In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Functional Characteristics of LAB
2.2.1. Antagonistic Activity of the LAB Strains
2.2.2. Evaluation of Growth and Acid-Producing Ability
2.2.3. Acidic Resistance and Bile Salts of Isolated Strains
2.2.4. Tolerance to Gastrointestinal (GI) Conditions
2.2.5. Antibiotic Susceptibility of Selected Strains
2.2.6. Hemolytic Activity Analysis
2.2.7. Adhesion to Human Colon Carcinoma (Caco-2) Cells
2.3. Whole-Genome Sequencing
2.3.1. DNA Extract and Genome Sequence
2.3.2. Genome Assembly
2.3.3. Genome Annotation
2.4. Statistical Analysis
3. Results
3.1. Molecular Identification of Lactobacilli Strains
3.2. Functional Characteristics of LAB
3.2.1. Antagonistic Activity
3.2.2. Growth and Acid-Producing Ability
3.2.3. Acid and Bile Salt Tolerance of LAB Isolates
3.2.4. Survival under Simulated Gastrointestinal Conditions
3.2.5. Antibiotic Susceptibility
3.2.6. Hemolytic Activity
3.2.7. Adherence Ability
3.3. Whole-Genome Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehdi, Y.; Létourneau-Montminy, M.; Gaucher, M.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Ganguly, N.K.B.S.; Sesikeran, B.; Nair, G.B.; Ramakrishna, B.S.; Sachdev, H.P.S.; Batish, V.K.; Kanagasabapathy, A.S.; Muthuswamy, V.; Kathuria, S.C. ICMR-DBT guidelines for evaluation of probiotics in food. India J. Med. Res. 2011, 134, 22–25. [Google Scholar]
- Guarner, F.; Khan, A.; Garisch, J.; Eliakim, R.; Gangl, A.; Thomson, A.; Kim, N. World Gastroenterology Organisation Global Guidelines: Probiotics and prebiotics October 2011. J. Clin. Gastroenterol. 2012, 46, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Prabhurajeshwar, C.; Chandrakanth, R.K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 2017, 40, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Jger, R.; Purpura, M.; Farmer, S.; Cash, H.A.; Keller, D. Probiotic bacillus coagulans GBI-30; 6086 improves protein absorption and utilization. Probiotics Antimicro. 2017, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Desai, C.; Darby, T.; Luo, L.; Wolfarth, A.; Scharer, C.; Neish, A. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep. 2015, 12, 1217–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, R.; Shah, N. Immune system stimulation by probiotic microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54, 938–956. [Google Scholar] [CrossRef] [PubMed]
- AlKalbani, N.; Turner, M.; Ayyash, M. Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microb. Cell Fact. 2019, 18, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.S.; Hu, D.; Tian, Y.; Song, Y.; Hou, Y.C.; Sun, L.L.; Zhang, Y.; Man, C.X.; Zhang, W.; Jiang, Y.J. Protective effects of a novel Lactobacillus rhamnosus strain with probiotic characteristics against lipopolysaccharide-induced intestinal inflammation in vitro and in vivo. Food Funct. 2020, 11, 5799–8514. [Google Scholar] [CrossRef]
- Yu, P.; Ke, C.; Guo, J.; Zhang, X.; Li, B. Lactobacillus plantarum L15 alleviates colitis by inhibiting LPS-mediated NF-κB activation and ameliorates DSS-induced gut microbiota dysbiosis. Front. Immunol. 2020, 11, 575173. [Google Scholar] [CrossRef]
- Miller, L.E. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: Systematic review and meta-analysis of randomized controlled trials. Ann. Gastroenterol. 2017, 30, 1–11. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Cui, H.; Li, Y.; Sun, Y.; Qiu, H. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Caggia, C.; De Angelis, M.; Pitino, I.; Pino, A.; Randazzo, C. Probiotic features of Lactobacillus strains isolated from Ragusano and Pecorino Siciliano cheeses. Food Microbiol. 2015, 50, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Castilho, N.; Todorov, S.; Nero, L. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol. 2018, 18, 219. [Google Scholar] [CrossRef] [PubMed]
- Wiener, G.; Han, J.; Long, R. The yak. Rap. Publ. 2011, 44, 57–58. [Google Scholar]
- Li, W.X.; Yang, L.; Nan, W.; Lu, J.; Zhang, S.W.; Ujiroghene, O.J.; Pang, X.Y.; Lv, J.P. Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Appl. Microbiol. Biotechnol. 2020, 104, 7631–7642. [Google Scholar] [CrossRef]
- Kang, W.; Pan, L.; Peng, C.; Dong, L.; Cao, S.; Cheng, H.; Zhou, H. Isolation and characterization of lactic acid bacteria from human milk. J. Dairy Sci. 2020, 103, 9980–9991. [Google Scholar] [CrossRef]
- Nami, Y.; Vaseghi Bakhshayesh, R.; Mohammadzadeh Jalaly, H.; Lotfi, H.; Eslami, S.; Hejazi, M. Enterococcus probiotic properties of isolated from artisanal dairy products. Front. Microbiol. 2019, 10, 300. [Google Scholar] [CrossRef]
- Cheon, M.; Lim, S.; Lee, N.; Paik, H. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from korean fermented foods. Int. J. Mol. Sci. 2020, 21, 1227. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Mendoza, D.; Kosmerl, E.; Miyagusuku-Cruzado, G.; Giusti, M.; Jiménez-Flores, R.; García-Cano, I. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. J. Dairy Sci. 2020, 103, 7707–7718. [Google Scholar] [CrossRef]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, L.S. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Minoru, K.; Susumu, G.; Yoko, S.; Miho, F.; Mao, T. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar]
- Tatusov, R.; Galperin, M.; Natale, D.; Koonin, E. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Karin, L.; Peter, H.; Andreas, R.E.; Hans-Henrik, S.; Torbjørn, R.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100. [Google Scholar]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Rubayet Ul Alam, A.S.M.; Jahid, I.K. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef]
- Grosu-Tudor, S.S.; Stancu, M.M.; Pelinescu, D.; Zamfir, M. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods. World J. Microbiol. Biotechnol. 2014, 30, 2459–2469. [Google Scholar] [CrossRef]
- Jose, N.M.; Bunt, C.R.; Hussain, A.M. Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 2015, 3, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Liasi, S.A.; Azmi, T.I.; Hassan, M.D.; Shuhaimi, M.; Rosfarizan, M.; Ariff, A.B. Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product. Budu. J. Microbiol. 2009, 5, 33–37. [Google Scholar]
- Setyawardani, T.; Rahayu, W.P.; Maheswari, R.R.; Palupi, N.S. Antimicrobial activity and adhesion ability of indigenous lactic acid bacteria isolated from goat milk. Int. Food Res. J. 2014, 21, 959–964. [Google Scholar]
- Garcia-Hernandez, Y.; Perez-Sanchez, T.; Boucourt, R.; Balcazar, J.L.; Nicoli, J.R.; Moreira-Silva, J.; Halaihel, N. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Gueimonde, M.; Salminen, S. New methods for selecting and evaluating probiotics. Dig. Liver Dis. 2006, 38, S242–S247. [Google Scholar] [CrossRef]
- Ayyash, M.; Abushelaibi, A.; Al-Mahadin, S.; Enan, M.; El-Tarabily, K.; Shah, N. In-vitro investigation into probiotic characterisation of Streptococcus and Enterococcus isolated from camel milk. LWT 2018, 87, 478–487. [Google Scholar] [CrossRef]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Gao, S.; Qiao, Y.; Zhang, Y.W.; Peng, Q.; Zhang, Z.S.; Shi, B.; Li, J.M.; Ying, W.U. Isolation, identification and probiotic characterization of lactic acid bacteria in human breast milk. Sci. Technol. Food Ind. 2017, 10, 205–210. (In Chinese) [Google Scholar]
- Liu, W.; Chen, M.; Duo, L.; Wang, J.; Guo, S.; Sun, H.; Menghe, B.; Zhang, H. Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrum. J. Dairy Sci. 2020, 103, 4013–4025. [Google Scholar] [CrossRef] [PubMed]
- Máire, B.; Gahan, C.G.M.; Colin, H. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2010, 4, 625–651. [Google Scholar]
- Garcia-Ruiz, A.; Llano, D.; Esteban-Fernandez, A.; Requena, T.; Bartolome, B.; Moreno-Arribas, M.V. Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol. 2014, 44, 220–225. [Google Scholar] [CrossRef]
- Solieri, L.; Bianchi, A.; Mottolese, G.; Lemmetti, F.; Giudici, P. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol. 2014, 38, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Casey, P.G.; Casey, G.D.; Gardiner, G.E.; Tangney, M.; Fitzgerald, G.F. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbiol. 2010, 39, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Tulumoglu, S.; Yuksekdag, Z.; Beyatli, Y.; Simsek, O.; Cinar, B.; Yaşar, E. Probiotic properties of Lactobacilli species isolated from children’s feces. Anaerobe 2013, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Zhang, W.; Zhang, L.; Ai, L.; Zhang, Y.; Han, X.; Yi, H. Study of probiotic potential of four wild Lactobacillus rhamnosus strains. Anaerobe 2013, 21, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Riaz Rajoka, M.; Zhao, H.; Lu, Y.; Lian, Z.; Li, N.; Hussain, N.; Shao, D.; Jin, M.; Li, J.; Shi, J. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 2018, 9, 2705–2715. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 1–11. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Zoumpopoulou, G.; Miaris, C.; Kalantzopoulos, G.; Pot, B.; Tsakalidou, E. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 2006, 16, 189–199. [Google Scholar] [CrossRef]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.; Tsakalidou, E.; Nychas, G.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Botta, C.; Langerholc, T.; Cencič, A.; Cocolin, L. In vitro selection and characterization of new probiotic candidates from table olive microbiota. PLoS ONE 2014, 9, e94457. [Google Scholar]
- Santini, C.; Baffoni, L.; Gaggia, F.; Granata, M.; Gasbarri, R.; Gioia, D.D.; Biavati, B. Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int. J. Food Microbiol. 2010, 141, S98–S108. [Google Scholar] [CrossRef] [PubMed]
- Kos, B.; Šušković, J.; Vuković, S.; Šimpraga, M.; Frece, J.; Matošić, S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 2010, 94, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Morrow, L.E.; Lee, E. Probiotics in the intensive care unit. Nutr. Clin. Pract. 2012, 15, 144–148. [Google Scholar] [CrossRef]
- Ochman, H.; Davalos, L. The nature and dynamics of bacterial genomes. Science 2006, 311, 1730–1733. [Google Scholar] [CrossRef] [Green Version]
- Ranea, J.; Buchan, D.; Thornton, J.; Orengo, C. Evolution of protein superfamilies and bacterial genome size. J. Mol. Biol. 2004, 336, 871–887. [Google Scholar] [CrossRef] [PubMed]
Indicator Strains | E. coli | S. aureus | S. agalactis | S. typhii |
---|---|---|---|---|
CY2 | 29.19 a | 24.59 ab | 27.33 ab | 23.87 b |
CY3 | 15.13 cd | 13.20 cd | 15.07 cd | 12.03 de |
CY7 | 15.10 c | 15.00 c | 15.37 cd | 12.93 d |
CY11 | 14.13 e | 12.89 cd | 13.47 c | 11.27 e |
CY12 | 28.27 ab | 27.40 a | 29.23 a | 25.13 a |
CY12-2 | 15.233 cd | 14.10 c | 16.83 c | 13.43 d |
CY13 | 14.50 de | 11.57 cd | 16.23 c | 11.23 e |
ATCC 7469 | 27.70 ab | 22.63 b | 26.77 b | 22.87 c |
SEM | 0.13 | 0.24 | 0.15 | 0.09 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Indicator | pH 1.5 | pH 2.5 | pH 3.5 | pH 4.5 |
---|---|---|---|---|
CY2 | 13.10 | 96.97 a | 97.62 a | 98.84 a |
CY3 | 12.03 | 36.09 c | 43.11 b | 44.58 b |
CY7 | 10.91 | 9.68 e | 13.66 d | 22.03 c |
CY11 | 10.73 | 10.90 de | 11.62 d | 25.64 c |
CY12 | 14.69 | 98.08 a | 98.27 a | 98.02 a |
CY12-2 | 10.30 | 10.02 de | 40.61 bc | 40.03 b |
CY13 | 13.28 | 12.79 d | 38.53 c | 43.79 b |
ATCC 7469 | 13.79 | 93.01 b | 95.16 a | 97.77 a |
SEM | 0.87 | 0.72 | 1.04 | 2.77 |
p-value | 0.058 | <0.001 | <0.001 | <0.001 |
Indicator | 0.1% | 0.2% | 0.3% | 0.5% |
---|---|---|---|---|
CY2 | 58.28 a | 22.46 c | 21.43 b | 20.10 a |
CY3 | 44.51 ab | 15.57 d | 14.92 c | 12.38 b |
CY7 | 20.04 c | 16.27 d | 15.61 c | 14.72 b |
CY11 | 48.89 ab | 16.46 d | 15.47 c | 14.87 b |
CY12 | 56.56 a | 35.42 b | 28.38 a | 22.27 a |
CY12-2 | 27.70 c | 15.63 d | 14.91 c | 13.85 b |
CY13 | 41.33 ab | 15.81 d | 13.62 c | 13.56 b |
ATCC 7469 | 51.47 ab | 44.90 a | 22.96 b | 20.60 a |
SEM | 1.60 | 0.86 | 1.09 | 1.03 |
p-value | <0.001 | <0.001 | <0.001 | 0.003 |
Time (h) | pH 2.0 | pH 2.5 | pH 3.0 | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
CY2 | 83.33 ab | 80.35 a | 41.93 d | 95.69 a | 91.21 a | 89.47 a | 98.93 a | 97.76 a | 95.94 a |
CY3 | 89.61 a | 74.93 c | 67.83 b | 92.27 a | 90.74 b | 87.08 a | 96.51 a | 95.68 a | 94.78 a |
CY7 | 70.45 c | 37.11 e | 33.23 e | 74.35 c | 79.33 c | 51.44 e | 96.59 a | 83.93 c | 78.61 c |
CY11 | 86.23 ab | 52.01 d | 50.48 c | 91.19 a | 76.53 c | 62.83 d | 96.69 a | 85.97 bc | 78.66 c |
CY12 | 83.66 ab | 86.09 a | 80.08 a | 94.59 a | 93.56 a | 85.85 a | 96.62 a | 95.55 a | 88.90 b |
CY12-2 | 78.61 b | 73.59 c | 68.13 b | 83.33 b | 77.70 bc | 71.14 c | 89.05 b | 93.80 ab | 88.61 b |
CY13 | 82.67 ab | 39.94 e | 39.43 de | 91.46 a | 76.14 c | 88.98 a | 93.70 b | 76.38 c | 73.67 d |
ATCC 7469 | 88.06 ab | 87.41 a | 76.44 a | 92.67 a | 82.62 b | 80.07 b | 96.53 a | 91.58 b | 81.89 c |
SEM | 2.46 | 1.02 | 2.13 | 1.46 | 2.37 | 1.86 | 1.60 | 3.24 | 1.29 |
p-value | <0.001 | 0.002 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Indicator | Time (h) | |||
---|---|---|---|---|
2 | 4 | 6 | 8 | |
CY2 | 98.39 a | 95.47 ab | 91.87 ab | 90.87 a |
CY3 | 56.12 b | 55.98 c | 54.91 c | 52.47 c |
CY7 | 56.87 b | 56.02 c | 55.57 c | 55.02 c |
CY11 | 54.92 b | 53.66 c | 52.20 c | 50.02 c |
CY12 | 97.38 a | 92.81 a | 92.73 a | 89.66 a |
CY12-2 | 43.96 b | 43.42 c | 42.71 c | 41.17 c |
CY13 | 54.74 b | 54.46 c | 52.32 c | 51.70 c |
ATCC 7469 | 92.02 a | 77.00 b | 75.90 b | 72.49 ab |
SEM | 2.01 | 2.28 | 1.88 | 1.71 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Antioxidant Activity | LAB Strains | |||||||
---|---|---|---|---|---|---|---|---|
CY2 | CY3 | CY7 | CY11 | CY12 | CY12-2 | CY13 | ATCC 7469 | |
Tetracycline | S | S | S | S | S | S | I | S |
Kanamycin | R | R | R | I | I | I | R | R |
Penicillin | S | S | S | S | S | S | S | S |
Gentamicin | R | I | I | R | I | I | R | I |
Chloramphenicol | S | S | S | S | S | S | S | S |
Ciprofloxacin | I | S | S | S | S | S | I | S |
Oxacillin | R | R | R | R | R | R | R | R |
Amoxicillin | S | S | R | S | S | S | S | S |
Ampicillin | S | S | R | S | S | S | S | S |
Erythrocin | S | S | S | S | S | S | S | S |
Cefazolin | S | S | R | S | S | I | S | I |
Vancomycin | R | R | R | R | R | R | R | R |
Indicator | CY12 |
---|---|
Total reads num | 601,513,839 |
Total bases | 97,993 |
Average length | 6138 |
No. of all scaffolds | 1 |
Bases in all scaffolds | 2,923,707 |
G + C content | 46.77% |
Gene number | 2844 |
Gene total length(bp) | 2,506,167 |
Gene average length(bp) | 881 |
GC content in gene region (%) | 47.35 |
Gene/Genome (%) | 85.72 |
Number of coding sequences | 1347 |
tRNA | 59 |
rRNA | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Du, M.; Jiang, W.; Zhang, J.; Shen, W.; Ma, X.; Liang, Z.; Shen, J.; Wu, X.; Ding, X. In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk. Biology 2022, 11, 44. https://doi.org/10.3390/biology11010044
Zheng J, Du M, Jiang W, Zhang J, Shen W, Ma X, Liang Z, Shen J, Wu X, Ding X. In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk. Biology. 2022; 11(1):44. https://doi.org/10.3390/biology11010044
Chicago/Turabian StyleZheng, Juanshan, Mei Du, Wei Jiang, Jianbo Zhang, Wenxiang Shen, Xiaoyu Ma, Zeyi Liang, Jiahao Shen, Xiaohu Wu, and Xuezhi Ding. 2022. "In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk" Biology 11, no. 1: 44. https://doi.org/10.3390/biology11010044
APA StyleZheng, J., Du, M., Jiang, W., Zhang, J., Shen, W., Ma, X., Liang, Z., Shen, J., Wu, X., & Ding, X. (2022). In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk. Biology, 11(1), 44. https://doi.org/10.3390/biology11010044