.; Flaegstad, T.; Forestier, E.; Heyman, M.; Jonmundsson, G.; Kanerva, J.; Schmiegelow, K.; et al. DNA Methylation for Subtype Classification and Prediction of Treatment Outcome in Patients with Childhood Acute Lymphoblastic Leukemia. Blood 2010, 115, 1214–1225. [Google Scholar] [CrossRef]
- Latiri, M.; Belhocine, M.; Smith, C.; Garnier, N.; Balducci, E.; Pinton, A.; Andrieu, G.P.; Bruneau, J.; Spicuglia, S.; Jamain, S.; et al. DNA Methylation as a New Tool for the Differential Diagnosis between T-LBL and Lymphocyte-Rich Thymoma. J. Pathol. 2024, 264, 284–292. [Google Scholar] [CrossRef]
- Witzig, T.E.; Taylor, W.R.; Mahoney, D.W.; Bamlet, W.R.; Foote, P.H.; Burger, K.N.; Doering, K.A.; Devens, M.E.; Arndt, J.R.; O’Connell, M.C.; et al. Blood Plasma Methylated DNA Markers in the Detection of Lymphoma: Discovery, Validation, and Clinical Pilot. Am. J. Hematol. 2025, 100, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Roman-Gomez, J.; Jimenez-Velasco, A.; Agirre, X.; Castillejo, J.A.; Navarro, G.; Calasanz, M.J.; Garate, L.; San Jose-Eneriz, E.; Cordeu, L.; Prosper, F.; et al. CpG Island Methylator Phenotype Redefines the Prognostic Effect of t(12;21) in Childhood Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2006, 12, 4845–4850. [Google Scholar] [CrossRef]
- Schäfer Hackenhaar, F.; Refhagen, N.; Hagleitner, M.M.; van Leeuwen, F.N.; Marquart, H.V.; Madsen, H.O.; Landfors, M.; Osterman, P.; Schmiegelow, K.; Flaegstad, T.; et al. CpG Island Methylator Phenotype Classification Improves Risk Assessment in Pediatric T-Cell Acute Lymphoblastic Leukemia. Blood 2025, 145, 2161–2178. [Google Scholar] [CrossRef]
- Mulet-Lazaro, R.; van Herk, S.; Nuetzel, M.; Sijs-Szabo, A.; Díaz, N.; Kelly, K.; Erpelinck-Verschueren, C.; Schwarzfischer-Pfeilschifter, L.; Stanewsky, H.; Ackermann, U.; et al. Epigenetic Alterations Affecting Hematopoietic Regulatory Networks as Drivers of Mixed Myeloid/Lymphoid Leukemia. Nat. Commun. 2024, 15, 5693. [Google Scholar] [CrossRef]
- Ghantous, A.; Nusslé, S.G.; Nassar, F.J.; Spitz, N.; Novoloaca, A.; Krali, O.; Nickels, E.; Cahais, V.; Cuenin, C.; Roy, R.; et al. Epigenome-Wide Analysis across the Development Span of Pediatric Acute Lymphoblastic Leukemia: Backtracking to Birth. Mol. Cancer 2024, 23, 238. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhou, Q.; Sun, Y.; Lai, F.; Wang, Z.; Hao, Z.; Li, G. MethMarkerDB: A Comprehensive Cancer DNA Methylation Biomarker Database. Nucleic Acids Res. 2024, 52, D1380–D1392. [Google Scholar] [CrossRef] [PubMed]
- Berzero, G.; Pieri, V.; Palazzo, L.; Finocchiaro, G.; Filippi, M. Liquid Biopsy in Brain Tumors: Moving on, Slowly. Curr. Opin. Oncol. 2024, 36, 521. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, J.A.; Patil, V.; Mansouri, S.; Voisin, M.; Chakravarthy, A.; Shen, S.Y.; Nassiri, F.; Mikolajewicz, N.; Trifoi, M.; Skakodub, A.; et al. Cerebrospinal Fluid Methylome-Based Liquid Biopsies for Accurate Malignant Brain Neoplasm Classification. Neuro Oncol. 2023, 25, 1452–1460. [Google Scholar] [CrossRef]
- Downs, B.M.; Ding, W.; Cope, L.M.; Umbricht, C.B.; Li, W.; He, H.; Ke, X.; Holdhoff, M.; Bettegowda, C.; Tao, W.; et al. Methylated Markers Accurately Distinguish Primary Central Nervous System Lymphomas (PCNSL) from Other CNS Tumors. Clin. Epigenetics 2021, 13, 104. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Capper, D.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Dutt, M.; Suraweera, N.; Pfister, S.M.; von Deimling, A.; Brandner, S. Methylation Array Profiling of Adult Brain Tumours: Diagnostic Outcomes in a Large, Single Centre. Acta Neuropathol. Commun. 2019, 7, 24. [Google Scholar] [CrossRef]
- Zuccato, J.A.; Mamatjan, Y.; Nassiri, F.; Ajisebutu, A.; Liu, J.C.; Muazzam, A.; Singh, O.; Zhang, W.; Voisin, M.; Mirhadi, S.; et al. Prediction of Brain Metastasis Development with DNA Methylation Signatures. Nat. Med. 2024, 31, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.-H.G.; Al-Adli, N.N.; Young, J.S.; Gupta, R.; Morshed, R.A.; Wu, J.; Ravindranathan, A.; Shai, A.; Oberheim Bush, N.A.; Taylor, J.W.; et al. Longitudinal Multimodal Profiling of IDH-Wildtype Glioblastoma Reveals the Molecular Evolution and Cellular Phenotypes Underlying Prognostically Different Treatment Responses. Neuro Oncol. 2024, 27, 89–105. [Google Scholar] [CrossRef]
- Herrgott, G.A.; Snyder, J.M.; She, R.; Malta, T.M.; Sabedot, T.S.; Lee, I.Y.; Pawloski, J.; Podolsky-Gondim, G.G.; Asmaro, K.P.; Zhang, J.; et al. Detection of Diagnostic and Prognostic Methylation-Based Signatures in Liquid Biopsy Specimens from Patients with Meningiomas. Nat. Commun. 2023, 14, 5669. [Google Scholar] [CrossRef]
- Hinz, F.; Friedel, D.; Korshunov, A.; Ippen, F.M.; Bogumil, H.; Banan, R.; Brandner, S.; Hasselblatt, M.; Boldt, H.B.; Dirse, V.; et al. IDH-Mutant Astrocytomas with Primitive Neuronal Component Have a Distinct Methylation Profile and a Higher Risk of Leptomeningeal Spread. Acta Neuropathol. 2025, 149, 12. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H. Multi-Omics Analysis Identifies Novels Genes Involved in Glioma Prognosis. Sci. Rep. 2025, 15, 5806. [Google Scholar] [CrossRef]
- García-Heredia, A.; Guerra-Núñez, L.; Martín-Climent, P.; Rojas, E.; López-Domínguez, R.; Alcántara-Domínguez, C.; Alenda, C.; Valor, L.M. Transcriptomics and Epigenomics Datasets of Primary Brain Cancers in Formalin-Fixed Paraffin Embedded Format. Sci. Data 2025, 12, 273. [Google Scholar] [CrossRef]
- Mair, M.J.; Leibetseder, A.; Heller, G.; Tomasich, E.; Müller, L.; Busse, I.; Wöhrer, A.; Kiesel, B.; Widhalm, G.; Eckert, F.; et al. Clinical Characteristics, Molecular Reclassification Trajectories and DNA Methylation Patterns of Long- and Short-Term Survivors of WHO Grade II and III Glioma. J. Neurol. 2025, 272, 210. [Google Scholar] [CrossRef]
- Sarker, A.; Aziz, M.A.; Hossen, M.B.; Mollah, M.M.H.; Al-Amin; Mollah, M.N.H. Discovery of Key Molecular Signatures for Diagnosis and Therapies of Glioblastoma by Combining Supervised and Unsupervised Learning Approaches. Sci. Rep. 2024, 14, 27545. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Tomuleasa, C.; Monroig, P.; Cucuianu, A.; Berindan-Neagoe, I.; Calin, G.A. Exosomes as Divine Messengers: Are They the Hermes of Modern Molecular Oncology? Cell Death Differ. 2015, 22, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef]
- Goenka, A.; Tiek, D.M.; Song, X.; Iglesia, R.P.; Lu, M.; Hu, B.; Cheng, S.-Y. The Role of Non-Coding RNAs in Glioma. Biomedicines 2022, 10, 2031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shaya, M.; Kugeluke, Y.; Fu, Q.; Li, S.; Dilimulati, Y. A Circular RNA Derived from GLIS3 Accelerates the Proliferation of Glioblastoma Cells through Competitively Binding with miR-449c-5p to Upregulate CAPG and GLIS3. BMC Neurosci. 2022, 23, 53. [Google Scholar] [CrossRef]
- Bronisz, A.; Rooj, A.K.; Krawczyński, K.; Peruzzi, P.; Salińska, E.; Nakano, I.; Purow, B.; Chiocca, E.A.; Godlewski, J. The Nuclear DICER-Circular RNA Complex Drives the Deregulation of the Glioblastoma Cell microRNAome. Sci. Adv. 2020, 6, eabc0221. [Google Scholar] [CrossRef]
- Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; et al. Circular RNA-Encoded Oncogenic E-Cadherin Variant Promotes Glioblastoma Tumorigenicity through Activation of EGFR-STAT3 Signalling. Nat. Cell Biol. 2021, 23, 278–291. [Google Scholar] [CrossRef]
- Merulla, A.E.; Stella, M.; Barbagallo, C.; Battaglia, R.; Caponnetto, A.; Broggi, G.; Altieri, R.; Certo, F.; Caltabiano, R.; Ragusa, M.; et al. circSMARCA5 Is an Upstream Regulator of the Expression of miR-126-3p, miR-515-5p, and Their mRNA Targets, Insulin-like Growth Factor Binding Protein 2 (IGFBP2) and NRAS Proto-Oncogene, GTPase (NRAS) in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 13676. [Google Scholar] [CrossRef]
- Beylerli, O.; Encarnacion Ramirez, M.d.J.; Shumadalova, A.; Ilyasova, T.; Zemlyanskiy, M.; Beilerli, A.; Montemurro, N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics 2023, 13, 2888. [Google Scholar] [CrossRef]
- Reddy, K.B. MicroRNA (miRNA) in Cancer. Cancer Cell Int. 2015, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Li, Y.; Li, J.; Gao, Z.; Yang, Z.; Li, Y.; Liu, H.; Fan, T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front. Oncol. 2020, 10, 598817. [Google Scholar] [CrossRef]
- Deng, W.; Chao, R.; Zhu, S. Emerging Roles of circRNAs in Leukemia and the Clinical Prospects: An Update. Immun. Inflamm. Dis. 2022, 11, e725. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Bhat, A.A.; Younes, S.N.; Raza, S.S.; Zarif, L.; Nisar, S.; Ahmed, I.; Mir, R.; Kumar, S.; Sharawat, S.K.; Hashem, S.; et al. Role of Non-Coding RNA Networks in Leukemia Progression, Metastasis and Drug Resistance. Mol. Cancer 2020, 19, 57. [Google Scholar] [CrossRef]
- Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum Exosome MicroRNA as a Minimally-Invasive Early Biomarker of AML. Sci. Rep. 2015, 5, 11295. [Google Scholar] [CrossRef] [PubMed]
- Lajevardi, M.S.; Ashrafpour, M.; Mubarak, S.M.H.; Rafieyan, B.; Kiani, A.; Noori, E.; Roayaei Ardakani, M.; Montazeri, M.; Kouhi Esfahani, N.; Asadimanesh, N.; et al. Dual Roles of Extracellular Vesicles in Acute Lymphoblastic Leukemia: Implications for Disease Progression and Theranostic Strategies. Med. Oncol. 2024, 42, 11. [Google Scholar] [CrossRef]
- Ali, M.M.; Mohamed, R.H.; Sayed, A.A.; Ahmed, S.; Yassin, D.A.; El-Sayed, W.M. miR-370 Is Better than miR-375 as a Non-Invasive Diagnostic Biomarker for Pediatric Acute Myeloid Leukemia Patients. Cancer Biomark. 2022, 34, 403–411. [Google Scholar] [CrossRef]
- Xia, L.; Guo, H.; Wu, X.; Xu, Y.; Zhao, P.; Yan, B.; Zeng, Y.; He, Y.; Chen, D.; Gale, R.P.; et al. Human Circulating Small Non-Coding RNA Signature as a Non-Invasive Biomarker in Clinical Diagnosis of Acute Myeloid Leukaemia. Theranostics 2023, 13, 1289–1301. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Meng, C.; Lin, Z.; Zhao, M.; Shi, L.; Li, M.; Ye, D.; Cai, Y.; He, X.; et al. Low Expression of miR-182 Caused by DNA Hypermethylation Accelerates Acute Lymphocyte Leukemia Development by Targeting PBX3 and BCL2: miR-182 Promoter Methylation Is a Predictive Marker for Hypomethylation Agents + BCL2 Inhibitor Venetoclax. Clin. Epigenetics 2024, 16, 48. [Google Scholar] [CrossRef]
- Ye, S.; Xiong, F.; He, X.; Yuan, Y.; Li, D.; Ye, D.; Shi, L.; Lin, Z.; Zhao, M.; Feng, S.; et al. DNA Hypermethylation-Induced miR-182 Silence Targets BCL2 and HOXA9 to Facilitate the Self-Renewal of Leukemia Stem Cell, Accelerate Acute Myeloid Leukemia Progression, and Determine the Sensitivity of BCL2 Inhibitor Venetoclax. Theranostics 2023, 13, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Izadifard, M.; Ahmadvand, M.; Chahardouli, B.; Vaezi, M.; Janbabai, G.; Seghatoleslami, G.; Bahrami, M.; Yaghmaie, M.; Barkhordar, M. Plasma-Circulating miR-638, miR-6511b-5p, miR-3613-5p, miR-455-3p, miR-5787, and miR-548a-3p as Noninvasive Biomarkers of Immune Reconstitution Post-Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia Patients. Transplant Immunol. 2025, 91, 102240. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, K. Long Noncoding RNAs: Pivotal Regulators in Acute Myeloid Leukemia. Exp. Hematol. Oncol. 2016, 5, 30. [Google Scholar] [CrossRef]
- Atnaf, A.; Akelew, Y.; Abebaw, D.; Muche, Y.; Getachew, M.; Mengist, H.M.; Tsegaye, A. The Role of Long Noncoding RNAs in the Diagnosis, Prognosis and Therapeutic Biomarkers of Acute Myeloid Leukemia. Ann. Hematol. 2024, 103, 4931–4942. [Google Scholar] [CrossRef]
- Solomon, Y.; Berhan, A.; Almaw, A.; Ersino, T.; Damtie, S.; Kiros, T.; Fentie, A.; Chanie, E.S.; Dessie, A.M.; Alemayehu, E. Long Non-Coding RNA as Potential Diagnostic Markers for Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Cancer Med. 2024, 13, e7376. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Dong, L.; Guo, Y.; Zhao, H.; Wang, M. Revealing Key lncRNAs in Cytogenetically Normal Acute Myeloid Leukemia by Reconstruction of the lncRNA–miRNA–mRNA Network. Sci. Rep. 2022, 12, 4973. [Google Scholar] [CrossRef]
- Saad, R.A.A.A.M.; Osman, A.A.; Hassan, M.F.A.F.; Ibrahim, S.A.M.; El-Sakhawy, Y.N. HOTAIR Expression and Prognostic Impact in Acute Myeloid Leukemia Patients. Egypt. J. Med. Human Genet. 2021, 22, 36. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Guo, H.-H.; Li, H.-X.; Liang, Y.; Tang, C.; Chen, N.-N. Identification of the 7-lncRNA Signature as a Prognostic Biomarker for Acute Myeloid Leukemia. Dis. Markers 2021, 2021, 8223216. [Google Scholar] [CrossRef]
- Ren, Z.; Vanhooren, J.; Derpoorter, C.; De Moerloose, B.; Lammens, T. A 69 Long Noncoding RNA Signature Predicts Relapse and Acts as Independent Prognostic Factor in Pediatric AML. Blood Adv. 2024, 8, 3299–3310. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Y.; Wu, X.; Hu, W.; Chen, X.; Wu, K.; Wang, H.; Zhao, S.; Shi, Q.; Wang, X.; et al. circRNAs as Prognostic Markers in Pediatric Acute Myeloid Leukemia. Cancer Lett. 2024, 591, 216880. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Shahid, W.; Shaheen, J.; Akhtar, M.W.; Sadaf, S. Circulating miR-146a Expression as a Non-Invasive Predictive Biomarker for Acute Lymphoblastic Leukemia. Sci. Rep. 2021, 11, 22783. [Google Scholar] [CrossRef] [PubMed]
- Rzepiel, A.; Horváth, A.; Kutszegi, N.; Gézsi, A.; Sági, J.C.; Almási, L.; Egyed, B.; Lőrincz, P.; Visnovitz, T.; Kovács, G.T.; et al. MiR-128-3p as Blood Based Liquid Biopsy Biomarker in Childhood Acute Lymphoblastic Leukemia. Mol. Cell Probes 2023, 67, 101893. [Google Scholar] [CrossRef]
- Yan, W.; Song, L.; Wang, H.; Yang, W.; Hu, L.; Yang, Y. Extracellular Vesicles Carrying miRNA-181b-5p Affects the Malignant Progression of Acute Lymphoblastic Leukemia. J. Transl. Med. 2021, 19, 511. [Google Scholar] [CrossRef] [PubMed]
- Saffari, N.; Rahgozar, S.; Faraji, E.; Sahin, F. Plasma-Derived Exosomal miR-326, a Prognostic Biomarker and Novel Candidate for Treatment of Drug Resistant Pediatric Acute Lymphoblastic Leukemia. Sci. Rep. 2024, 14, 691. [Google Scholar] [CrossRef]
- Tsotridou, E.; Georgiou, E.; Tragiannidis, A.; Avgeros, C.; Tzimagiorgis, G.; Lambrou, M.; Papakonstantinou, E.; Galli-Tsinopoulou, A.; Hatzipantelis, E. miRNAs as Predictive Biomarkers of Response to Treatment in Pediatric Patients with Acute Lymphoblastic Leukemia. Oncol. Lett. 2023, 27, 71. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Xie, Q.; Zhang, L.; Huang, S.; Hong, M.; Li, J.; Huang, Z.; Zhang, H. LncRNAs Serve as Novel Biomarkers for Diagnosis and Prognosis of Childhood ALL. Biomark. Res. 2021, 9, 45. [Google Scholar] [CrossRef]
- Palcau, A.C.; Canu, V.; Donzelli, S.; Strano, S.; Pulito, C.; Blandino, G. CircPVT1: A Pivotal Circular Node Intersecting Long Non-Coding-PVT1 and c-MYC Oncogenic Signals. Mol. Cancer 2022, 21, 33. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, H. Biogenesis, Cellular Effects, and Biomarker Value of circHIPK3. Cancer Cell Int. 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, F.; Tang, P. Circ_0000745 Regulates NOTCH1-Mediated Cell Proliferation and Apoptosis in Pediatric T-Cell Acute Lymphoblastic Leukemia through Adsorbing miR-193b-3p. Hematology 2021, 26, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Buratin, A.; Paganin, M.; Gaffo, E.; Dal Molin, A.; Roels, J.; Germano, G.; Siddi, M.T.; Serafin, V.; De Decker, M.; Gachet, S.; et al. Large-Scale Circular RNA Deregulation in T-ALL: Unlocking Unique Ectopic Expression of Molecular Subtypes. Blood Adv. 2020, 4, 5902–5914. [Google Scholar] [CrossRef] [PubMed]
- Filomena, A.; Giovanni, S.; Ginevra, S.; Santiago, N.; Di Fasano Miriam, S.; Peppino, M.; Alessandra, C.; Antonia, D.M.; Giuliana, B.; Rosanna, P.; et al. Identification of a Circular RNA Isoform of WASHC2A as a Prognostic Factor for High-Risk Paediatric B-ALL Patients. Biomed. Pharmacother. 2024, 177, 116903. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Caron, M.; Richer, C.; Fuchs, C.; Illarregi, U.; Poncelet, L.; St-Onge, P.; Bataille, A.R.; Tremblay-Dauphinais, P.; Lopez-Lopez, E.; et al. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. Int. J. Mol. Sci. 2024, 25, 1477. [Google Scholar] [CrossRef]
- Hasani, F.; Masrour, M.; Jazi, K.; Ahmadi, P.; Hosseini, S.S.; Lu, V.M.; Alborzi, A. MicroRNA as a Potential Diagnostic and Prognostic Biomarker in Brain Gliomas: A Systematic Review and Meta-Analysis. Front. Neurol. 2024, 15, 1357321. [Google Scholar] [CrossRef]
- Katsushima, K.; Joshi, K.; Perera, R.J. Diagnostic and Therapeutic Potential of Circular RNA in Brain Tumors. Neuro-Oncol. Adv. 2023, 5, vdad063. [Google Scholar] [CrossRef]
- Baraniskin, A.; Kuhnhenn, J.; Schlegel, U.; Maghnouj, A.; Zöllner, H.; Schmiegel, W.; Hahn, S.; Schroers, R. Identification of microRNAs in the Cerebrospinal Fluid as Biomarker for the Diagnosis of Glioma. Neuro Oncol. 2012, 14, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Baraniskin, A.; Chomiak, M.; Ahle, G.; Gress, T.; Buchholz, M.; Turewicz, M.; Eisenacher, M.; Margold, M.; Schlegel, U.; Schmiegel, W.; et al. MicroRNA-30c as a Novel Diagnostic Biomarker for Primary and Secondary B-Cell Lymphoma of the CNS. J. Neurooncol. 2018, 137, 463–468. [Google Scholar] [CrossRef]
- Sromek, M.; Rymkiewicz, G.; Paziewska, A.; Szafron, L.M.; Kulecka, M.; Zajdel, M.; Kulinczak, M.; Dabrowska, M.; Balabas, A.; Bystydzienski, Z.; et al. A Set of 17 microRNAs Common for Brain and Cerebrospinal Fluid Differentiates Primary Central Nervous System Lymphoma from Non-Malignant Brain Tumors. Biomolecules 2021, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, E.; Mondanizadeh, M.; Almasi-Hashiani, A.; Mahboobi, E. The Significance of miR-124 in the Diagnosis and Prognosis of Glioma: A Systematic Review. PLoS ONE 2024, 19, e0312250. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Rahmati, A.; Babaei Aghdam, Z.; Salami, R.; Salami, M.; Vakili, O.; Aghadavod, E. Recent Insights into the microRNA-Dependent Modulation of Gliomas from Pathogenesis to Diagnosis and Treatment. Cell Mol. Biol. Lett. 2022, 27, 65. [Google Scholar] [CrossRef]
- Ali, E.; Ahmed, M.A.; Shawki, M.A.; El Arab, L.R.E.; Khalifa, M.K.; Swellam, M. Expression of Some Circulating microRNAs as Predictive Biomarkers for Prognosis and Treatment Response in Glioblastoma. Sci. Rep. 2025, 15, 1933. [Google Scholar] [CrossRef]
- Bustos, M.A.; Rahimzadeh, N.; Ryu, S.; Gross, R.; Tran, L.T.; Renteria-Lopez, V.M.; Ramos, R.I.; Eisenberg, A.; Hothi, P.; Kesari, S.; et al. Cell-Free Plasma microRNAs That Identify Patients with Glioblastoma. Lab. Investig. 2022, 102, 711–721. [Google Scholar] [CrossRef]
- Pei, D.; Zhang, D.; Guo, Y.; Chang, H.; Cui, H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int. J. Mol. Sci. 2025, 26, 694. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Yang, C.; Zhang, X.; Xue, Z.; Sun, Y.; Lin, X.; Liu, X.; Zhao, Z.; Huang, B.; et al. Super-Enhancer-Driven SLCO4A1-AS1 Is a New Biomarker and a Promising Therapeutic Target in Glioblastoma. Sci. Rep. 2025, 15, 954. [Google Scholar] [CrossRef]
- Wu, Y.; Mu, G.; Li, F.; Sun, Y.; Lin, X.; Liu, X.; Zhao, Z.; Han, M.; Wang, D.; Huang, B.; et al. ZNF503-AS2 Is a Promising Therapeutic Target and Is Associated with the Immune Microenvironment in Glioma. PLoS ONE 2024, 19, e0314618. [Google Scholar] [CrossRef]
- Amer, R.G.; Ezz El Arab, L.R.; Abd El Ghany, D.; Saad, A.S.; Bahie-Eldin, N.; Swellam, M. Prognostic Utility of lncRNAs (LINC00565 and LINC00641) as Molecular Markers in Glioblastoma Multiforme (GBM). J. Neurooncol 2022, 158, 435–444. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Xie, P.; Zhang, W. Liquid Biopsy: An Arsenal for Tumour Screening and Early Diagnosis. Cancer Treat. Rev. 2024, 129, 102774. [Google Scholar] [CrossRef]
- Jin, P.; Huang, Y.; Zhu, P.; Zou, Y.; Shao, T.; Wang, O. CircRNA circHIPK3 Serves as a Prognostic Marker to Promote Glioma Progression by Regulating miR-654/IGF2BP3 Signaling. Biochem. Biophys. Res. Commun. 2018, 503, 1570–1574. [Google Scholar] [CrossRef]
- Stella, M.; Falzone, L.; Caponnetto, A.; Gattuso, G.; Barbagallo, C.; Battaglia, R.; Mirabella, F.; Broggi, G.; Altieri, R.; Certo, F.; et al. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals 2021, 14, 618. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. JNCI J. Natl. Cancer Inst. 2018, 110, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Heitzer, E.; Ulz, P.; Geigl, J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin. Chem. 2015, 61, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Rimelen, V.; Ahle, G.; Pencreach, E.; Zinniger, N.; Debliquis, A.; Zalmaï, L.; Harzallah, I.; Hurstel, R.; Alamome, I.; Lamy, F.; et al. Tumor Cell-Free DNA Detection in CSF for Primary CNS Lymphoma Diagnosis. Acta Neuropathol. Commun. 2019, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Bonzheim, I.; Giese, S.; Deuter, C.; Süsskind, D.; Zierhut, M.; Waizel, M.; Szurman, P.; Federmann, B.; Schmidt, J.; Quintanilla-Martinez, L.; et al. High Frequency of MYD88 Mutations in Vitreoretinal B-Cell Lymphoma: A Valuable Tool to Improve Diagnostic Yield of Vitreous Aspirates. Blood 2015, 126, 76–79. [Google Scholar] [CrossRef]
- Bunda, S.; Zuccato, J.A.; Voisin, M.R.; Wang, J.Z.; Nassiri, F.; Patil, V.; Mansouri, S.; Zadeh, G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int. J. Mol. Sci. 2021, 22, 4548. [Google Scholar] [CrossRef]
- Pilotto Heming, C.; Aran, V. The Potential of Circulating Cell-Free RNA in CNS Tumor Diagnosis and Monitoring: A Liquid Biopsy Approach. Crit. Rev. Oncol. Hematol. 2024, 204, 104504. [Google Scholar] [CrossRef] [PubMed]
- Gorse, M.; Bianchi, C.; Proudhon, C. Épigénétique et cancer: La méthylation dans tous ses états. Med. Sci. 2024, 40, 925–934. [Google Scholar] [CrossRef]
- Drexler, R.; Brembach, F.; Sauvigny, J.; Ricklefs, F.L.; Eckhardt, A.; Bode, H.; Gempt, J.; Lamszus, K.; Westphal, M.; Schüller, U.; et al. Unclassifiable CNS Tumors in DNA Methylation-Based Classification: Clinical Challenges and Prognostic Impact. Acta Neuropathol. Commun. 2024, 12, 9. [Google Scholar] [CrossRef]
- Gibson, D.; Ravi, A.; Rodriguez, E.; Chang, S.; Oberheim Bush, N.; Taylor, J.; Clarke, J.; Solomon, D.; Scheffler, A.; Witte, J.; et al. Quantitative Analysis of MGMT Promoter Methylation in Glioblastoma Suggests Nonlinear Prognostic Effect. Neuro-Oncol. Adv. 2023, 5, vdad115. [Google Scholar] [CrossRef]
- Haider, S.; Tyekucheva, S.; Prandi, D.; Fox, N.S.; Ahn, J.; Xu, A.W.; Pantazi, A.; Park, P.J.; Laird, P.W.; Sander, C.; et al. Systematic Assessment of Tumor Purity and Its Clinical Implications. JCO Precis. Oncol. 2020, 4, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Gehman, A.; Nifong, B.; Mayer, A.P.; Li, V.; Birchler, M.; Wang, K.; Tang, H. From Guidelines to Implementation: A Case Study on Applying ICH M10 for Bioanalytical Assay Cross-Validation. AAPS J. 2025, 27, 54. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, G.; Januzzi, J.L.; Scherrer-Crosbie, M.; Neilan, T.G.; Dent, S.; Ho, J.E.; Appadurai, V.; McDermott, R.; Akhter, N. Circulating Cardiovascular Biomarkers in Cancer Therapeutics-Related Cardiotoxicity: Review of Critical Challenges, Solutions, and Future Directions. J. Am. Heart Assoc. 2023, 12, e029574. [Google Scholar] [CrossRef]
- Hoppe, J. Overcoming Challenges in Biomarker Translation a Pathway to Clinical Implementation. J. Clin. Trials 2024, 14, 1000005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aries, A.; Drénou, B.; Lahlil, R. Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives. Int. J. Mol. Sci. 2025, 26, 7547. https://doi.org/10.3390/ijms26157547
Aries A, Drénou B, Lahlil R. Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives. International Journal of Molecular Sciences. 2025; 26(15):7547. https://doi.org/10.3390/ijms26157547
Chicago/Turabian StyleAries, Anne, Bernard Drénou, and Rachid Lahlil. 2025. "Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives" International Journal of Molecular Sciences 26, no. 15: 7547. https://doi.org/10.3390/ijms26157547
APA StyleAries, A., Drénou, B., & Lahlil, R. (2025). Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives. International Journal of Molecular Sciences, 26(15), 7547. https://doi.org/10.3390/ijms26157547