Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Juice
2.1.2. Prebiotic
2.1.3. Microorganisms
2.2. Methodology
2.2.1. Microorganisms Preparation
2.2.2. Survival of the Probiotics in PG Juice at Refrigeration (5 °C) and 37 °C, Fermentation Capability and Effect on the Physicochemical Properties
2.2.3. Antimicrobial Activity of Selected Probiotics against L. monocytogenes In Vitro
2.2.4. Antimicrobial Activity of Selected Probiotics against L. monocytogenes in Juice
2.2.5. Antimicrobial Activity of LC Fermentation Products and Postbiotics against L. monocytogenes in PGJ with Inulin
2.2.6. Interaction between LC and S. cerevisiae and Its Fermentation Metabolites in PGJ with Inulin
2.3. Statistical Analysis
3. Results
3.1. Survival of the Probiotics in PG Juice in Refrigeration (5 °C) Conditions and Effect on the Physicochemical Properties
3.2. Survival and Fermentation Capability of the Probiotics in PGJ Juice at 37 °C with or without Inulin and Effect on the Physicochemical Quality
3.3. Antimicrobial Activity of Selected Probiotics against L. monocytogenes
3.3.1. Disk Diffusion Test
3.3.2. Antimicrobial Effect of LC and LRGG against L. monocytogenes in PGJ
3.3.3. Evaluation of the Antimicrobial Activity of the L. casei Fermentation Products and Postbiotics against L. monocytogenes in PGJI
3.4. Effect of LC and LC Postbiotics against S. cerevisiae Population, Ethanol and Acetaldehyde Production in PGJI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time of Fermentation (37 °C), Days | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | SST | TA | ||||||||||||||
Probiotic | Prebiotic | 0 | 3 | 7 | 14 | 21 | 0 | 3 | 7 | 14 | 21 | 0 | 3 | 7 | 14 | 21 |
LC | Inulin | 3.44 ± 0.01 bc | 3.37 ± 0.02 c | 3.61 ± 0.04 a | 3.44 ± 0.01 bc | 3.47 ± 0.05 b | 17.20 ± 0.00 a | 16.23 ± 0.06 a | 17.17 ± 0.06 a | 17.23 ± 0.06 a | 17.23 ± 0.06 a | 5.03 ± 0.08 a | 4.75 ± 0.10 c | 4.67 ± 0.09 c | 4.80 ± 0.04 bc | 4.96 ± 0.14 ab |
Ø Inulin | 3.43 ± 0.02 b | 3.42 ± 0.04 bc | 3.53 ± 0.02 a | 3.36 ± 0.04 c | 3.51 ± 0.01 a | 15.70 ± 0.00 bc | 15.57 ± 0.06 c | 15.80 ± 0.01 ab | 15.97 ± 0.12 a | 15.90 ± 0.00 a | 5.14 ± 0.15 a | 4.69 ± 0.08 b | 4.900.14 ab | 4.920 ± 0.05 ab | 4.90 ± 0.07 ab | |
SP1 | Inulin | 3.43 ± 0.03 bc | 3.42 ± 0.03 c | 3.56 ± 0.02 a | 3.50 ± 0.02 abc | 3.50 ± 0.04 ab | 17.33 ± 0.06 c | 17.20 ± 0.00 d | 17.50 ± 0.00 b | 17.33 ± 0.06 c | 17.67 ± 0.06 a | 5.17 ± 0.13 a | 4.71 ± 0.08 b | 4.76 ± 0.06 ab | 4.76 ± 0.27 ab | 4.81 ± 0.03 ab |
Ø Inulin | 3.54 ± 0.01 a | 3.34 ± 0.02 c | 3.48 ± 0.01 b | 3.46 ± 0.02 a | 3.53 ± 0.01 a | 16.13 ± 0.06 a | 15.60 ± 0.00 b | 16.10 ± 0.00 a | 15.63 ± 0.06 b | 16.03 ± 0.06 a | 5.060.23 a | 4.92 ± 0.16 a | 4.86 ± 0.25 a | 4.87 ± 0.14 a | 4.86 ± 0.11 a | |
SYN | Inulin | 3.62 ± 0.01 a | 3.58 ± 0.00 b | 3.52 ± 0.01 c | 3.49 ± 0.00 d | 3.46 ± 0.00 e | 17.57 ± 0.06 a | 17.47 ± 0.06 a | 17.43 ± 0.06 a | 17.47 ± 0.06 a | 17.27 ± 0.06 b | 4.75 ± 0.1 ab | 4.550.07 b | 4.55 ± 0.10 b | 4.55 ± 0.07 b | 4.810.10 a |
Ø Inulin | 3.64 ± 0.02 a | 3.57 ± 0.01 b | 3.54 ± 0.01 bc | 3.52 ± 0.02 c | 3.48 ± 0.01 d | 16.13 ± 0.06 a | 15.83 ± 0.06 c | 15.97 ± 0.06 bc | 16.00 ± 000 ab | 15.87 ± 0.06 bc | 4.77 ± 0.02 ab | 4.68 ± 0.06 b | 4.73 ± 0.06 ab | 4.72 ± 0.02 b | 4.89 ± 0.10 a | |
LR92 | Inulin | 3.39 ± 0.01 c | 3.52 ± 0.01 a | 3.54 ± 0.01 a | 3.43 ± 0.01 b | 3.44 ± 0.01 b | 17.83 ± 0.06 a | 17.33 ± 0.06 bc | 17.50 ± 0.01 b | 17.27 ± 0.06 c | 17.27 ± 0.06 c | 4.73 ± 0.02 b | 4.82 ± 0.01 b | 4.78 ± 0.09 b | 4.86 ± 0.1 b | 7.14 ± 0.08 a |
Ø Inulin | 3.39 ± 0.01 c | 3.47 ± 0.01 b | 3.52 ± 0.01 a | 3.46 ± 0.01 b | 3.39 ± 0.01 c | 16.20 ± 0.00 a | 15.70 ± 0.00 c | 16.03 ± 0.03 b | 16.00 ± 0.00 b | 15.73 ± 0.06 c | 4.80 ± 0.01 b | 4.84 ± 0.04 b | 4.91 ± 0.16 b | 4.79 ± 0.19 b | 7.20 ± 0.29 a | |
LA-3 | Inulin | 3.51 ± 0.01 a | 3.50 ± 0.02 a | 3.50 ± 0.03 a | 3.50 ± 0.04 a | 3.43 ± 0.00 b | 17.10 ± 0.00 c | 17.20 ± 0.00 b | 17.50 ± 0.00 a | 17.23 ± 0.06 b | 17.23 ± 0.06 b | 4.52 ± 0.03 a | 4.75 ± 0.02 a | 4.60 ± 0.09 a | 4.52 ± 0.20 a | 4.70 ± 0.16 a |
Ø Inulin | 3.58 ± 0.01 a | 3.51 ± 0.01 a | 3.48 ± 0.02 a | 3.48 ± 0.01 a | 3.48 ± 0.01 a | 15.90 ± 0.1 b | 15.56 ± 0.06 c | 16.17 ± 0.06 a | 15.80 ± 0.00 b | 15.90 ± 0.00 b | 4.73 ± 0.08 ab | 4.74 ± 0.12 ab | 4.82 ± 0.02 a | 4.58 ± 0.08 b | 4.66 ± 0.03 ab | |
LRGG | Inulin | 3.59 ± 0.02 bc | 3.57 ± 0.01 c | 3.60 ± 0.01 bc | 3.61 ± 0.01 b | 3.65 ± 0.01 a | 17.40 ± 0.10 a | 17.07 ± 0.06 a | 17.10 ± 0.00 a | 17.17 ± 0.06 a | 17.50 ± 0.16 a | 4.84 ± 0.13 b | 5.08 ± 0.06 a | 5.06 ± 0.06 a | 5.12 ± 0.04 a | 5.02 ± 0.05 a |
Ø Inulin | 3.58 ± 0.01 c | 3.63 ± 0.01 ab | 3.60 ± 0.01 bc | 3.65 ± 0.01 a | 3.61 ± 0.02 a | 15.90 ± 0.00 a | 15.630.0 b | 15.53 ± 0.06 b | 15.83 ± 0.06 a | 15.67 ± 0.06 b | 5.17 ± 0.02 a | 4.83 ± 0.17 b | 5.06 ± 0.15 ab | 5.18 ± 0.23 ab | 5.10 ± 0.03 ab | |
BC04 | Inulin | 3.43 ± 0.01 c | 3.73 ± 0.03 bb | 3.76 ± 0.03 a | 3.65 ± 0.02 b | 3.74 ± 0.01 b | 17.70 ± 0.00 a | 17.700.01 a | 17.70 ± 0.00 a | 17.70 ± 0.00 a | 17.87 ± 0.06 a | 4.94 ± 0.06 ab | 4.83 ± 0.08 bc | 5.06 ± 0.02 a | 4.68 ± 0.04 c | 4.72 ± 0.08 c |
Ø Inulin | 3.46 ± 0.01 c | 3.73 ± 0.03 bb | 3.80 ± 0.03 a | 3.70 ± 0.0 b2 | 3.74 ± 0.01 b | 16.33 ± 0.06 b | 16.33 ± 0.06 b | 16.67 ± 0.06 a | 16.67 ± 0.06 a | 16.63 ± 0.06 a | 5.02 ± 0.04 ab | 5.05 ± 0.04 a | 5.06 ± 0.07 a | 4.92 ± 0.22 ab | 4.68 ± 0.10 b |
References
- Naseem, Z.; Mir, S.A.; Wani, S.M.; Rouf, M.A.; Bashir, I.; Zehra, A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023, 115, 112154. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, I.; Sybesma, W.; Phothirath, P.; Ananta, E.; Mercenier, A. Application of probiotics in food products-challenges and new approaches. Curr. Opin. Biotechnol. 2010, 21, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Sukumaran, V.; Sen, S.S.; Park, S.C. Use of a potential probiotic, Lactobacillus casei L4, in the preparation of fermented coconut water beverage. Front. Microbiol. 2018, 9, 1976. [Google Scholar] [CrossRef] [PubMed]
- Konuray, G.; Erginkaya, Z. Potential use of Bacillus coagulans in the food industry. Foods 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenter. 2013, 6, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Remes-Troche, J.M.; Coss-Adame, E.; Valdovinos-Díaz, M.A.; Gómez-Escudero, O.; Icaza-Chávez, M.E.; Chávez-Barrera, J.A.; Zárate-Mondragón, F.; Velarde-Ruiz Velasco, J.A.; Aceves-Tavares, G.R.; Lira-Pedrín, M.A.; et al. Lactobacillus acidophilus LB: A useful pharmabiotic for the treatment of digestive disorders. Ther. Adv. Gastroenter. 2020, 13, 1756284820971201. [Google Scholar] [CrossRef]
- Olveira, G.; González-Molero, I. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol. Nutr. 2016, 63, 482–494. [Google Scholar] [CrossRef]
- Li, Y.T.; Xu, H.; Ye, J.Z.; Wu, W.R.; Shi, D.; Fang, D.Q.; Liu, Y.; Li, L.J. Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea: A systematic review with Meta-analysis. World J. Gastroenterol. 2019, 25, 4999. [Google Scholar] [CrossRef]
- Xue, X.; Yang, X.; Shi, X.; Deng, Z. Efficacy of probiotics in pediatric atopic dermatitis: A systematic review and Meta-Analysis. Clin. Transl. Allergy 2023, 13, e12283. [Google Scholar] [CrossRef]
- Climent, E.; Martinez-blanch, J.F.; Llobregat, L.; Ruzafa-costas, B.; Carrión-Gutiérrez, M.Á.; Ramírez-Boscá, A.; Prieto-Merino, D.; Genovés, S.; Codoñer, F.M.; Ramón, D. Changes in gut microbiota correlates with response to treatment with probiotics in patients with atopic dermatitis. A Post Hoc analysis of a clinical trial. Microorganisms 2021, 9, 854. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef]
- Tompkins, T.A.; Xu, X.; Ahmarani, J. A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Benef. Microbes 2010, 1, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, G.L.; Tosca, M.; Cirillo, I.; Licari, A.; Leone, M.; Marseglia, A.; Castellazzi, A.M.; Ciprandi, G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: A pilot study. Therap. Clin. Risk Manag. 2007, 3, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Qadri, O.S.; Yousuf, B.; Srivastava, A.K. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food Agric. 2015, 1, 1121606. [Google Scholar] [CrossRef]
- Braïek, O.B.; Smaoui, S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J. Food Qual. 2021, 2021, 6653190. [Google Scholar] [CrossRef]
- Singh, V.P. Recent approaches in food bio-preservation—A Review. Open Vet. J. 2018, 8, 104–111. [Google Scholar] [CrossRef]
- Fliss, I.; Hammami, R.; Le Lay, C. Biological control of human digestive microbiota using antimicrobial cultures and bacteriocins. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation; Lacroix, C., Ed.; Woodhead Publishing Ltd.: Sawston, UK, 2010; pp. 240–263. [Google Scholar] [CrossRef]
- Souza, L.V.; Martins, E.; Moreira, I.M.F.B.; de Carvalho, A.F.; Comi, G. Strategies for the development of bioprotective cultures in food preservation. Int. J. Microbiol. 2022, 2022, 6264170. [Google Scholar] [CrossRef]
- De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 2007, 13, 194–199. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef]
- Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K. Bacteriocinogenic Potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int. J. Biol. Macromol. 2015, 79, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Abada, E.A.E.M. Isolation and characterization of a antimicrobial compound from Bacillus coagulans. Anim. Cells Syst. 2008, 12, 41–46. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Z.; Zhang, S.; Li, P. complete genome sequencing revealed the potential application of a novel Weizmannia coagulans PL-W production with promising bacteriocins in food preservative. Foods 2023, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Dong, Q.; Ma, Y.; Yang, S.; Zohaib Aslam, M.; Liu, Y.; Li, Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A Review. Food Res. Int. 2022, 160, 111733. [Google Scholar] [CrossRef]
- Alegre, I.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food Microbiol. 2011, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Peña, N.; de Chiara, M.L.V.; Amodio, M.L.; Colelli, G.; Spano, G. Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Res. Int. 2015, 77, 762–772. [Google Scholar] [CrossRef]
- De Senna, A.; Lathrop, A. Antifungal Screening of bioprotective isolates against Botrytis cinerea, Fusarium pallidoroseum and Fusarium moniliforme. Fermentation 2017, 3, 53. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Yeboah, P.J.; Ayivi, R.D.; Eddin, A.S.; Wijemanna, N.D.; Paidari, S.; Bakhshayesh, R.V. A review and comparative perspective on health benefits of probiotic and fermented foods. Int. J. Food Sci. Technol. 2023, 6, 4948–4964. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Mojikon, F.D.; Kasimin, M.E.; Molujin, A.M.; Gansau, J.A.; Jawan, R. Probiotication of nutritious fruit and vegetable juices: An alternative to dairy-based probiotic functional products. Nutrients 2022, 14, 3457. [Google Scholar] [CrossRef]
- Rasika, D.M.D.; Vidanarachchi, J.K.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ranadheera, C.S. Probiotic delivery through non-dairy plant-based food matrices. Agriculture 2021, 11, 599. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Myers, M. Fruit Juices: Are they helpful or harmful? An evidence review. Nutrients 2021, 13, 1815. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.S.; Domingos, M.M.; de São José, J.F.B. Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices. Microorganisms 2023, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Guerra, L.; Ureta, M.; Romanini, D.; Woitovich, N.; Gómez-Zavaglia, A.; Clementz, A. Enzymatic synthesis of fructooligosaccharides: From carrot discards to prebiotic juice. Food Res. Int. 2023, 170, 112991. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Sui, H.; Zhang, J.; Guo, Z. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-Triazole and diphenyl phosphate. Int. J. Biol. Macromol. 2021, 186, 47–53. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological Quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef]
- Evers, M.S.; Roullier-Gall, C.; Morge, C.; Sparrow, C.; Gobert, A.; Vichi, S.; Alexandre, H. Thiamine and biotin: Relevance in the production of volatile and non-volatile compounds during Saccharomyces cerevisiae alcoholic fermentation in synthetic grape must. Foods 2023, 12, 972. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Abadias, M.; Bobo, G.; Lafarga, T.; Viñas, I.; Aguiló-Aguayo, I. Antioxidant and Antimicrobial activities of ginseng extract, ferulic acid, and noni juice: Evaluation of their potential to be incorporated in food. J. Food Process. Preserv. 2021, 45, e16041. [Google Scholar] [CrossRef]
- Echeverría, G.; Graell, J.; López, M.L.; Lara, I. Volatile Production, Quality and aroma-related enzyme activities during maturation of “Fuji” apples. Postharvest Biol. Technol. 2004, 31, 217–227. [Google Scholar] [CrossRef]
- Min, M.; Bunt, C.R.; Mason, S.L.; Bennett, G.N.; Hussain, M.A. Effect of non-dairy food matrices on the survival of probiotic bacteria during storage. Microorganisms 2017, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Chávez, B.E.; Ledeboer, A.M. Drying of probiotics: Optimization of formulation and process to enhance storage survival. Dry. Technol. 2007, 25, 1193–1201. [Google Scholar] [CrossRef]
- Senz, M.; van Lengerich, B.; Bader, J.; Stahl, U. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. Int. J. Food Microbiol. 2015, 192, 34–42. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Bianchini Campos, R.C.; Martins, E.M.F.; de Andrade Pires, B.; do Carmo Gouveia Peluzio, M.; da Rocha Campos, A.N.; Ramos, A.M.; de Castro Leite Júnior, B.R.; de Oliveira Martins, A.D.; da Silva, R.R.; Martins, M.L. In vitro and in vivo resistance of Lactobacillus rhamnosus GG carried by a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) juice to the gastrointestinal tract. Food Res. Int. 2019, 116, 1247–1257. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Almeida, F.D.L.; de Jesus, A.L.T.; da Costa, J.M.C.; Rodrigues, S. Storage stability and acceptance of probiotic beverage from cashew apple juice. Food Bioprocess Technol. 2013, 6, 3155–3165. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; Rodrigues, S. Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442. Food Bioprocess Technol. 2012, 5, 717–725. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Quality evaluation of probiotic pasta produced with Bacillus coagulans GBI-30. Innov. Food Sci. Emerg. Technol. 2020, 66, 102489. [Google Scholar] [CrossRef]
- Almada-Érix, C.N.; Almada, C.N.; Cabral, L.; Barros de Medeiros, V.P.; Roquetto, A.R.; Santos-Junior, V.A.; Fontes, M.; Gonçalves, A.E.S.S.; dos Santos, A.; Lollo, P.C.; et al. Orange juice and yogurt carrying probiotic Bacillus coagulans GBI-30 6086: Impact of intake on Wistar male rats health parameters and gut bacterial diversity. Front. Microbiol. 2021, 12, 623951. [Google Scholar] [CrossRef]
- Rivas, J.C.; Cabral, L.M.C.; da Rocha-Leão, M.H.M. Microencapsulation of guava pulp using prebiotic wall material. Braz. J. Food Technol. 2021, 24, e2020213. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT-Food Sci. Technol. 2015, 63, 415. [Google Scholar] [CrossRef]
- Malik, M.; Bora, J.; Sharma, V. Growth studies of potentially probiotic lactic acid bacteria (Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus casei) in carrot and beetroot juice substrates. J. Food Process. Preserv. 2019, 43, e14214. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; De Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sun, Y.; Gao, T.; Wu, Y.; Sun, H.; Zhu, Q.; Liu, C.; Zhou, C.; Han, Y.; Tao, Y. Fermentation and storage characteristics of “Fuji” apple juice using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial growth, metabolism of bioactives and in vitro bioactivities. Front. Nutr. 2022, 9, 833906. [Google Scholar] [CrossRef]
- Lavrentev, F.V.; Ashikhmina, M.S.; Ulasevich, S.A.; Morozova, O.V.; Orlova, O.Y.; Skorb, E.V.; Iakovchenko, N.V. Perspectives of Bacillus coagulans MTCC 5856 in the production of fermented dairy products. LWT-Food Sci. Technol. 2021, 148, 111623. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Natarajan, S.; Majeed, S.; Pande, A.; Beede, K.; Ali, F. Cranberry seed fibre: A promising prebiotic fibre and its fermentation by the probiotic Bacillus coagulans MTCC 5856. Int. J. Food Sci. Technol. 2018, 53, 1640–1647. [Google Scholar] [CrossRef]
- Maftei, N.M.; Iancu, A.V.; Goroftei Bogdan, R.E.; Gurau, T.V.; Ramos-Villarroel, A.; Pelin, A.M. A novel symbiotic beverage based on sea buckthorn, soy milk and inulin: Production, characterization, probiotic viability, and sensory acceptance. Microorganisms 2023, 11, 736. [Google Scholar] [CrossRef]
- Nancib, A.; Nancib, N.; Meziane-Cherif, D.; Boubendir, A.; Fick, M.; Boudrant, J. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Bioresour. Technol. 2005, 96, 63–67. [Google Scholar] [CrossRef]
- Ohara, H.; Yahata, M. L-Lactic acid production by Bacillus sp. in anaerobic and aerobic culture. J. Ferment. Bioeng. 1996, 81, 272–274. [Google Scholar] [CrossRef]
- Baráth, Á.; Halász, A.; Németh, E.; Zalán, Z. Selection of LAB strains for fermented red beet juice production. Eur. Food Res. Technol. 2004, 218, 3055. [Google Scholar] [CrossRef]
- Budak, N.H.; Özdemir, N.; Gökırmaklı, Ç. The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus Cerasus L. Batsch) vinegar during the fermentation process. J. Food Biochem. 2022, 46, e13978. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Daim, A.; Hassouna, N.; Hafez, M.; Ashor, M.S.A.; Aboulwafa, M.M. Antagonistic activity of Lactobacillus isolates against Salmonella typhi in vitro. Biomed. Res. Int. 2013, 2013, 680605. [Google Scholar] [CrossRef] [PubMed]
- Divyashree, S.; Anjali, P.G.; Somashekaraiah, R.; Sreenivasa, M.Y. Probiotic properties of Lactobacillus casei–MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnol. Rep. 2021, 32, e00672. [Google Scholar] [CrossRef] [PubMed]
- Reuben, R.C.; Elghandour, M.M.M.Y.; Alqaisi, O.; Cone, J.W.; Márquez, O.; Salem, A.Z.M. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food Agric. 2022, 102, 1319–1340. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.L. Antagonistic activities of Lactobacilli and Bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef]
- Woo, J.; Ahn, J. Probiotic-Mediated Competition, Exclusion and displacement in biofilm formation by food-borne pathogens. Lett. Appl. Microbiol. 2013, 56, 307–313. [Google Scholar] [CrossRef]
- De Waard, R.; Garssen, J.; Bokken, G.C.A.M.; Vos, J.G. Antagonistic activity of Lactobacillus casei strain Shirota against gastrointestinal Listeria monocytogenes infection in rats. Int. J. Food Microbiol. 2002, 73, 93–100. [Google Scholar] [CrossRef]
- Abou Elez, R.M.M.; Elsohaby, I.; Al-Mohammadi, A.R.; Seliem, M.; Tahoun, A.B.M.B.; Abousaty, A.I.; Algendy, R.M.; Mohamed, E.A.A.; El-Gazzar, N. Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women. Front. Microbiol. 2023, 14, 1201201. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, S.; Zhang, T.; Wu, Y.; Ma, J.; Zhao, L.; Li, X.; Zhang, J. Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes. LWT-Food Sci. Technol. 2022, 160, 113272. [Google Scholar] [CrossRef]
- Rugji, J.; Dinçoğlu, A.H. Biocontrol of Listeria monocytogenes by Bacillus coagulans GBI-30, 6086 in a synbiotic white brined cheese: An in vitro model study. LWT-Food Sci. Technol. 2022, 169, 113982. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Zhou, B.; Zheng, J.; Nou, X. Growth and Survival of Salmonella enterica and Listeria monocytogenes on fresh-cut produce and their juice extracts: Impacts and interactions of food matrices and temperature abuse conditions. Food Control 2019, 100, 300–304. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Quentin, B.; Assemat, S.; Remize, F. Maintaining physicochemical, microbiological, and sensory quality of pineapple juice (Ananas comosus, Var. ’Queen Victoria’) through mild heat treatment. Processes 2020, 8, 1186. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crops Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Jiang, Y.; Doucette, C.; Fillmore, S. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2012, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Mardani, K.; Tajik, H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food Models. LWT-Food Sci. Technol. 2019, 111, 457–464. [Google Scholar] [CrossRef]
- Bagheri, L.; Khlifi, M.; Maherani, B.; Salmieri, S.; Lacroix, M. Thermosensitization enhancement of A. niger, S. cerevisiae and L. fructivorans using combination of mild heat treatment with nanoemulsion-based mediterranean formulation to fabricate wholesome orange juice. LWT-Food Sci. Technol. 2020, 123, 109094. [Google Scholar] [CrossRef]
- Gündüz, G.T.; Korkmaz, A.; Solak, E.; Sözbir, H.D. Antimicrobial, antioxidant activities and total phenolic contents of the traditional turkish beverages produced by using grapes. Turkish JAF Sci. Tech. 2019, 7, 119–125. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. the interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Panigrahi, C.; Mishra, H.N.; De, S. Modelling the inactivation kinetics of Leuconostoc mesenteroides, Saccharomyces cerevisiae and total coliforms during ozone treatment of sugarcane juice. LWT-Food Sci. Technol. 2021, 144, 111218. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Plessas, S.; Ceciu, S.; Lazar, V.; Mantzourani, I.; Voidarou, C.; Stavropoulou, E.; Bezirtzoglou, E. Evaluation of Ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control 2013, 30, 491–496. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Shoji, H.; Shimizu, H.; Shioya, S. Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production. J. Biosci. Bioeng. 2003, 96, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Paramithiotis, S.; Gioulatos, S.; Tsakalidou, E.; Kalantzopoulos, G. Interactions between Saccharomyces cerevisiae and Lactic Acid Bacteria in sourdough. Process Biochem. 2006, 41, 2429–2433. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Rice, R.G. Regulatory and legislative issues. In Ozone in Food Processing; O’Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 7–17. [Google Scholar] [CrossRef]
- Bassi, A.P.G.; Meneguello, L.; Paraluppi, A.L.; Sanches, B.C.P.; Ceccato-Antonini, S.R. Interaction of Saccharomyces cerevisiae–Lactobacillus fermentum–Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie van Leeuwenhoek 2018, 111, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.S.; Cruz, I.A.; Américo-Pinheiro, J.H.P.; Soriano, R.N.; de Souza, R.L.; Bilal, M.; Iqbal, H.M.N.; Bharagava, R.N.; Romanholo Ferreira, L.F. Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during co-culture fermentation. Biocatal. Agric. Biotechnol. 2020, 29, 101756. [Google Scholar] [CrossRef]
- Yüksekdaǧ, Z.N.; Beyath, Y.; Aslim, B. Metabolic Activities of Lactobacillus spp. strains isolated from kefir. Mol. Nutr. Food Res. 2004, 48, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Mira De Orduña, R. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system. J. Ind. Microbiol. Biotechnol. 2011, 38, 1391–1398. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kanteres, F.; Rehm, J. Carcinogenicity of acetaldehyde in alcoholic beverages: Risk assessment outside ethanol metabolism. Addiction 2009, 104, 533–550. [Google Scholar] [CrossRef]
- Attfield, P.V. Crucial Aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces Biomass. Crit. Rev. Biotechnol. 2023, 43, 920–937. [Google Scholar] [CrossRef]
Time of Storage (5 °C), Days | ||||||
---|---|---|---|---|---|---|
Probiotic | Prebiotic | 0 | 3 | 7 | 15 | 21 |
LC | Inulin | 7.19 ± 0.07 c | 7.28 ± 0.08 bc | 7.43 ± 0.04 ab | 7.37 ± 0.19 abc | 7.54 ± 0.02 a |
Ø Inulin | 7.29 ± 0.07 a | 7.14 ± 0.03 a | 7.32 ± 0.09 a | 7.33 ± 0.02 a | 7.60 ± 0.01 a | |
SP1 | Inulin | 6.40 ± 0.06 a | 5.11 ± 0.04 b | 2.51 ± 0.09 c | 1.92 ± 0.03 d | 1.47 ± 0.07 e * |
Ø Inulin | 6.41 ± 0.04 a | 5.14 ± 0.09 b | 2.51 ± 0.06 c | 2.00 ± 0.13 d | 1.84 ± 0.09 d | |
SYN | Inulin | 6.31 ± 0.25 a | 6.11 ± 0.06 ab | 5.95 ± 0.08 b | 5.56 ± 0.07 c | 5.45 ± 0.05 c |
Ø Inulin | 6.22 ± 0. 11 a | 6.19 ± 0.01 a | 6.03 ± 0.01 b | 5.64 ± 0.02 c | 5.49 ± 0.05 d | |
LR91 | Inulin | 6.83 ± 0.07 a * | 6.25 ± 0.06 b * | 5.96 ± 0.03 b | 4.58 ± 0.23 c * | 3.21 ± 0.07 d * |
Ø Inulin | 6.47 ± 0.06 a | 6.37 ± 0.05 a | 6.35 ± 0. 52 a | 5.55 ± 0.03 b | 5.02 ± 0.28 b | |
LA3 | Inulin | 6.37 ± 0.00 a * | 5.42 ± 0.16 b * | 5.22 ± 0.29 b * | 3.39 ± 0.28 c * | 0.40 ± 0.00 d * |
Ø Inulin | 6.34 ± 0.01 a | 6.21 ± 0.05 a | 5.95 ± 0. 32 a | 3.99 ± 0.13 b | 0.55 ± 0.21 c | |
LRGG | Inulin | 7.30 ± 0.06 a | 7.25 ± 0. 11 a * | 7.22 ± 0.03 a | 7.22 ± 0.08 a | 7.15 ± 0.02 b |
Ø Inulin | 7.23 ± 0.08 a | 7.09 ± 0. 19 a | 7.26 ± 0.061 a | 7.42 ± 0. 13 a | 7.17 ± 0.04 a | |
BC04 | Inulin | 6.30 ± 0. 25 a | 6.13 ± 0. 12 a | 6.15 ± 0.08 a | 6.54 ± 0.05 a | 6.25 ± 0. 22 a |
Ø Inulin | 6.48 ± 0.03 a | 6.04 ± 0.21 b | 6.05 ± 0.04 b | 6.75 ± 0. 12 a | 6.59 ± 0.2 a |
Time of Fermentation (37 °C), Days | |||||
---|---|---|---|---|---|
Probiotic | Prebiotic | 0 | 1 | 2 | 3 |
LC | Inulin | 7.19 ± 0.07 b | 8.17 ± 0.05 a | 8.22 ± 0.09 a | 8.38 ± 0.04 a * |
Ø Inulin | 7.29 ± 0.07 c | 8.12 ± 0.13 b | 8.10 ± 0.17 ab | 8.26 ± 0.02 a * | |
SP1 | Inulin | 6.40 ± 0.06 a | 3.09 ± 0.00 b | 3.09 ± 0.00 b | 3.79 ± 0.73 b |
Ø Inulin | 6.41 ± 0.04 a | 3.09 ± 0.00 b | 3.09 ± 0.00 b | 3.61 ± 1.09 b | |
SYN | Inulin | 6.31 ± 0.25 b | 5.41 ± 0.05 c | 6.22 ± 0.03 b | 7.15 ± 0.09 a |
Ø Inulin | 6.22 ± 0.11 b | 5.48 ± 0.02 c | 6.19 ± 0.13 b | 7.15 ± 0.05 a | |
LR91 | Inulin | 6.83 ± 0.07 a * | 7.02 ± 0.09 a | 6.39 ± 0.10 b | 6.11 ± 0.29 b |
Ø Inulin | 6.47 ± 0.06 b | 6.91 ± 0.04 a | 6.41 ± 0.04 b | 5.79 ± 0.11 c | |
LA3 | Inulin | 6.37 ± 0.00 a * | 3.05 ± 0.00 b | 2.70 ± 0.61 b | 0.70 ± 0.03 c * |
Ø Inulin | 6.34 ± 0.01 a | 3.05 ± 0.00 b | 2.32 ± 0.97 b | 1.65 ± 0.90 b | |
LRGG | Inulin | 7.30 ± 0.06 ab | 7.40 ± 0.04 ab * | 7.56 ± 0. 16 a | 7.29 ± 0.09 b * |
Ø Inulin | 7.23 ± 0.08 b | 7.58 ± 0. 10 a | 7.37 ± 0.16 c | 7.56 ± 0.01 a | |
BC04 | Inulin | 6.30 ± 0. 25 a | 5.61 ± 0.10 bc | 5.85 ± 0.10 ab | 6.02 ± 0.03 c * |
Ø Inulin | 6.48 ± 0.03 a | 5.77 ± 0.17 b | 5.78 ± 0.00 b | 5.55 ± 0.09 b |
Time of Fermentation (37 °C), Days | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | SST | TA | |||||||||||
Probiotic | Prebiotic | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
LC | Inulin | 3.44 ± 0.01 b | 3.40 ± 0.01 c | 3.55 ± 0.00 a | 3.20 ± 0.03 d | 17.20 ± 0.00 a | 17.23 ± 0.06 a | 17.27 ± 0.06 a | 16.70 ± 0.1 b | 5.03 ± 0.08 b | 4.36 ± 0.11 c | 5.03 ± 0.06 b | 5.85 ± 0.15 a |
Ø Inulin | 3.43 ± 0.02 b | 3.42 ± 0.02 b | 3.47 ± 0.02 a | 3.16 ± 0.01 c | 15.70 ± 0.00 b | 15.83 ± 0.06 a | 15.64 ± 0.06 b | 15.10 ± 0.00 c | 5.14 ± 0.15 b | 4.64 ± 0.09 c | 5.15 ± 0.06 b | 6.10 ± 0.09 a | |
SP1 | Inulin | 3.43 ± 0.03 b | 3.42 ± 0.02 b | 3.55 ± 0.01 a | 3.24 ± 0.02 c | 17.33 ± 0.06 b | 17.40 ± 0.00 ab | 17.57 ± 0.12 a | 16.77 ± 0.06 c | 5.17 ± 0.13 a | 4.78 ± 0.05 b | 4.77 ± 0.06 b | 4.89 ± 0.12 ab |
Ø Inulin | 3.54 ± 0.01 a | 3.46 ± 0.02 b | 3.51 ± 0.01 a | 3.25 ± 0.01 c | 16.13 ± 0.06 a | 15.93 ± 0.06 b | 16.13 ± 0.06 a | 15.370 ± 0.12 c | 5.06 ± 0.23 a | 4.88 ± 0.05 a | 4.82 ± 0.10 a | 4.86 ± 0.23 a | |
SYN | Inulin | 3.61 ± 0.01 ab | 3.58 ± 0.03 b | 3.52 ± 0.01 c | 3.46 ± 0.00 d | 17.57 ± 0.06 a | 17.53 ± 0.12 a | 13.30 ± 0.00 b | 17.43 ± 0.06 ab | 4.75 ± 0.1 a | 4.77 ± 0.06 a | 4.34 ± 0.25 b | 4.32 ± 0.12 b |
Ø Inulin | 3.64 ± 0.02 a | 3.50 ± 0.07 b | 3.60 ± 0.03 a | 3.62 ± 0.01 a | 16.13 ± 0.06 a | 15.97 ± 0.12 ab | 15.80 ± 0.00 bc | 15.77 ± 0.06 c | 4.77 ± 0.02 a | 4.75 ± 0.05 a | 4.32 ± 0.05 b | 4.28 ± 0.13 b | |
LR92 | Inulin | 3.39 ± 0.01 c | 3.50 ± 0.01 b | 3.65 ± 0.02 a | 3.62 ± 0.03 a | 17.83 ± 0.06 a | 17.23 ± 0.06 c | 17.50 ± 0.1 b | 17.53 ± 0.12 b | 4.73 ± 0.02 b | 5.43 ± 0.17 a | 5.42 ± 0.12 a | 5.36 ± 0.09 a |
Ø Inulin | 3.39 ± 0.01 c | 3.52 ± 0.02 b | 3.68 ± 0.02 a | 3.54 ± 0.02 b | 16.20 ± 0.00 a | 15.73 ± 0.06 b | 16.13 ± 0.06 a | 15.73 ± 0.06 b | 4.80 ± 0.01 b | 5.43 ± 0.11 a | 5.44 ± 0.14 a | 5.27 ± 0.10 a | |
LA-3 | Inulin | 3.51 ± 0.01 a | 3.50 ± 0.02 ab | 3.47 ± 0.01 b | 3.39 ± 0.02 c | 17.10 ± 0.00 d | 17.20 ± 0.00 c | 17.57 ± 0.06 a | 17.37 ± 0.06 b | 4.52 ± 0.03 a | 4.74 ± 0.06 a | 4.64 ± 0.09 a | 4.65 ± 0.24 a |
Ø Inulin | 3.58 ± 0.01 a | 3.50 ± 0.01 b | 3.54 ± 0.03 a | 3.43 ± 0.01 c | 15.93 ± 0.10 a | 15.90 ± 0.00 a | 15.90 ± 0.06 a | 15.80 ± 0.00 a | 4.73 ± 0.08 a | 4.588 ± 0.07 a | 4.88 ± 0.14 a | 4.82 ± 0.11 a | |
LRGG | Inulin | 3.59 ± 0.02 b | 3.66 ± 0.01 a | 3.61 ± 0.04 ab | 3.51 ± 0.00 c | 17.40 ± 0.10 a | 16.37 ± 0.12 a | 17.13 ± 0.06 a | 16.33 ± 0.06 a | 4.84 ± 0.13 a | 4.30 ± 0.09 c | 4.85 ± 0.16 a | 4.61 ± 0.06 b |
Ø Inulin | 3.58 ± 0.01 b | 3.68 ± 0.02 a | 3.55 ± 0.01 bc | 3.54 ± 0.02 c | 15.90 ± 0.00 a | 15.43 ± 0.06 b | 15.20 ± 0.00 c | 15.33 ± 0.06 b | 4.83 ± 0.17 a | 4.26 ± 0.09 c | 4.94 ± 0.26 a | 4.46 ± 0.08 b | |
BC04 | Inulin | 3.43 ± 0.01 c | 3.73 ± 0.05 b | 3.77 ± 0.01 a | 3.79 ± 0.02 a | 17.70 ± 0.00 a | 17.73 ± 0.06 a | 17.80 ± 0.10 a | 17.70 ± 0.00 a | 4.94 ± 0.06 a | 4.69 ± 0.21 a | 4.97 ± 0.04 a | 4.91 ± 0.06 a |
Ø Inulin | 3.46 ± 0.01 c | 3.72 ± 0.02 b | 3.72 ± 0.01 b | 3.80 ± 0.03 a | 16.33 ± 0.06 ab | 16.40 ± 0.00 a | 16.17 ± 0.06 c | 16.23 ± 0.06 bc | 5.02 ± 0.04 ab | 4.74 ± 0.24 b | 5.14 ± 0.07 a | 4.96 ± 0.03 ab |
Time at 37 °C, Days | |||||
---|---|---|---|---|---|
Probiotic | Prebiotic | 0 | 1 | 2 | 3 |
LC | Inulin | 0.11 ± 0.01 c | 3.31 ± 0.10 b | 4.34 ± 0. 15 a | 4.60 ± 0. 17 a |
Ø Inulin | 0.10 ± 0.01 d | 3.31 ± 0.09 c | 4.19 ± 0.06 b | 5.12 ± 0. 33 a | |
SP1 | Inulin | 0.11 ± 0.02 a | 0.11 ± 0.01 a | 0.12 ± 0.01 a | 0.11 ± 0.01 a |
Ø Inulin | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 0.13 ± 0.02 a | 0.10 ± 0.01 a | |
SYNBIO® | Inulin | 0.12 ± 0.01 d | 0.18 ± 0.01 c | 0.83 ± 0.13 b | 1.78 ± 0.02 a |
Ø Inulin | 0.11 ± 0.00 d | 0.19 ± 0.01 c | 1.17 ± 0.09 b * | 1.82 ± 0.05 a | |
LR91 | Inulin | 0.12 ± 0.01 c | 0.99 ± 0.05 b | 1.88 ± 0.07 a | 1.72 ± 0. 23 a |
Ø Inulin | 0.11 ± 0.00 c | 1.02 ± 0.17 b | 1.98 ± 0. 14 a | 2.20 ± 0.09 a | |
LA3 | Inulin | 0.12 ± 0.01 a | 0.07 ± 0.02 b | 0.07 ± 0.01 b | 0.07 ± 0.02 b |
Ø Inulin | 0.11 ± 0.00 a | 0.07 ± 0.01 b | 0.06 ± 0.01 b | 0.06 ± 0.01 b | |
LRGG | Inulin | 0.03 ± 0.01 a | 0.08 ± 0.00 a | 0.10 ± 0.05 a | 0.22 ± 0.05 a |
Ø Inulin | 0.04 ± 0.01 a | 0.09 ± 0.01 a | 0.29 ± 0.07 a * | 0.39 ± 0.01 a * | |
BC04 | Inulin | 0.05 ± 0.01 b | 0.07 ± 0.01 a | 0.07 ± 0.00 ab | 0.08 ± 0.00 b |
Ø Inulin | 0.05 ± 0.01 b | 0.05 ± 0.01 ab | 0.06 ± 0.00 ab | 0.07 ± 0.01 b |
L. monocytogenes Strain | Streptomycin | Water | LC | LRGG | SYNBIO | BC04 |
---|---|---|---|---|---|---|
Lm_230/3 | 12.0 | 0 | 10.0 | 10.0 | 0 | 0 |
Lm_933 | 16. 7 | 0 | 11.3 | 11.3 | 0 | 0 |
Lm_940 | 14.0 | 0 | 10.0 | 10.0 | 0 | 0 |
Lm_4031 | 17.7 | 0 | 12.0 | 12.0 | 0 | 0 |
Lm_4032 | 12.3 | 0 | 10.0 | 10.0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Santiago, V.; Aguiló-Aguayo, I.; Ortiz-Solà, J.; Anguera, M.; Abadias, M. Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice. Foods 2024, 13, 350. https://doi.org/10.3390/foods13020350
Prieto-Santiago V, Aguiló-Aguayo I, Ortiz-Solà J, Anguera M, Abadias M. Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice. Foods. 2024; 13(2):350. https://doi.org/10.3390/foods13020350
Chicago/Turabian StylePrieto-Santiago, Virginia, Ingrid Aguiló-Aguayo, Jordi Ortiz-Solà, Marina Anguera, and Maribel Abadias. 2024. "Selection of a Probiotic for Its Potential for Developing a Synbiotic Peach and Grape Juice" Foods 13, no. 2: 350. https://doi.org/10.3390/foods13020350