Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = non-dairy probiotic juice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2497 KB  
Review
Production of Kefir and Kefir-like Beverages: Fundamental Aspects, Advances, and Future Challenges
by Marta Abajo Justel, Eduardo Balvis Outeiriño and Nelson Pérez Guerra
Processes 2026, 14(1), 73; https://doi.org/10.3390/pr14010073 - 25 Dec 2025
Viewed by 904
Abstract
Nowadays, consumer demand for functional foods with health benefits has grown significantly. In response to this trend, a variety of potentially probiotic foods have been developed—most notably kefir and kefir-like beverages, which are highly appreciated for their tangy flavor and health-promoting properties. Traditionally, [...] Read more.
Nowadays, consumer demand for functional foods with health benefits has grown significantly. In response to this trend, a variety of potentially probiotic foods have been developed—most notably kefir and kefir-like beverages, which are highly appreciated for their tangy flavor and health-promoting properties. Traditionally, kefir is made by fermenting cow’s milk with milk kefir grains, although milk from other animals—such as goats, ewes, buffalo, camels, and mares—is also used. Additionally, non-dairy versions are made by fermenting plant-based milks (such as coconut, almond, soy, rice, and oat) with the same type of grains, or by fermenting fruit and vegetable juices (e.g., apple, carrot, fennel, grape, tomato, prickly pear, onion, kiwifruit, strawberry, quince, pomegranate) with water kefir grains. Despite their popularity, many aspects of kefir production remain poorly understood. These include alternative production methods beyond traditional batch fermentation, kinetic studies of the process, and the influence of key cultivation variables—such as temperature, initial pH, and the type and concentration of nutrients—on biomass production and fermentation metabolites. A deeper understanding of the fermentation process can enable the production of kefir beverages tailored to meet diverse consumer preferences. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

19 pages, 736 KB  
Review
Nutrition Strategies to Promote Sleep in Elite Athletes: A Scoping Review
by Gavin Rackard, Sharon M. Madigan, James Connolly, Laura Keaver, Lisa Ryan and Rónán Doherty
Sports 2025, 13(10), 342; https://doi.org/10.3390/sports13100342 - 2 Oct 2025
Viewed by 8413
Abstract
Background/Objectives: Sleep is pivotal for recovery, immunity, and energy restoration; however, sleep problems exist in elite athletes. Nutrition and supplementation strategies can play both a positive and negative role in sleep quality and quantity. Elite athletes experience unique psychological and physiological demands above [...] Read more.
Background/Objectives: Sleep is pivotal for recovery, immunity, and energy restoration; however, sleep problems exist in elite athletes. Nutrition and supplementation strategies can play both a positive and negative role in sleep quality and quantity. Elite athletes experience unique psychological and physiological demands above non-elite athletes and may require different nutrition strategies to promote sleep. Nutrient interventions and their effect on sleep in elite athletes is an emerging area, with further research warranted. Methods: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for Scoping Reviews and Joanna Brigg’s Institute Reviewer’s Manual for Scoping Reviews were utilised to assess the available evidence on nutrition strategies used to promote sleep in elite athlete cohorts, and we tried to identify the interventions that could be best researched in the future. NUtrition QUality Evaluation Strengthening Tools (NUQUEST) was used to enhance rigour and assess risk of bias in studies. The Paper to Podium (P2P) Matrix was used to offer practitioners practical recommendations. Results: 12 studies met the inclusion criteria for nutrition interventions or exposures to promote sleep in elite athletes. The median participant group size was 19 and study designs were considered together to ascertain potential sleep promoting strategies. Kiwifruit, Tart Cherry Juice and high dairy intake, limited to females, have demonstrated the highest potential to promote sleep in elite athletes, despite limited sample sizes. A-lactalbumin, carbohydrate pre-bed, casein, tryptophan, probiotic and meeting energy demands showed varying results on sleep quality in elite athletes. Conclusions: Kiwifruit, Tart Cherry Juice and dairy consumption offer potential nutritional interventions to promote sleep in elite athletic populations, while protein-based interventions may have a ceiling effect on sleep quality when elite athletes are already consuming >2.5 g·kg−1 body mass (BM) or are already meeting their sleep duration needs. Full article
(This article belongs to the Special Issue Current Research in Applied Sports Nutrition)
Show Figures

Figure 1

26 pages, 1891 KB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Cited by 1 | Viewed by 5504
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

21 pages, 892 KB  
Review
Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives
by Renata Žvirdauskienė, Vesta Jonikė, Loreta Bašinskienė and Dalia Čižeikienė
Microorganisms 2025, 13(6), 1272; https://doi.org/10.3390/microorganisms13061272 - 30 May 2025
Cited by 7 | Viewed by 5089
Abstract
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic [...] Read more.
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic strains. They also meet the rising demand for lactose-free, vegan, and clean-label options. This review looks at the key microbiological, nutritional, and sensory aspects of probiotic fermentation in juice. Common probiotic groups like Lactobacillus, Bifidobacterium, Lactococcus, Bacillus, and Streptococcus show different abilities to adapt to juice environments, affecting properties such as antioxidant levels, shelf life, and taste. The review also explores how factors like pH, sugar levels, heating, and storage can influence fermentation results. New non-thermal processing methods that help maintain probiotic survival are also discussed. Since fermented juices can sometimes develop off-flavors, this paper looks at ways to improve their taste and overall consumer appeal. Finally, future directions are suggested, including personalized nutrition, synbiotic products, and advanced encapsulation technologies. Overall, probiotic fermentation of fruit and vegetable juices shows strong potential for developing a new generation of healthy and appealing functional foods. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods: 2nd Edition)
Show Figures

Figure 1

20 pages, 2332 KB  
Article
Black Goji Berry (Lycium ruthenicum) Juice Fermented with Lactobacillus rhamnosus GG Enhances Inhibitory Activity against Dipeptidyl Peptidase-IV and Key Steps of Lipid Digestion and Absorption
by Kritmongkhon Kamonsuwan, Vernabelle Balmori, Marisa Marnpae, Charoonsri Chusak, Thavaree Thilavech, Suvimol Charoensiddhi, Scott Smid and Sirichai Adisakwattana
Antioxidants 2024, 13(6), 740; https://doi.org/10.3390/antiox13060740 - 19 Jun 2024
Cited by 13 | Viewed by 5073
Abstract
With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji [...] Read more.
With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji berry (BGB) (Lycium ruthenicum Murr.) juice, including changes in physicochemical and functional properties, as well as microbiological and sensory attributes. Throughout the fermentation process with 2.5–10% (w/v) BGB, significantly improved probiotic viability, lactic acid production, and decreased sugar content. While total flavonoids increase, anthocyanins decrease, with no discernible change in antioxidant activities. Metabolite profiling reveals elevated phenolic compounds post-fermentation. Regarding the inhibition of lipid digestion and absorption, fermented BGB exhibits improved bile acid binding, and disrupted cholesterol micellization by approximately threefold compared to non-fermented BGB, while also increasing pancreatic lipase inhibitory activity. Furthermore, a decrease in cholesterol uptake was observed in Caco-2 cells treated with fermented BGB (0.5 mg/mL), with a maximum reduction of 16.94%. Fermented BGB also shows more potent DPP-IV inhibition. Sensory attributes are significantly improved in fermented BGB samples. These findings highlight the potential of BGB as a bioactive resource and a promising non-dairy carrier for LGG, enhancing its anti-hyperglycemic and anti-hyperlipidemic properties. Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods and Food Microorganisms)
Show Figures

Figure 1

23 pages, 1771 KB  
Article
Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice
by Virginia Prieto-Santiago, Ingrid Aguiló-Aguayo, Jordi Ortiz-Solà, Marina Anguera and Maribel Abadias
Foods 2024, 13(2), 350; https://doi.org/10.3390/foods13020350 - 22 Jan 2024
Cited by 5 | Viewed by 3649
Abstract
Due to recent interest in the potential of probiotics as health promoters and the impact of health and environmental concerns on eating habits, non-dairy probiotic food products are required. This study aimed to evaluate the viability of different probiotic microorganisms in peach and [...] Read more.
Due to recent interest in the potential of probiotics as health promoters and the impact of health and environmental concerns on eating habits, non-dairy probiotic food products are required. This study aimed to evaluate the viability of different probiotic microorganisms in peach and grape juice (PGJ) with or without the prebiotic inulin and their antimicrobial activity against the foodborne pathogen Listeria monocytogenes and the juice spoilage microorganism Saccharomyces cerevisiae. Firstly, the viability of seven probiotic strains was studied in PGJ with an initial concentration of 107 CFU/mL for 21 days at 4 °C and for 3 days at 37 °C. In parallel, the physicochemical effect, the antimicrobial effect and the lactic acid production in PGJ were evaluated. Secondly, the probiotic with the best viability results was selected to study its antimicrobial effect against L. monocytogenes and S. cerevisiae, as well as ethanol and acetaldehyde production by the latter. L. casei showed the highest viability and grew in both refrigerated and fermentation conditions (1 log), produced the greatest lactic acid (5.12 g/L) and demonstrated in vitro anti-Listeria activity. Although the addition of the prebiotic did not improve the viability, lactic acid production or anti-Listeria activity of the probiotics, under the conditions studied, the prebiotic potential of inulin, support the design of a synbiotic juice. Finally, although none of the probiotic, fermentation products, or postbiotics showed any antimicrobial activity against L. monocytogenes or S. cerevisiae, the addition of L. casei to the PGJ significantly reduced the production of S. cerevisiae metabolite ethanol (29%) and acetaldehyde (50%). L. casei might be a suitable probiotic to deliver a safe and functional PGJ, although further research should be carried out to determine the effect of the probiotic and fermentation on the nutritional profile of PGJ. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 2051 KB  
Article
Viability and In Vitro Gastrointestinal Transit Tolerance of Multispecies Probiotic Combinations Incorporated into Orange Juice and Drinking Water
by Mahta Moussavi, Javad Barouei, Craig Evans, Michelle C. Adams and Surinder Baines
Foods 2023, 12(11), 2249; https://doi.org/10.3390/foods12112249 - 2 Jun 2023
Cited by 5 | Viewed by 3453
Abstract
Little is known about how combining probiotics affects the storage survival and functional performance of individual probiotics when incorporated into non-dairy drinks. Viability of Lacticaseibacillus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis subsp. lactis BB-12 (Bb), and Propionibacterium jensenii 702 [...] Read more.
Little is known about how combining probiotics affects the storage survival and functional performance of individual probiotics when incorporated into non-dairy drinks. Viability of Lacticaseibacillus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis subsp. lactis BB-12 (Bb), and Propionibacterium jensenii 702 (PJ), either alone or in multi-species combinations included in orange juice (OJ), were assessed during storage in refrigerated conditions and compared with bottled water (BW). The tolerance of probiotics included in refrigerated OJ to simulated gastrointestinal conditions was also examined. LG and LR viabilities were significantly higher in OJ than in BW (p ≤ 0.001), while the reverse was evident for PJ. Bb maintained high viability in both drinks. LG-PJ in both drinks and Bb-PJ in BW resulted in greater viabilities among the paired combinations compared to their respective monocultures when incorporated separately (p ≤ 0.001). The viability of LG in the LG-Bb-PJ combination improved significantly in BW compared with LG alone (p ≤ 0.001). OJ did not alter bacterial tolerance to simulated gastric juice but diminished tolerance to simulated intestinal juice (SIJ). In all combinations, tolerance of LG and LR to SIJ was improved, whereas tolerance of PJ declined significantly compared with respective monocultures (p ≤ 0.001). In conclusion, probiotic storage stability and gastrointestinal transit tolerance were species-dependent and affected by carrier type and combinations. These effects should be considered when formulating probiotic products. Full article
(This article belongs to the Collection Probiotics Research and Innovation in Functional Food Production)
Show Figures

Graphical abstract

22 pages, 3872 KB  
Article
Development of Non-Dairy Synbiotic Fruit Beverage Using Adansonia digatata (baobab) Fruit Pulp as Prebiotic
by Patience T. Fowoyo, Samuel T. Ogunbanwo, Oluwatoyosi O. Popoola and Paulina O. Adeniji
Fermentation 2022, 8(12), 673; https://doi.org/10.3390/fermentation8120673 - 25 Nov 2022
Cited by 3 | Viewed by 4385
Abstract
Probiotics improve gut health; however, their intake through diet is mainly in the form of dairy products, which represents a challenge to lactose-intolerant individuals and vegetarians. This study aimed to determine the prebiotic potential of baobab and to evaluate the potential of using [...] Read more.
Probiotics improve gut health; however, their intake through diet is mainly in the form of dairy products, which represents a challenge to lactose-intolerant individuals and vegetarians. This study aimed to determine the prebiotic potential of baobab and to evaluate the potential of using fermented baobab-based beverages as functional foods. The prebiotic content of baobab fruit pulp was determined. Lactic acid bacteria (LAB) were isolated from raw milk samples, identified through phenotypic and molecular methods, and evaluated for their probiotic potential. Three potential non-dairy synbiotic functional beverages using baobab fruit pulp fermented with potential probiotic Limosilactobacillus fermentum and mixed with milk, water, and apple juice separately were produced. The growth and survival of probiotic L. fermentum in the beverages at room (25 °C) and refrigeration (4 °C) temperatures for 3 weeks were determined. Baobab fruit pulp contained phytochemicals, vitamins, fatty acids, inulin, and fructooligosaccharides. Sequence alignment of the LAB isolates identified homologous sequences of Lacticaseibacillus casei, Limosilactobacillus fermentum, Lactiplantibacillus plantarum, Lentilactobacillus buchneri, and Lactiplantibacillus pentosus with 97.2–98.5% similarity. All the lactic acid bacteria did not produce DNAse and gelatinase enzymes, exhibited antagonistic activity against test pathogenic organisms, and demonstrated tolerance to bile salt, simulated gastric juice, and acid. The viability of L. fermentum increased from an initial inoculum size of 106–108 CFU/mL in the baobab-based beverages and remained constant at 108 CFU/mL both at room and refrigeration temperatures. However, after three weeks, the viability of L. fermentum in the synbiotic beverages reduced to 107 CFU/mL. Refrigerated synbiotic beverages had more viable L. fermentum cells (8.04–8log10 CFU/mL) than those stored at room temperatures (7.95–7.7log10 CFU/mL) after three weeks of storage. This study has shown that baobab fruit pulp has prebiotic potential and can be used in the production of a non-dairy functional beverage. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

31 pages, 1375 KB  
Review
Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications
by Wee Yin Koh, Xiao Xian Lim, Thuan-Chew Tan, Rovina Kobun and Babak Rasti
Appl. Sci. 2022, 12(19), 10005; https://doi.org/10.3390/app121910005 - 5 Oct 2022
Cited by 59 | Viewed by 16772
Abstract
The growing health awareness among consumers has increased the demand for non-dairy-based products containing probiotics. However, the incorporation of probiotics in non-dairy matrices is challenging, and probiotics tend to have a low survival rate in these matrices and subsequently perform poorly in the [...] Read more.
The growing health awareness among consumers has increased the demand for non-dairy-based products containing probiotics. However, the incorporation of probiotics in non-dairy matrices is challenging, and probiotics tend to have a low survival rate in these matrices and subsequently perform poorly in the gastrointestinal system. Encapsulation of probiotics with a physical barrier could preserve the survivability of probiotics and subsequently improve delivery efficiency to the host. This article aimed to review the effectiveness of encapsulation techniques (coacervation, extrusion, emulsion, spray-drying, freeze-drying, fluidized bed coating, spray chilling, layer-by-layer, and co-encapsulation) and biomaterials (carbohydrate-, fat-, and protein-based) on the viability of probiotics under the harsh conditions of food processing, storage, and along the gastrointestinal passage. Recent studies on probiotic encapsulations using non-dairy food matrices, such as fruits, fruit and vegetable juices, fermented rice beverages, tea, jelly-like desserts, bakery products, sauces, and gum products, were also included in this review. Overall, co-encapsulation of probiotics with prebiotics was found to be effective in preserving the viability of probiotics in non-dairy food matrices. Encapsulation techniques could add value and widen the application of probiotics in the non-dairy food market and future perspectives in this area. Full article
(This article belongs to the Special Issue Innovative Food Products and Processing)
Show Figures

Figure 1

26 pages, 2105 KB  
Review
Probiotication of Nutritious Fruit and Vegetable Juices: An Alternative to Dairy-Based Probiotic Functional Products
by Floyd Darren Mojikon, Melisa Elsie Kasimin, Arnold Marshall Molujin, Jualang Azlan Gansau and Roslina Jawan
Nutrients 2022, 14(17), 3457; https://doi.org/10.3390/nu14173457 - 23 Aug 2022
Cited by 58 | Viewed by 10985
Abstract
Fruits and vegetables are widely known to be rich in nutrients, antioxidants, vitamins, dietary fiber, minerals, and a bioactive molecule, making them an essential component of a balanced diet with multiple documented positive effects on human health. The probiotication of plant-based juices for [...] Read more.
Fruits and vegetables are widely known to be rich in nutrients, antioxidants, vitamins, dietary fiber, minerals, and a bioactive molecule, making them an essential component of a balanced diet with multiple documented positive effects on human health. The probiotication of plant-based juices for the production of functional and nutraceutical food serves as a healthy alternative to dairy probiotics. They are cholesterol free, lack several dairy allergens, and also encourage ingestion for people with lactose intolerance. This review highlights valuable claims regarding the efficacy of different probiotic strains on various diseases. A comprehensive nutrition comparison and the preference of plant-based over dairy probiotic drinks is also discussed, supported with updated market trends of probiotic drinks (dairy and non-dairy based). An extensive compilation of current plant-based probiotic drinks that are available in markets around the world is listed as a reference. The fermentability of carbon sources by probiotic microorganisms is crucial in addressing the development of plant-based drinks. Therefore, the pathway involved in metabolism of sucrose, glucose, fructose, and galactose in fruit and vegetable juice was also underlined. Finally, the key factors in monitoring the quality of probiotic products such as total soluble solids, sugar consumption, titratable acidity, pH, and stability at low storage temperatures were outlined. Full article
(This article belongs to the Special Issue New Paradigms in the Diet and Microbiome Relationship)
Show Figures

Figure 1

17 pages, 38945 KB  
Article
Encapsulation of Lactobacillus gasseri: Characterization, Probiotic Survival, In Vitro Evaluation and Viability in Apple Juice
by Abigail Varela-Pérez, Oscar O. Romero-Chapol, Ana G. Castillo-Olmos, Hugo S. García, Mirna L. Suárez-Quiroz, Jaspreet Singh, Claudia Y. Figueroa-Hernández, Rubí Viveros-Contreras and Cynthia Cano-Sarmiento
Foods 2022, 11(5), 740; https://doi.org/10.3390/foods11050740 - 2 Mar 2022
Cited by 32 | Viewed by 10146
Abstract
The development of functional foods containing probiotic bacteria has become increasingly relevant to improve and maintain health. However, this is often limited to dairy food matrices given the complexity involved in maintaining a stable system together with high microbial viability in matrices such [...] Read more.
The development of functional foods containing probiotic bacteria has become increasingly relevant to improve and maintain health. However, this is often limited to dairy food matrices given the complexity involved in maintaining a stable system together with high microbial viability in matrices such as juices. The objective of this study was to develop and characterize sodium alginate capsules loaded with Lactobacillus gasseri ATCC® 19992 ™ (LG). Cell viability under in vitro gastrointestinal conditions and during storage in apple juice were evaluated. The capsules were prepared by ionic gelation and an emulsification process was performed as pretreatment using two homogenization methods: magnetic stirring (AM) and Ultraturrax® rotor-stator homogenizer (UT). Cell viability after encapsulation was similar in the two processes: 65%. At the end of the in vitro gastrointestinal evaluation, the non-encapsulated probiotic cells did not show any viability, while the AM system was able to retain 100% of its viability and the UT retained 79.14%. The morphology of the capsules consisted of a continuous and homogeneous surface. Cell viability of LG encapsulated in apple juice stored at 4 °C for 21 days was 77% for AM, 55.43% for UT, and 63.10% for free LG. Full article
Show Figures

Figure 1

17 pages, 1524 KB  
Article
In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk
by Juanshan Zheng, Mei Du, Wei Jiang, Jianbo Zhang, Wenxiang Shen, Xiaoyu Ma, Zeyi Liang, Jiahao Shen, Xiaohu Wu and Xuezhi Ding
Biology 2022, 11(1), 44; https://doi.org/10.3390/biology11010044 - 29 Dec 2021
Cited by 21 | Viewed by 4561
Abstract
Cattle-yak milk is an important raw material and an indispensable source of high-quality food for local farmers and herdsmen to produce ghee, milk residue, yogurt, and other dairy products. In this study, Lactobacillus strains were isolated from cattle-yak milk for potential probiotic candidates [...] Read more.
Cattle-yak milk is an important raw material and an indispensable source of high-quality food for local farmers and herdsmen to produce ghee, milk residue, yogurt, and other dairy products. In this study, Lactobacillus strains were isolated from cattle-yak milk for potential probiotic candidates using a series of in vitro tests, including probiotic characterization and safety evaluation (antibiotic susceptibility and hemolytic ability). The results found that the Lactobacillus rhamnosus CY12 strain showed a high survival rate in bile salts, under acid conditions, and in the gastrointestinal juice environment, as well as showing high antimicrobial activity and adhesive potential. The safety evaluation showed that all strains were considered non-hemolytic. In addition, the whole-genome sequencing indicated that the strain CY12 spanned 2,506,167 bp, with an average length of 881 bp; the GC content in the gene region (%) was 47.35, contained 1347 protein-coding sequences, and accounted for 85.72% of the genome. The genome annotation showed that genes mainly focused on the immune system process, metabolic process, carbohydrate utilization, carbon metabolism, galactose metabolism, and biological adhesion, etc. This study revealed that the Lactobacillus rhamnosus CY12 strain might be an excellent potential probiotic in the development of feed additives for animals and has the ability to promote health. Full article
Show Figures

Graphical abstract

13 pages, 1060 KB  
Article
Modulation of Gut Microbiota by Lactobacillus casei Fermented Raspberry Juice In Vitro and In Vivo
by Ting Wu, Xueqi Chu, Yuxin Cheng, Shuxin Tang, Daniel Zogona, Siyi Pan and Xiaoyun Xu
Foods 2021, 10(12), 3055; https://doi.org/10.3390/foods10123055 - 8 Dec 2021
Cited by 32 | Viewed by 4572
Abstract
The aim of this study was to investigate the modulation of gut microbiota by fermented raspberry juice (FRJ) both in vitro and in vivo. Results showed that total phenolic content and antioxidant activities of FRJ reached the highest after fermentation for 42 h. [...] Read more.
The aim of this study was to investigate the modulation of gut microbiota by fermented raspberry juice (FRJ) both in vitro and in vivo. Results showed that total phenolic content and antioxidant activities of FRJ reached the highest after fermentation for 42 h. Seventeen phenolic compounds were contained in FRJ, mainly including ellagic acid (496.64 ± 2.91 μg/g) and anthocyanins (total concentration: 387.93 μg/g). FRJ modulated the gut microbiota into a healthy in vitro status, with increase of valeric and isovaleric acids production. In healthy mice, all FRJ treatments improved the production of acetic, butyric and isovaleric acids as well as the gene expression of ZO-1, Claudin-1, Claudin-4, Ocdudin, E-cadherin and Muc-2. Moreover, variable gut microbial compositions were found among the groups fed diet-supplemented the different doses of FRJ, within low and median doses of FRJ may regulate the microbiota to a healthier state compared to the high dose supplementation. This study indicated that fermentation is a potential way to produce plant-based juices, which could reshape the gut microbiota and improve the host health. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 1348 KB  
Article
Fermentation of Jamaican Cherries Juice Using Lactobacillus plantarum Elevates Antioxidant Potential and Inhibitory Activity against Type II Diabetes-Related Enzymes
by Andri Frediansyah, Fitrio Romadhoni, Suryani, Rifa Nurhayati and Anjar Tri Wibowo
Molecules 2021, 26(10), 2868; https://doi.org/10.3390/molecules26102868 - 12 May 2021
Cited by 27 | Viewed by 7299
Abstract
Jamaican cherry (Muntinga calabura Linn.) is tropical tree that is known to produce edible fruit with high nutritional and antioxidant properties. However, its use as functional food is still limited. Previous studies suggest that fermentation with probiotic bacteria could enhance the functional [...] Read more.
Jamaican cherry (Muntinga calabura Linn.) is tropical tree that is known to produce edible fruit with high nutritional and antioxidant properties. However, its use as functional food is still limited. Previous studies suggest that fermentation with probiotic bacteria could enhance the functional properties of non-dairy products, such as juices. In this study, we analyze the metabolite composition and activity of Jamaican cherry juice following fermentation with Lactobacillus plantarum FNCC 0027 in various substrate compositions. The metabolite profile after fermentation was analyzed using UPLC-HRMS-MS and several bioactive compounds were detected in the substrate following fermentation, including gallic acid, dihydrokaempferol, and 5,7-dihydroxyflavone. We also found that total phenolic content, antioxidant activities, and inhibition of diabetic-related enzymes were enhanced after fermentation using L. plantarum. The significance of its elevation depends on the substrate composition. Overall, our findings suggest that fermentation with L. plantarum FNCC 0027 can improve the functional activities of Jamaican cherry juice. Full article
(This article belongs to the Special Issue Bioactives and Functional Ingredients in Foods)
Show Figures

Figure 1

14 pages, 303 KB  
Review
Exploitation of Sea Buckthorn Fruit for Novel Fermented Foods Production: A Review
by Svetlana Schubertová, Zuzana Krepsová, Lívia Janotková, Marianna Potočňáková and František Kreps
Processes 2021, 9(5), 749; https://doi.org/10.3390/pr9050749 - 23 Apr 2021
Cited by 16 | Viewed by 5366
Abstract
Sea buckthorn fruit is abundant with essential nutrients and bioactive substances, yet it remains less sought after. Therefore, it is valuable to explore new ways of sea buckthorn fruit processing, which can boost consumer acceptance of sea buckthorn fruit and also lead to [...] Read more.
Sea buckthorn fruit is abundant with essential nutrients and bioactive substances, yet it remains less sought after. Therefore, it is valuable to explore new ways of sea buckthorn fruit processing, which can boost consumer acceptance of sea buckthorn fruit and also lead to formulation of new functional foods. In the presented review, we summarize studies focused on development of foods utilizing sea buckthorn fruit or its components and bacterial food cultures. Firstly, we discuss the impact of malolactic fermentation on content and profile of organic acids and polyphenols of sea buckthorn fruit juice. During this process, changes in antioxidant and sensory properties are considerable. Secondly, we address the role of sea buckthorn fruit and its components in formulating novel probiotic dairy and non-dairy products. In this regard, a synergic effect of prebiotic material and probiotic bacteria against pathogens is distinguished. Overall, the potential of sea buckthorn fruit as a botanical ingredient for application in novel foods is highlighted. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Food Processes")
Back to TopTop