Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (358)

Search Parameters:
Keywords = non-contact mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 284 KB  
Article
Early-Life Environmental Determinants of Allergic Conditions in Children with Atopic Heredity: A Single Center Cross-Sectional Study from Bulgaria
by Antoniya Hachmeriyan, Albena Toneva, Miglena Marinova-Achkar and Rouzha Pancheva
Med. Sci. 2025, 13(3), 198; https://doi.org/10.3390/medsci13030198 - 18 Sep 2025
Viewed by 235
Abstract
Background: Allergic diseases in early childhood are influenced by genetic predisposition and modifiable early-life exposures, including epigenetic mechanisms. Understanding the interplay between environmental factors and allergy development in children with atopic heredity is critical for prevention strategies. Objective: To investigate the associations between [...] Read more.
Background: Allergic diseases in early childhood are influenced by genetic predisposition and modifiable early-life exposures, including epigenetic mechanisms. Understanding the interplay between environmental factors and allergy development in children with atopic heredity is critical for prevention strategies. Objective: To investigate the associations between selected early-life environmental exposures and the development of allergic conditions in children with a positive family history of atopy. Methods: A cross-sectional study was conducted among 120 children aged 2 years (±5 months) with atopic heredity, recruited at the Medical University of Varna, Bulgaria (2017–2020). Data on sociodemographic background, prenatal exposures, birth mode, feeding practices, pet contact, daycare attendance, and infectious burden were collected via structured questionnaires and medical records. Allergic outcomes (food allergy and atopic dermatitis) were physician-confirmed. Statistical analyses included t-tests and chi-square tests. Results: Food allergy was diagnosed in 23.3% and atopic dermatitis in 21.7% of participants. Formula feeding was significantly more common in children with food allergy (66.7% vs. 38.1%; p = 0.020). A lower maternal pregnancy experience score was significantly associated with both food allergy (p = 0.021) and overall allergic outcomes (p = 0.004). Indoor smoking was more common in households of non-allergic children (p = 0.034). Children with food allergy had significantly more rhinopharyngitis episodes (p = 0.014) and longer infection duration. Higher gastroenteritis frequency and hospitalization rates were also noted in food-allergic children. Conclusions: In children with atopic heredity, early formula feeding, prenatal maternal stress, and infection burden were associated with increased risk of allergic conditions. This study underscores the importance of early-life psychosocial and environmental influences, possibly mediated by epigenetic mechanisms, in the development of childhood allergies. These findings highlight novel targets for early prevention and warrant further longitudinal research. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
18 pages, 5409 KB  
Article
Upconversion and Downconversion Luminescence of CaLaLiTeO6:Mn4+/Er3+ Phosphors for Dual-Mode Optical Thermometry and Anti-Counterfeiting Application
by Zheng-Rong Xia, Rong-Qing Li, Fang-Fang Liu, Yue Tong, Qing-Hua Zheng, Zhao-Yan Ping, Wang Zhao, Wei-Wei Zhou and Ming-Jun Song
Inorganics 2025, 13(9), 308; https://doi.org/10.3390/inorganics13090308 - 13 Sep 2025
Viewed by 330
Abstract
Multifunctional phosphors that integrate optical temperature measurement and counterfeit detection capabilities have garnered considerable interest owing to their diverse application potential. In this study, novel CaLaLiTeO6:Mn4+/Er3+ phosphors were prepared via the high-temperature solid-phase method. The phase structure and [...] Read more.
Multifunctional phosphors that integrate optical temperature measurement and counterfeit detection capabilities have garnered considerable interest owing to their diverse application potential. In this study, novel CaLaLiTeO6:Mn4+/Er3+ phosphors were prepared via the high-temperature solid-phase method. The phase structure and morphology characterization confirmed the successful synthesis of CaLaLiTeO6 material with effective doping of Mn4+ and Er3+ into the host lattice. Upon excitation at 379 nm, the CaLaLiTeO6:Mn4+/Er3+ material exhibits far-red emission at 716 nm (Mn4+:2Eg4A2g) and green emission at 525/548 nm (Er3+:2H11/2/4S3/24I15/2). The emission peak intensities of Er3+ and Mn4+ ions in the CaLaLiTeO6:0.015Mn4+/0.01Er3+ sample displayed distinct variations with temperature under different excitation wavelengths (325 nm, 379 nm, and 980 nm). Subsequently, a dual-mode optical temperature sensing system was developed based on the fluorescence intensity ratio and the dual excitation single-band ratiometric method, which achieved a maxed relative sensitivity of 1.12% K−1 at 343 K. Moreover, the excitation-dependent luminescence color changes of CaLaLiTeO6:Mn4+/Er3+ make it particularly suitable for anti-counterfeiting applications. The present study underscores the dual-functional capabilities in sophisticated non-contact optical temperature measurement and anti-counterfeiting applications. Full article
Show Figures

Figure 1

5 pages, 817 KB  
Abstract
Non-Destructive Testing of CFRP DCB Specimens Using Active Thermography
by Ding-En Wu, Chih-Hung Chiang, Mahesh and Keng-Tsang Hsu
Proceedings 2025, 129(1), 21; https://doi.org/10.3390/proceedings2025129021 - 12 Sep 2025
Viewed by 169
Abstract
A Mode I Interlaminar Fracture Toughness test of carbon fiber-reinforced polymer laminates requires a double cantilever beam (DCB) specimen with a pre-implanted non-adhesive insert at the mid-plane to initiate delamination. However, the insert’s quality and placement within the DCB specimen can be problematic, [...] Read more.
A Mode I Interlaminar Fracture Toughness test of carbon fiber-reinforced polymer laminates requires a double cantilever beam (DCB) specimen with a pre-implanted non-adhesive insert at the mid-plane to initiate delamination. However, the insert’s quality and placement within the DCB specimen can be problematic, necessitating non-destructive testing methods. In this study, active thermography is employed to inspect potential defects around the Teflon insert in the DCB specimens. Both uniform and non-uniform heating methods have been applied, and thermal images were analyzed to obtain quantitative information, such as the insert’s location and non-contact area. TSR-enhanced images were obtained using two variations in the classical thermographic signal reconstruction. The analyzed results confirmed the presence of non-contact areas in the DCB structures composed of both 22-layer and 24-layer CFRP prepregs. These areas may be attributed to residual air gaps formed during the hot-press molding of the DCB structures. Full article
Show Figures

Figure 1

33 pages, 2380 KB  
Review
A Comprehensive Review of Symmetrical Multilateral Well (MLW) Applications in Cyclic Solvent Injection (CSI): Advancements, Challenges, and Future Prospects
by Shengyi Wu, Farshid Torabi and Ali Cheperli
Symmetry 2025, 17(9), 1513; https://doi.org/10.3390/sym17091513 - 11 Sep 2025
Viewed by 336
Abstract
This paper presents a comprehensive review and theoretical analysis of integrating Cyclic Solvent Injection (CSI) with multilateral well (MLW) technologies to enhance heavy oil recovery. Given that many MLW configurations inherently exhibit symmetrical geometries, CSI–MLW integration offers structural advantages for fluid distribution. CSI [...] Read more.
This paper presents a comprehensive review and theoretical analysis of integrating Cyclic Solvent Injection (CSI) with multilateral well (MLW) technologies to enhance heavy oil recovery. Given that many MLW configurations inherently exhibit symmetrical geometries, CSI–MLW integration offers structural advantages for fluid distribution. CSI offers a non-thermal mechanism for oil production through viscosity reduction, oil swelling, and foamy oil behaviour, but its application is often limited by poor sweep efficiency and non-uniform solvent distribution in conventional single-well configurations. In contrast, MLW configurations are effective in increasing reservoir contact and improving flow control but lack solvent-based enhancement mechanisms. In particular, symmetrical MLW configurations, such as dual-opposing laterals and evenly spaced fishbone laterals, can facilitate balanced solvent distribution and pressure profiles, thereby improving sweep efficiency and mitigating early breakthrough. By synthesizing experimental findings and theoretical insights from the existing literature, laboratory studies have reported that post-CHOPS CSI using a 28% C3H8–72% CO2 mixture can recover about 50% of the original oil in place after six cycles, while continuous-propagation CSI (CPCSI) has achieved up to ~85% OOIP in 1D physical models. These representative values illustrate the performance spectrum observed across different CSI operational modes, underscoring the importance of operational parameters in governing recovery outcomes. Building on this foundation, this paper synthesizes key operational parameters, including solvent composition, pressure decline rate, and well configuration, that influence CSI performance. While previous studies have extensively reviewed CSI and MLW as separate technologies, systematic analyses of their integration remain limited. This review addresses that gap by providing a structured synthesis of CSI–MLW interactions, supported by representative quantitative evidence from the literature. The potential synergy between CSI and MLW is highlighted as a promising direction to overcome current limitations. By leveraging geometric symmetry in well architecture, the integrated CSI–MLW approach offers unique opportunities for optimizing solvent utilization, enhancing recovery efficiency, and guiding future experimental and field-scale developments. Such symmetry-oriented designs are also central to the experimental framework proposed in this study, in which potential methods, such as the microfluidic visualization of different MLW configurations, spanning small-scale visualization studies, bench-scale experiments on fluid and chemical interactions, and mock field setups with pipe networks, are proposed as future avenues to further explore and validate this integrated strategy. Full article
Show Figures

Figure 1

19 pages, 4477 KB  
Article
Non-Contact Heart Rate Variability Monitoring with FMCW Radar via a Novel Signal Processing Algorithm
by Guangyu Cui, Yujie Wang, Xinyi Zhang, Jiale Li, Xinfeng Liu, Bijie Li, Jiayi Wang and Quan Zhang
Sensors 2025, 25(17), 5607; https://doi.org/10.3390/s25175607 - 8 Sep 2025
Viewed by 777
Abstract
Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable [...] Read more.
Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable long-term monitoring, thus attracting considerable research interest in non-contact HRV sensing. In this study, we propose a novel algorithm for HRV extraction utilizing FMCW millimeter-wave radar. First, we developed a calibration-free 3D target positioning module that captures subjects’ micro-motion signals through the integration of digital beamforming, moving target indication filtering, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering techniques. Second, we established separate phase-based mathematical models for respiratory and cardiac vibrations to enable systematic signal separation. Third, we implemented the Second Order Spectral Sparse Separation Algorithm Using Lagrangian Multipliers, thereby achieving robust heartbeat extraction in the presence of respiratory movements and noise. Heartbeat events are identified via peak detection on the recovered cardiac signal, from which inter-beat intervals and HRV metrics are subsequently derived. Compared to state-of-the-art algorithms and traditional filter bank approaches, the proposed method demonstrated an over 50% reduction in average IBI (Inter-Beat Interval) estimation error, while maintaining consistent accuracy across all test scenarios. However, it should be noted that the method is currently applicable only to scenarios with limited subject movement and has been validated in offline mode, but a discussion addressing these two issues is provided at the end. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 7115 KB  
Article
Inductive Sensor Characteristics for Conductivity Measurement of Non-Ferromagnetic Metals Based on Single-Layer Solenoid
by Huan Wang, Ziyi Han, Yongjian Chen, Shuyu Li, Haoran Li, Hao Shen and Chunlong Xu
Sensors 2025, 25(17), 5566; https://doi.org/10.3390/s25175566 - 6 Sep 2025
Viewed by 974
Abstract
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by [...] Read more.
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by alternating sources as the research object and proposes a non-contact method for conductivity measurement of non-ferromagnetic metals engaged by a single-layer solenoid sensor. The effect of the circuit parameters on the inductive sensor characteristics has been described with different resonant modes, and the electric conductivities of different metals can be theoretically calculated based on eddy current. Moreover, the Comsol Multiphysics software is used to conduct finite element analysis to compare the experimental results and the simulation, which is consistent with the theoretical analysis. The measured accuracy of the inductive sensor is verified to be higher than 91% in parallel resonance, which exhibits higher stability and precision than that of series mode. The implementation of this project will provide the theoretical basis and data reference for the detection of electromagnetic properties of unknown metals and has a wide range of applications in non-destructive testing, engineering construction detection, and other fields. Full article
Show Figures

Figure 1

13 pages, 4450 KB  
Article
Laser-Based Selective Removal of EMI Shielding Layers in System-in-Package (SiP) Modules
by Xuan-Bach Le, Won Yong Choi, Keejun Han and Sung-Hoon Choa
Micromachines 2025, 16(8), 925; https://doi.org/10.3390/mi16080925 - 11 Aug 2025
Viewed by 663
Abstract
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, [...] Read more.
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, we propose a novel, laser-based approach for the selective removal of EMI shielding layers without physical masking. Numerical simulations were conducted to investigate the thermal and mechanical behavior of multilayer EMI shielding structures under two irradiation modes: full-area and laser scanning. The results showed that the laser scanning method induced higher interfacial shear stress, reaching up to 38.6 MPa, compared to full-area irradiation (12.5 MPa), effectively promoting delamination while maintaining the integrity of the underlying epoxy mold compound (EMC). Experimental validation using a nanosecond pulsed fiber laser confirmed that complete removal of the EMI shielding layer could be achieved at optimized laser powers (~6 W) without damaging the EMC, whereas excessive power (8 W) caused material degradation. The laser scanning speed was 50 mm/s, and the total laser irradiation time of the package was 0.14 s, which was very fast. This study demonstrates the feasibility of a non-contact, damage-free, and selective EMI shielding removal technique, offering a promising solution for next-generation semiconductor packaging. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

24 pages, 14429 KB  
Article
Full-Field Dynamic Parameters and Tension Identification of Stayed Cables Using a Novel Holographic Vision-Based Method
by Shuai Shao, Gang Liu, Zhongru Yu, Dongzhe Ren, Guojun Deng and Zhixiang Zhou
Sensors 2025, 25(16), 4891; https://doi.org/10.3390/s25164891 - 8 Aug 2025
Viewed by 335
Abstract
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters [...] Read more.
Due to the slender geometry and low-amplitude vibrations of stayed cables, existing vision-based methods often fail to accurately identify their full-field dynamic parameters, especially the higher-order modes. This paper proposes a novel holographic vision-based method to accurately identify the high-order full-field dynamic parameters and estimate the tension of the stayed cables. Particularly, a full-field optical flow tracking algorithm is proposed to obtain the full-field dynamic displacement information of the stayed cable by tracking the changes in the optical flow field of the continuous motion signal spectral components of holographic feature points. Frequency-domain analysis is applied to extract the natural frequencies and damping ratios, and the vibration frequency method is used to estimate the tension. Additionally, an Eulerian-based amplification algorithm—holographic feature point video magnification (HFPVM)—is proposed for enhancing weak visual motion signals of the stayed cables, so that the morphological motion information of the stayed cables can be visualized. The effectiveness of the proposed method has been validated through experiments on the stayed cable models. Compared with the results obtained using contact sensors, the proposed holographic vision-based method can accurately identify the first five natural frequencies with overall errors below 5% and a maximum deviation of 6.86% in cable tension estimation. The first three normalized holographic mode shapes and dynamic displacement vectors are successfully identified, with the MAC value reaching up to 99.51%. This entirely non-contact vision-based method offers a convenient and low-cost approach for cable tension estimation, and this is also the first study to propose a comprehensive, visual, and quantifiable strategy for periodic or long-term monitoring of cable-supported structures, highlighting its strong potential in practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

40 pages, 4663 KB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 563
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

20 pages, 5786 KB  
Article
Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates
by Pawel Wysmulski
Materials 2025, 18(15), 3452; https://doi.org/10.3390/ma18153452 - 23 Jul 2025
Viewed by 486
Abstract
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2 [...] Read more.
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2/90°/−45°/45°]. Four central hole plates of 0 mm (reference), 2 mm, 4 mm, and 8 mm in diameter were analyzed. Tests were conducted using a Cometech universal testing machine in combination with the ARAMIS digital image correlation (DIC) system, enabling the non-contact measurement of real-time displacements and local deformations in the region of interest. The novel feature of this work was its dual use of independent measurement methods—machine-based and DIC-based—allowing for the assessment of boundary condition effects and grip slippage on failure load accuracy. The experiments were carried out until complete structural failure, enabling a post-critical analysis of material behavior and failure modes for different geometric configurations. The study investigated load–deflection and load–shortening curves, failure mechanisms, and ultimate loads. The results showed that the presence of a hole leads to localized deformation, a change in the failure mode, and a nonlinear reduction in load-carrying capacity—by approximately 30% for the largest hole. These findings provide complementary data for the design of thin-walled composite components with technological openings and serve as a robust reference for numerical model validation. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

20 pages, 2970 KB  
Review
The Rise of Eleusine indica as Brazil’s Most Troublesome Weed
by Ricardo Alcántara-de la Cruz, Laryssa Barbosa Xavier da Silva, Hudson K. Takano, Lucas Heringer Barcellos Júnior and Kassio Ferreira Mendes
Agronomy 2025, 15(8), 1759; https://doi.org/10.3390/agronomy15081759 - 23 Jul 2025
Viewed by 1300
Abstract
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and [...] Read more.
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and adaptability to various environmental conditions. A critical challenge relates to its widespread resistance to multiple herbicide modes of action, notably glyphosate and acetyl-CoA carboxylate (ACCase) inhibitors. Resistance mechanisms include 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) target-site mutations, gene amplification, reduced translocation, glyphosate detoxification, and mainly ACCase target-site mutations. This literature review summarizes the current knowledge on herbicide resistance in goosegrass and its management in Brazil, with an emphasis on integrating chemical and non-chemical strategies. Mechanical and physical controls are effective in early or local infestations but must be combined with chemical methods for lasting control. Herbicides applied post-emergence of weeds, especially systemic ACCase inhibitors and glyphosate, remain important tools, although widespread resistance limits their effectiveness. Sequential applications and mixtures with contact herbicides such as glufosinate and protoporphyrinogen oxidase (PPO) inhibitors can improve control. Pre-emergence herbicides are effective when used before or immediately after planting, with adequate soil moisture being essential for their activation and effectiveness. Given the complexity of resistance mechanisms, chemical control alone is not enough. Integrated weed management programs, combining diverse herbicides, sequential treatments, and local resistance monitoring, are essential for sustainable goosegrass management. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

18 pages, 4221 KB  
Article
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Viewed by 327
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on [...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than 102 m and 102 deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

29 pages, 7197 KB  
Review
Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing
by Jinyue Tian, Jiaxun Zhang, Yujie Zhang, Jing Liu, Yun Hu, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Nanomaterials 2025, 15(14), 1080; https://doi.org/10.3390/nano15141080 - 11 Jul 2025
Cited by 1 | Viewed by 1000
Abstract
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high [...] Read more.
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high sensitivity, mechanical flexibility, lightweight structure, and biocompatibility, enabling their integration into wearable electronics and biomedical interfaces. This review presents a comprehensive overview of recent progress in electrospun nanofiber-based TENGs, covering their working principles, operating modes, and material composition. Both pure polymer and composite nanofibers are discussed, along with various electrospinning techniques that enable control over morphology and performance at the nanoscale. We explore their practical implementations in both contact-type and non-contact-type sensing, such as human–machine interaction, physiological signal monitoring, gesture recognition, and voice detection. These applications demonstrate the potential of TENGs to enable intelligent, low-power, and real-time sensing systems. Furthermore, this paper points out critical challenges and future directions, including durability under long-term operation, scalable and cost-effective fabrication, and seamless integration with wireless communication and artificial intelligence technologies. With ongoing advancements in nanomaterials, fabrication techniques, and system-level integration, electrospun nanofiber-based TENGs are expected to play a pivotal role in shaping the next generation of self-powered, intelligent sensing platforms across diverse fields such as healthcare, environmental monitoring, robotics, and smart wearable systems. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

17 pages, 1027 KB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 1648
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

30 pages, 5942 KB  
Article
Exploring the Potential of a New Nickel(II):Phenanthroline Complex with L-isoleucine as an Antitumor Agent: Design, Crystal Structure, Spectroscopic Characterization, and Theoretical Insights
by Jayson C. dos Santos, João G. de Oliveira Neto, Ana B. N. Moreira, Luzeli M. da Silva, Alejandro P. Ayala, Mateus R. Lage, Rossano Lang, Francisco F. de Sousa, Fernando Mendes and Adenilson O. dos Santos
Molecules 2025, 30(13), 2873; https://doi.org/10.3390/molecules30132873 - 6 Jul 2025
Cited by 1 | Viewed by 703
Abstract
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an [...] Read more.
This study presents the synthesis, physicochemical characterization, and biological evaluation of a novel ternary nickel(II) complex with isoleucine and 1,10-phenanthroline ligands, [Ni(Phen)(Ile)2]∙6H2O, designed as a potential antitumor agent. Single-crystal X-ray diffraction revealed a monoclinic structure (C2-space group) with an octahedral Ni(II) coordination involving Phen and Ile ligands. A Hirshfeld surface analysis highlighted intermolecular interactions stabilizing the crystal lattice, with hydrogen bonds (H···H and O···H/H···O) dominating (99.1% of contacts). Density functional theory (DFT) calculations, including solvation effects (in water and methanol), demonstrated strong agreement with the experimental geometric parameters and revealed higher affinity to the water solvent. The electronic properties of the complex, such as HOMO−LUMO gaps (3.20–4.26 eV) and electrophilicity (4.54–5.88 eV), indicated a charge-transfer potential suitable for biological applications through interactions with biomolecules. Raman and infrared spectroscopic studies showed vibrational modes associated with Ni–N/O bonds and ligand-specific deformations, with solvation-induced shifts observed. A study using ultraviolet–visible–near-infrared absorption spectroscopy demonstrated that the complex remains stable in solution. In vitro cytotoxicity assays against MCF-7 (breast adenocarcinoma) and HCT-116 (colorectal carcinoma) cells showed dose-dependent activity, achieving 47.6% and 65.3% viability reduction at 100 μM (48 h), respectively, with lower toxicity to non-tumor lung fibroblasts (GM07492A, 39.8%). Supporting the experimental data, we performed computational modeling to examine the pharmacokinetic profile, with particular focus on the absorption, distribution, metabolism, and excretion properties and drug-likeness potential. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

Back to TopTop