Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = non-dairy functional beverage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 23
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

25 pages, 1677 KiB  
Article
Effect of Homogenization and Pectin on Chemical, Textural, Antioxidant and Sensory Characteristics of L. bulgaricus-Fermented Oat-Based Product
by Dmitrii V. Khrundin and Elena V. Nikitina
Foods 2025, 14(15), 2615; https://doi.org/10.3390/foods14152615 - 25 Jul 2025
Viewed by 154
Abstract
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the [...] Read more.
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the addition of 1% pectin on oat-based beverages fermented with Lactobacillus delbrueckii subsp. bulgaricus were evaluated in this study. The samples were evaluated for a number of characteristics, including physicochemical, rheological, antioxidant and sensory properties. After 6 h fermentation, pectin-containing samples showed a statistically significant decrease in pH (to 3.91) and an increase in titratable acidity (to 92 °T). Homogenization and the addition of pectin were found to significantly increase viscosity (by 1.5–2 times) and water-holding capacity (by 2 times) while reducing syneresis by 96%. The antioxidant activity of L. bulgaricus-fermented samples increased significantly: the radical scavenging activity (RSA) and OH-radical inhibition increased by 40–60%, depending on the treatment. Extractable polysaccharides (PSs) inhibited lipase and glucosidase by 90% and 85%, respectively; significantly higher inhibition was observed in the fermented and pectin-containing groups. Sensory evaluation showed that the homogenized, pectin-enriched samples (Homog+) scored highest for consistency (4.5 ± 0.2), texture (4.9 ± 0.2), and overall acceptability (4.8 ± 0.2); these scores were all statistically higher than those for the untreated samples. These results suggest that combining enzymatic hydrolysis, homogenization and fermentation with L. bulgaricus significantly improves the structural, functional and sensory properties of oat-based beverages, providing a promising approach to producing high-quality, functional non-dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 1958 KiB  
Article
Potential Prebiotic Effect of Caatinga Bee Honeys from the Pajeú Hinterland (Pernambuco, Brazil) on Synbiotic Alcoholic Beverages Fermented by Saccharomyces boulardii CNCM I-745
by Walter de Paula Pinto-Neto, Luis Loureiro, Raquel F. S. Gonçalves, Márcia Cristina Teixeira Marques, Rui Miguel Martins Rodrigues, Luís Abrunhosa, Aline Magalhães de Barros, Neide Kazue Sakugawa Shinohara, Ana Cristina Pinheiro, Antonio Augusto Vicente, Rafael Barros de Souza and Marcos Antonio de Morais Junior
Fermentation 2025, 11(7), 405; https://doi.org/10.3390/fermentation11070405 - 15 Jul 2025
Viewed by 474
Abstract
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), [...] Read more.
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), and mixed flowers. These were used to formulate synbiotic and alcoholic beverages fermented by Saccharomyces boulardii CNCM I-745. Static and dynamic simulations of the human gastrointestinal tract (GIT) were used, as well as physicochemical, rheological, and microbiological analyses. The results revealed that honey positively influences the viability and resilience of probiotic yeast, especially honey with a predominance of Algaroba, which promoted the highest survival rate (>89%) even after 28 days of refrigeration and in dynamic in vitro simulation of the GIT (more realistic to human physio-anatomical conditions). The phenolic composition of the honeys showed a correlation with this tolerance. The use of complementary methodologies, such as flow cytometry, validated the findings and highlighted the functional value of these natural matrices, revealing an even greater longevity potential compared to conventional microbiological methodology. The data reinforces the potential of the Caatinga as a source of bioactive and sustainable compounds, proposing honey as a promising non-dairy synbiotic vehicle. This work contributes to the appreciation of the biome and the development of functional food products with a positive social, economic, and ecological impact. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

26 pages, 1891 KiB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Viewed by 838
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

21 pages, 892 KiB  
Review
Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives
by Renata Žvirdauskienė, Vesta Jonikė, Loreta Bašinskienė and Dalia Čižeikienė
Microorganisms 2025, 13(6), 1272; https://doi.org/10.3390/microorganisms13061272 - 30 May 2025
Viewed by 1219
Abstract
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic [...] Read more.
Fermenting fruit and vegetable juices with probiotic bacteria is becoming a popular way to create functional drinks, offering an alternative to traditional dairy-based probiotic products. These plant-based juices are naturally rich in nutrients that help support the growth and activity of various probiotic strains. They also meet the rising demand for lactose-free, vegan, and clean-label options. This review looks at the key microbiological, nutritional, and sensory aspects of probiotic fermentation in juice. Common probiotic groups like Lactobacillus, Bifidobacterium, Lactococcus, Bacillus, and Streptococcus show different abilities to adapt to juice environments, affecting properties such as antioxidant levels, shelf life, and taste. The review also explores how factors like pH, sugar levels, heating, and storage can influence fermentation results. New non-thermal processing methods that help maintain probiotic survival are also discussed. Since fermented juices can sometimes develop off-flavors, this paper looks at ways to improve their taste and overall consumer appeal. Finally, future directions are suggested, including personalized nutrition, synbiotic products, and advanced encapsulation technologies. Overall, probiotic fermentation of fruit and vegetable juices shows strong potential for developing a new generation of healthy and appealing functional foods. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods: 2nd Edition)
Show Figures

Figure 1

23 pages, 3229 KiB  
Review
A Systematic Review of the Applications of Electronic Nose and Electronic Tongue in Food Quality Assessment and Safety
by Ramkumar Vanaraj, Bincy I.P, Gopiraman Mayakrishnan, Ick Soo Kim and Seong-Cheol Kim
Chemosensors 2025, 13(5), 161; https://doi.org/10.3390/chemosensors13050161 - 1 May 2025
Cited by 4 | Viewed by 3509
Abstract
Food quality assessment is a critical aspect of food production and safety, ensuring that products meet both regulatory and consumer standards. Traditional methods such as sensory evaluation, chromatography, and spectrophotometry are widely used but often suffer from limitations, including subjectivity, high costs, and [...] Read more.
Food quality assessment is a critical aspect of food production and safety, ensuring that products meet both regulatory and consumer standards. Traditional methods such as sensory evaluation, chromatography, and spectrophotometry are widely used but often suffer from limitations, including subjectivity, high costs, and time-consuming procedures. In recent years, the development of electronic nose (e-nose) and electronic tongue (e-tongue) technologies has provided rapid, objective, and reliable alternatives for food quality monitoring. These bio-inspired sensing systems mimic human olfactory and gustatory functions through sensor arrays and advanced data processing techniques, including artificial intelligence and pattern recognition algorithms. The e-nose is primarily used for detecting volatile organic compounds (VOCs) in food, making it effective for freshness evaluation, spoilage detection, aroma profiling, and adulteration identification. Meanwhile, the e-tongue analyzes liquid-phase components and is widely applied in taste assessment, beverage authentication, fermentation monitoring, and contaminant detection. Both technologies are extensively used in the quality control of dairy products, meat, seafood, fruits, beverages, and processed foods. Their ability to provide real-time, non-destructive, and high-throughput analysis makes them valuable tools in the food industry. This review explores the principles, advantages, and applications of e-nose and e-tongue systems in food quality assessment. Additionally, it discusses emerging trends, including IoT-based smart sensing, advances in nanotechnology, and AI-driven data analysis, which are expected to further enhance their efficiency and accuracy. With continuous innovation, these technologies are poised to revolutionize food safety and quality control, ensuring consumer satisfaction and compliance with global standards. Full article
Show Figures

Figure 1

20 pages, 2004 KiB  
Article
Antioxidant and ACE-Inhibition Activities After In Vitro Digestion of a Non-Fermented Dairy Beverage Enriched with Postbiotics of Lactobacillus spp.
by Norma Angélica Bolivar-Jacobo, Raúl Alberto Reyes-Villagrana, Martha María Arévalos-Sánchez, Ana Luisa Rentería-Monterrubio, Eduardo Santellano-Estrada, Nora Aidee Salas-Salazar and América Chávez-Martínez
Fermentation 2025, 11(4), 223; https://doi.org/10.3390/fermentation11040223 - 16 Apr 2025
Viewed by 587
Abstract
Postbiotics are recently gaining consumer attention for their potential health benefits. This study aimed to examine the effects of supplementation of a non-fermented dairy beverage with postbiotics derived from Lactobacillus acidophilus and Lactobacillus helveticus on antioxidant (DPPH, ABTS, FRAP, and ORAC), antimicrobial, and [...] Read more.
Postbiotics are recently gaining consumer attention for their potential health benefits. This study aimed to examine the effects of supplementation of a non-fermented dairy beverage with postbiotics derived from Lactobacillus acidophilus and Lactobacillus helveticus on antioxidant (DPPH, ABTS, FRAP, and ORAC), antimicrobial, and ACE-inhibition activities before and after in vitro digestion. Three dairy beverages were elaborated: without the addition of postbiotics (T0), with Lactobacillus acidophilus postbiotics (T1), and with Lactobacillus helveticus postbiotics (T2). Before in vitro digestion, T2 presented higher antioxidant activity (p < 0.05). And, after in vitro digestion, except by the ABTS method, T1 and T2 presented the highest antioxidant activities (p < 0.05) and bioaccessibility indexes (p < 0.05). Regarding ACE-inhibition activity, before in vitro digestion, there were no differences among treatments (p > 0.05), but after in vitro digestion, T1 and T2 presented the highest ACE-inhibition activities (p < 0.05) and bioaccessibility indexes (p < 0.05). An antimicrobial effect against Bacillus spp. and S. aureus was observed in Lactobacillus acidophilus and Lactobacillus helveticus postbiotics. However, L. acidophilus postbiotics did not present an antibacterial effect against E. coli. Such findings highlight the potential of postbiotics as functional ingredients to enhance the antioxidant and ACE-inhibition activities of non-fermented dairy beverages, further adding to their appeal as health-promoting dairy food. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

13 pages, 1234 KiB  
Review
Water Kefir: Review of Microbial Diversity, Potential Health Benefits, and Fermentation Process
by Klinger Vinícius de Almeida, Cíntia Tomaz Sant’ Ana, Samarha Pacheco Wichello, Gabriele Estofeles Louzada, Silvani Verruck and Luciano José Quintão Teixeira
Processes 2025, 13(3), 885; https://doi.org/10.3390/pr13030885 - 17 Mar 2025
Cited by 1 | Viewed by 5084
Abstract
Water kefir is a non-dairy fermented beverage that ferments water kefir grains in a sucrose solution. These grains harbor a diverse microbiota, including lactic acid bacteria, acetic acid bacteria, and yeast species. The composition of water kefir is primarily influenced by cultivation conditions [...] Read more.
Water kefir is a non-dairy fermented beverage that ferments water kefir grains in a sucrose solution. These grains harbor a diverse microbiota, including lactic acid bacteria, acetic acid bacteria, and yeast species. The composition of water kefir is primarily influenced by cultivation conditions and the microbiota profile of the grains, resulting in fermentation metabolites such as ethanol, lactic acid, mannitol, acetic acid, glycerol, and other organic acids. However, this microbial diversity can vary depending on the origin of the grains, the fermentation substrate, and environmental conditions. As it is a potentially beneficial product for health, interest in kefir consumption has increased in recent years. Specific legislation for water kefir is still scarce, and despite potentially probiotic microorganisms, water kefir is not classified as a probiotic, but it fits the definition of a potentially functional food due to its health benefits. Studies demonstrate the potential health benefits of water kefir in terms of anti-inflammatory, antimicrobial, antioxidant, antidiabetic, and intestinal health effects. However, industrial-scale production and starter cultures have not yet been developed. This study aims to comprehensively review water kefir, exploring its potential health benefits, fermentation process, microbial diversity, and regulatory aspects. Full article
Show Figures

Graphical abstract

23 pages, 373 KiB  
Review
Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health
by Andreas Panou and Ioannis Konstantinos Karabagias
Beverages 2025, 11(2), 40; https://doi.org/10.3390/beverages11020040 - 14 Mar 2025
Cited by 3 | Viewed by 4960
Abstract
Functional beverages comprise a special category of drinks free of alcohol that contain bioactive components from plant, animal, marine, or microorganism sources that contribute to the reinforcement of human health. Functional beverages are mainly divided into the following basic categories: (i) dairy-based beverages [...] Read more.
Functional beverages comprise a special category of drinks free of alcohol that contain bioactive components from plant, animal, marine, or microorganism sources that contribute to the reinforcement of human health. Functional beverages are mainly divided into the following basic categories: (i) dairy-based beverages and (ii) non-dairy-based beverages. Functional beverages have several positive functional properties such as the rehydration of the body, recovery of lost energy, the increase of athletic performance, the prevention of pain in joints, the improvement of heart health, the improvement of immunity and the digestive system, and the creation of the feeling of satiety and boosting mood. However, according to health experts, there are also functional beverages that induce obesity and heart diseases because of their high content of sugars, sweeteners, and other components such as caffeine, taurine, taurine combined with caffeine, creatinine, etc. The scope of this review was to highlight the main components and the functional properties of energy drinks along with the effects of functional beverages on human health. Limited review articles address this overall hypothesis in the recent literature, thus comprising the significance of the current study. Full article
(This article belongs to the Special Issue Sports and Functional Drinks)
16 pages, 3545 KiB  
Article
Enhancing Viability of Lactobacillus rhamnosus GG and Total Polyphenol Content in Fermented Black Goji Berry Beverage Through Calcium–Alginate Encapsulation with Hydrocolloids
by Charoonsri Chusak, Vernabelle Balmori, Kritmongkhon Kamonsuwan, Phim on Suklaew and Sirichai Adisakwattana
Foods 2025, 14(3), 518; https://doi.org/10.3390/foods14030518 - 6 Feb 2025
Cited by 1 | Viewed by 2168
Abstract
Encapsulation techniques play a crucial role in enhancing the stability and viability of probiotics in functional foods. This study investigates the efficacy of calcium–alginate encapsulation, combined with hydrocolloids such as carrageenan, agar, and gelatin, in improving the survival of Lactobacillus rhamnosus GG (LGG) [...] Read more.
Encapsulation techniques play a crucial role in enhancing the stability and viability of probiotics in functional foods. This study investigates the efficacy of calcium–alginate encapsulation, combined with hydrocolloids such as carrageenan, agar, and gelatin, in improving the survival of Lactobacillus rhamnosus GG (LGG) and stabilizing the total phenolic content (TPC) in fermented black goji berry beverages. The results revealed that 1.5% alginate encapsulation, combined with 1% carrageenan, agar, or gelatin and 5% calcium, significantly enhanced the LGG viability and increased the TPC content in the fermented black goji berry beads when compared to calcium–alginate encapsulation alone. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the successful incorporation and interaction of hydrocolloids within the encapsulation matrix. Among the formulations, calcium–alginate–gelatin beads exhibited the highest LGG survival rates after simulated gastric and intestinal digestion. Notably, calcium–alginate beads containing carrageenan preserved LGG viability during simulated gastric and intestinal conditions when co-digested with all tested milk types (high carbohydrate, high protein, and high fat). Co-ingestion with these milk types further improved TPC retention in all bead formulations, as the macronutrients in milk provided protective effects, stabilizing the encapsulated polyphenols and minimizing their degradation during simulated gastric and intestinal digestion. This study highlights the potential of calcium–alginate encapsulation, integrated with hydrocolloids such as carrageenan, agar, or gelatin, to improve probiotic viability and polyphenol stability, offering promising applications for enhancing the functional properties of non-dairy fermented beverages. Full article
Show Figures

Figure 1

25 pages, 825 KiB  
Article
Novel Fermented Plant-Based Functional Beverage: Biological Potential and Impact on the Human Gut Microbiota
by Catarina Vila-Real, Célia Costa, Ana Pimenta-Martins, Samuel Mbugua, Sawadogo-Lingani Hagrétou, Kati Katina, Ndegwa H. Maina, Elisabete Pinto and Ana M. P. Gomes
Foods 2025, 14(3), 433; https://doi.org/10.3390/foods14030433 - 28 Jan 2025
Cited by 1 | Viewed by 2000
Abstract
Controlled fermentation carried out by selected starters might enhance the safety, nutritional, and biological profiles of non-dairy fermented products. This research aims to study the biological potential and impact on the human gut microbiota of a novel fermented finger millet-based product. Finger millet [...] Read more.
Controlled fermentation carried out by selected starters might enhance the safety, nutritional, and biological profiles of non-dairy fermented products. This research aims to study the biological potential and impact on the human gut microbiota of a novel fermented finger millet-based product. Finger millet (Eleusine coracana), suspended in an aqueous sucrose-based solution, was fermented by Weissella confusa 2LABPT05 and Lactiplantibacillus plantarum 299v (1%, 1:1 ratio (v/v)), at 30 °C/200 rpm in an orbital incubator until pH ≈ 4.5–5.0. Microbial growth, phenolic compounds, antioxidant, and antidiabetic activities were evaluated. In vitro digestion followed by in vitro faecal fermentation were used to study the impact of the fermented plant-based functional beverage (PBFB) on the human gut microbiota. Antidiabetic activity (21% vs. 14%) and total phenolics (244 vs. 181 mg of gallic acid equivalents/kg PBFB) increased with fermentation. The digested fermented PBFB contributed to the increase, over the first 6 h, of the Bifidobacterium’s 16S rRNA gene copy numbers, concomitant with significant release of the acetic, propionic, and butyric short chain fatty acids, and also lactic acid. The novel PBFB has been shown to have antidiabetic potential and bifidogenic effects, and consequently its consumption might positively impact blood glucose levels and the human gut microbiota. Full article
(This article belongs to the Topic Probiotics: New Avenues)
Show Figures

Figure 1

21 pages, 1934 KiB  
Article
Analysis of the Probiotic Potential of Lactiplantibacillus plantarum LB1_P46 Isolated from the Mexican Fermented Pulque Beverage: A Functional and Genomic Analysis
by Martha Giles-Gómez, Ximena Morales Huerta, Rodolfo Pastelin-Palacios, Constantino López-Macías, Mayrene Sarai Flores Montesinos, Fernando Astudillo-Melgar and Adelfo Escalante
Microorganisms 2024, 12(8), 1652; https://doi.org/10.3390/microorganisms12081652 - 12 Aug 2024
Viewed by 2462
Abstract
The traditional Mexican fermented beverage pulque has been considered a healthy product for treating gastrointestinal disorders. Lactic acid bacteria (LAB) have been identified as one of the most abundant microbial groups during pulque fermentation. As traditional pulque is consumed directly from the fermentation [...] Read more.
The traditional Mexican fermented beverage pulque has been considered a healthy product for treating gastrointestinal disorders. Lactic acid bacteria (LAB) have been identified as one of the most abundant microbial groups during pulque fermentation. As traditional pulque is consumed directly from the fermentation vessel, the naturally associated LABs are ingested, reaching the consumer’s small intestine alive, suggesting their potential probiotic capability. In this contribution, we assayed the probiotic potential of the strain of Lactiplantibacillus plantarum LB1_P46 isolated from pulque produced in Huitzilac, Morelos State, Mexico. The characterization included resistance to acid pH (3.5) and exposure to bile salts at 37 °C; the assay of the hemolytic activity and antibiotic resistance profiling; the functional traits of cholesterol reduction and β-galactosidase activity; and several cell surface properties, indicating that this LAB possesses probiotic properties comparable to other LAB. Additionally, this L. plantarum showed significance in in vitro antimicrobial activity against several Gram-negative and Gram-positive bacteria and in vivo preventive anti-infective capability against Salmonella in a BALB/c mouse model. Several functional traits and probiotic activities assayed were correlated with the corresponding enzymes encoded in the complete genome of the strain. The genome mining for bacteriocins led to the identification of several bacteriocins and a ribosomally synthesized and post-translationally modified peptide encoding for the plantaricin EF. Results indicated that L. plantarum LB1_P46 is a promising probiotic LAB for preparing functional non-dairy and dairy beverages. Full article
(This article belongs to the Special Issue Probiotic Bacteria in Fermented Foods)
Show Figures

Figure 1

19 pages, 14085 KiB  
Article
Physicochemical Properties, Stability, and Functionality of Non-Covalent Ternary Complexes Fabricated with Pea Protein, Hyaluronic Acid and Chlorogenic Acid
by Wenfei Fu, Fujun Liu, Ronglei Zhang, Ru Zhao, Yuxin He and Cuina Wang
Foods 2024, 13(13), 2054; https://doi.org/10.3390/foods13132054 - 27 Jun 2024
Cited by 4 | Viewed by 2085
Abstract
The aim of this study was to prepare and characterize stable non−covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, [...] Read more.
The aim of this study was to prepare and characterize stable non−covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 806 KiB  
Article
Beverage Consumption and Factors Influencing the Choice of Beverages among Polish Children Aged 11–13 Years in 2018–2023
by Julianna Kostecka, Izabella Jackowska, Izabela Chabros, Joanna Kostecka-Jarecka, Paulina Kawecka and Malgorzata Kostecka
Nutrients 2024, 16(11), 1625; https://doi.org/10.3390/nu16111625 - 26 May 2024
Cited by 2 | Viewed by 2233
Abstract
Adequate hydration is essential for good health, and an individual’s hydration status is determined by the quantity and type of ingested fluids. The aim of the present study was to determine the hydration status of school-age children and evaluate changes in the type [...] Read more.
Adequate hydration is essential for good health, and an individual’s hydration status is determined by the quantity and type of ingested fluids. The aim of the present study was to determine the hydration status of school-age children and evaluate changes in the type and quantity of consumed beverages between 2018 and 2023. The study was conducted in two stages between 2018 and 2023, and a total of 1030 fully completed questionnaires were returned by the children and their parents. A comparison of the parents’ responses regarding factors that affect beverage choices revealed that beverage composition was more significant for the parents in 2023 than in 2018, whereas health-promoting properties were significant for only less than 30% of the respondents. Taste preferences were important for both the parents and the children, and they were the main criterion in the choice of beverages in both 2018 and 2023. In turn, advertising was an important factor for children, and the percentage of children who were guided by advertising in their choice of beverages increased from 52.1% in 2018 to 58.5% in 2023 (p < 0.05). Daily fluid intake from beverages in children aged 11–13 years generally does not meet recommended intakes. Low fluid intake can negatively affect children’s hydration status and bodily functions. Taste preferences and advertising were correlated with a higher intake of carbonated and non-carbonated sugar-sweetened beverages (SSBs) and dairy beverages. The percentage of children who bought drinks independently and had access to SSBs increased significantly during the analyzed period. Obtain results indicate that nutrition education programs are needed to teach adolescents to make healthy drink choices, limit their consumption of SSBs and EDs, and promote regular intake of natural mineral water and non-sweetened dairy beverages. Full article
(This article belongs to the Section Carbohydrates)
Show Figures

Figure 1

31 pages, 3425 KiB  
Article
Production and Optimisation of Fermented Pumpkin-Based Mature Coconut Water Kefir Beverage Using Response Surface Methodology
by Wee Yin Koh, Xiao Xian Lim, Ban Hock Khor, Babak Rasti, Thuan Chew Tan, Rovina Kobun and Utra Uthumporn
Beverages 2024, 10(2), 34; https://doi.org/10.3390/beverages10020034 - 7 May 2024
Cited by 2 | Viewed by 3533
Abstract
Fermentation of pumpkin puree and mature coconut water using water kefir grains is a potential method for producing a novel functional non-dairy-based probiotic drink. In the present study, response surface methodology based on Box–Behnken design (RSM-BBD) was used to optimise fermentation temperature and [...] Read more.
Fermentation of pumpkin puree and mature coconut water using water kefir grains is a potential method for producing a novel functional non-dairy-based probiotic drink. In the present study, response surface methodology based on Box–Behnken design (RSM-BBD) was used to optimise fermentation temperature and substrates’ concentrations. The optimised fermentation temperature, pumpkin puree, and brown sugar concentrations of pumpkin-based mature coconut water kefir beverage (PWKC) were 27 °C, 20%, and 10% w/v, respectively. The optimised PWKC (PWKCopt) obtained an overall acceptability (OA) score of 4.03, with a desirable Lactobacillus count (6.41 Log CFU/mL), 0.68% v/v lactic acid content, 31% of water kefir grains’ biomass growth rate, and fermentation time (to reach pH 4.5) of 4.5 h. The optimized beverage, PWKCopt, contained 3.26% proteins, 2.75% dietary fibre, 2186.33 mg/L of potassium, 180.67 mg/L phosphorus, and 137.33 mg/L calcium and had a total phenolic content of 89.93 mg GAE/100 mL, flavonoid content of 49.94 mg QE/100 mL, and carotenoid content of 33.24 mg/100 mL, with antioxidant activity (FRAP: 169.17 mM Fe(II)/100 mL, IC50 value of DPPH free radicals scavenging activity: 27.17 mg/mL). Water kefir microorganisms in PWKCopt remained stable for at least 56 days at 4 °C. Therefore, PWKCopt might potentially serve as a value-added product, offering a basis for sustainable development within both the coconut and pumpkin industries. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Graphical abstract

Back to TopTop