Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = non-charged substances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2432 KB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 - 2 Aug 2025
Viewed by 696
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

38 pages, 6778 KB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 1304
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

18 pages, 2153 KB  
Article
Catalytic Biorefining of Cigarette Butts Recycling Waste
by Eric Borges Ribeiro, Maria Betânia d’Heni Teixeira, Thérèse Hofmann Gatti, Romulo Davi Albuquerque Andrade and Paulo Anselmo Ziani Suarez
Chemistry 2025, 7(3), 86; https://doi.org/10.3390/chemistry7030086 - 23 May 2025
Viewed by 903
Abstract
Urban solid waste (USW) is a promising alternative source of valuable chemical compounds. It is considered an adsorbent material due to its chemical structure, porosity and electronic charge available to form chemical bonds and can be recovered or transformed for use in bioprocesses [...] Read more.
Urban solid waste (USW) is a promising alternative source of valuable chemical compounds. It is considered an adsorbent material due to its chemical structure, porosity and electronic charge available to form chemical bonds and can be recovered or transformed for use in bioprocesses and industrial applications. This is the case with cigarette butts (CBs), which consist of thousands of substances that can be chemically converted for various purposes. This work showed high efficiency in the production of cellulose mass from the recycling of CBs, a patented technology in operation at the company Poiato Recicla—SP. The lignin-like solid (LLS)—a material obtained from the recycling of cigarette butts (CBs) by catalytic transfer hydrogenation (CTH), under non-rigorous conditions—showed high efficiency in its conversion into molecules of great interest. In the bio-oil obtained, characterized by analyses such as GCMS and RMN 2D HSQC, a mixture of predominantly hydrocarbons (many of them with cyclic and/or branched chains) was identified in almost all the experiments. This method demonstrates the potential of the TCH process for SSLs and completes the recycling chain designed for CBs, promoting their complete conversion into chemical compounds of greater interest. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

16 pages, 4726 KB  
Review
Chitosan-Based Hydrogel Beads: Developments, Applications, and Challenges
by Ziao Li, Ruoran Qin, Jiayi Xue, Congyu Lin and Longwei Jiang
Polymers 2025, 17(7), 920; https://doi.org/10.3390/polym17070920 - 28 Mar 2025
Cited by 2 | Viewed by 3113
Abstract
Currently, as research on hydrogel beads intensifies, the application scope of chitosan-based hydrogel beads is increasingly expanding. Owing to their unique three-dimensional network structure, chitosan-based hydrogel beads are frequently utilized for encapsulating bioactive substances and adsorbing impurities. The primary material used in the [...] Read more.
Currently, as research on hydrogel beads intensifies, the application scope of chitosan-based hydrogel beads is increasingly expanding. Owing to their unique three-dimensional network structure, chitosan-based hydrogel beads are frequently utilized for encapsulating bioactive substances and adsorbing impurities. The primary material used in the preparation of chitosan-based hydrogel beads is chitosan, which is uniquely a natural polysaccharide possessing a positive charge. Derived from a diverse array of sources, chitosan is non-toxic, exhibits excellent biocompatibility, and possesses certain antibacterial properties. Because of these remarkable attributes, it has found widespread application in tissue engineering, the formulation of drug carriers, and the adsorption of heavy metals and dyes in wastewater. The preparation method for chitosan-based hydrogel beads largely mirrors that of other hydrogel beads. According to existing research, numerous methods exist for crafting hydrogel beads with diverse properties. This paper reviews the preparation methods of chitosan-based hydrogel beads, encompassing both physical and chemical crosslinking techniques. The physical crosslinking method leverages electrostatic interactions between materials to form hydrogel beads, whereas the chemical crosslinking method involves the use of chemical crosslinking agents to facilitate the formation of hydrogel beads through material-based chemical reactions. Given that chitosan carries a positive charge and other polysaccharide materials possess a negative charge, the combination of these materials can yield hydrogel beads with a dense structure, effectively encapsulating bioactive substances. This dense internal structure offers superior protection for the encapsulated bioactive substances. Chitosan-based hydrogel beads typically feature large pore sizes, providing numerous adsorption sites, which makes them well suited for wastewater treatment. Additionally, this paper examines the recent applications of chitosan-based hydrogel beads in food preservation, medicine, and environmental protection. Starting with the materials and methods for preparing chitosan-based hydrogel beads, this paper delves into their applications in food preservation, biomedicine, and environmental protection, offering insights for future developments and applications of chitosan-based hydrogel beads and fostering further innovation and advancement in this field. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 4584 KB  
Article
Charging and Aggregation of Nano-Clay Na-Montmorillonite in the Presence of Ciprofloxacin
by Chuanzi Zeng and Motoyoshi Kobayashi
Nanomaterials 2025, 15(5), 389; https://doi.org/10.3390/nano15050389 - 3 Mar 2025
Cited by 2 | Viewed by 1126
Abstract
The transport and fate of antibiotics are significantly influenced by co-existing colloidal and nanosized substances, such as clay particles. Montmorillonite, a common clay mineral with a thin nano-sheet-like structure, enhances antibiotic (e.g., ciprofloxacin) mobility due to its strong adsorption properties. Nevertheless, little is [...] Read more.
The transport and fate of antibiotics are significantly influenced by co-existing colloidal and nanosized substances, such as clay particles. Montmorillonite, a common clay mineral with a thin nano-sheet-like structure, enhances antibiotic (e.g., ciprofloxacin) mobility due to its strong adsorption properties. Nevertheless, little is known about how ciprofloxacin systematically influences the charging and aggregation properties of montmorillonite. This study examines the effect of ciprofloxacin on the electrophoretic mobility and hydrodynamic diameter of Na-montmorillonite under varying pH levels and NaCl concentrations. Results show ciprofloxacin promotes aggregation and alters the surface net charge of Na-montmorillonite at acidic to neutral pH, where ciprofloxacin is positively charged. At higher pH levels, where ciprofloxacin is negatively charged, no significant effects are observed. The observed aggregation behaviors align with predictions based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. Specifically, the slow aggregation regime, the fast aggregation regime, and the critical coagulation concentration are identified. The relationship between critical coagulation ionic strength and electrokinetic surface charge density is well explained by the DLVO theory with the Debye–Hückel approximations. Additionally, non-DLVO interactions are inferred. At low NaCl and ciprofloxacin concentrations, minimal changes in aggregation and surface charge suggest dispersed montmorillonite may facilitate ciprofloxacin transport, raising environmental concerns. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

80 pages, 2449 KB  
Review
Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides
by Liliana Marisol Moreno-Vargas and Diego Prada-Gracia
Int. J. Mol. Sci. 2025, 26(1), 59; https://doi.org/10.3390/ijms26010059 - 25 Dec 2024
Cited by 7 | Viewed by 4992
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances—such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles—across cellular membranes [...] Read more.
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances—such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles—across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 14747 KB  
Article
Efficient Access to New Thienobenzo-1,2,3-Triazolium Salts as Preferred Dual Cholinesterase Inhibitors
by Milena Mlakić, Maja Sviben, Ana Ratković, Anamarija Raspudić, Danijela Barić, Ivana Šagud, Zlata Lasić, Ilijana Odak and Irena Škorić
Biomolecules 2024, 14(11), 1391; https://doi.org/10.3390/biom14111391 - 31 Oct 2024
Cited by 3 | Viewed by 1535
Abstract
In previous research, 1,2,3-triazolium salts showed significant biological activity as potential inhibitors of cholinesterase enzymes (ChEs), which are crucial for neurotransmission. In this research, pairs of uncharged thienobenzo-triazoles and their charged salts were prepared in order to further examine the role of the [...] Read more.
In previous research, 1,2,3-triazolium salts showed significant biological activity as potential inhibitors of cholinesterase enzymes (ChEs), which are crucial for neurotransmission. In this research, pairs of uncharged thienobenzo-triazoles and their charged salts were prepared in order to further examine the role of the positive charge on the nitrogen of the triazole ring in interactions within the active site of the enzymes, and to compare the selectivity of 1,2,3-triazolium salts in relation to their uncharged analogs obtained by photochemical cyclization. Neutral thienobenzo-triazoles showed very good selective activity toward butyrylcholinesterase (BChE), while their salts showed excellent non-selective inhibition toward both BChE (the most active 23: IC50 0.47 μM) and acetylcholinesterase (AChE) enzymes (the most active 23: IC50 4.4 μM). These new structures with incorporated 1,2,3-triazolium salts present the new scaffold for drug development as it is known that the current therapy in Alzheimer’s disease (AD) comprises selective AChE inhibitors, while in Parkinson’s and all stages of AD, non-selective inhibitors of ChEs are preferred. Molecular docking of the selected compounds and their corresponding salts into the active sites of ChEs was conducted to identify the interactions responsible for the stability of the non-covalent cholinesterase–ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the synthesized compounds have shown that compound 18 is the most promising candidate for genotoxic safety. Full article
Show Figures

Figure 1

15 pages, 677 KB  
Article
Correlative Effects on Nanoplastic Aggregation in Model Extracellular Biofilm Substances Investigated with Fluorescence Correlation Spectroscopy
by Tobias Guckeisen, Rozalia Orghici and Silke Rathgeber
Polymers 2024, 16(15), 2170; https://doi.org/10.3390/polym16152170 - 30 Jul 2024
Cited by 4 | Viewed by 1554
Abstract
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the [...] Read more.
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the environment. Having a deeper understanding of the nanoplastics–biofilm interaction would help to evaluate the risks posed by uncontrolled nanoplastic pollution. These interactions are impacted by environmental changes due to climate change, such as, e.g., the acidification of surface waters. We apply fluorescence correlation spectroscopy (FCS) to investigate the pH-dependent aggregation tendency of non-functionalized polystyrene (PS) nanoparticles (NPs) due to intermolecular forces with model extracellular biofilm substances. Our biofilm model consists of bovine serum albumin (BSA), which serves as a representative for globular proteins, and the polysaccharide alginate, which is a main component in many biofilms, in solutions containing Na+ with an ionic strength being realistic for fresh-water conditions. Biomolecule concentrations ranging from 0.5 g/L up to at maximum 21 g/L are considered. We use non-functionalized PS NPs as representative for mostly negatively charged nanoplastics. BSA promotes NP aggregation through adsorption onto the NPs and BSA-mediated bridging. In BSA–alginate mixtures, the alginate hampers this interaction, most likely due to alginate–BSA complex formation. In most BSA–alginate mixtures as in alginate alone, NP aggregation is predominantly driven by weaker, pH-independent depletion forces. The stabilizing effect of alginate is only weakened at high BSA contents, when the electrostatic BSA–BSA attraction is not sufficiently screened by the alginate. This study clearly shows that it is crucial to consider correlative effects between multiple biofilm components to better understand the NP aggregation in the presence of complex biofilm substances. Single-component biofilm model systems based on comparing the total organic carbon (TOC) content of the extracellular biofilm substances, as usually considered, would have led to a misjudgment of the stability towards aggregation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

27 pages, 5290 KB  
Review
Taste Sensor Assessment of Bitterness in Medicines: Overview and Recent Topics
by Takahiro Uchida
Sensors 2024, 24(15), 4799; https://doi.org/10.3390/s24154799 - 24 Jul 2024
Cited by 5 | Viewed by 4709
Abstract
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in [...] Read more.
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor’s predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

23 pages, 8132 KB  
Article
Rational Design of Pectin–Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy
by Vladimir E. Silant’ev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Mikhail E. Shmelev, Aleksandra A. Patlay, Roman A. Shatilov and Vadim V. Kumeiko
Biomedicines 2024, 12(7), 1393; https://doi.org/10.3390/biomedicines12071393 - 23 Jun 2024
Cited by 6 | Viewed by 2731
Abstract
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have [...] Read more.
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have developed polymer nanoparticles (NPs) with improved temozolomide (TMZ) delivery for promising brain tumor therapy, performing a rational design of polyelectrolyte complexes of oppositely charged polysaccharides of cationic chitosan and anionic pectin. The NPs’ diameter (30 to 330 nm) and zeta-potential (−29 to 73 mV) varied according to the initial mass ratios of the biopolymers. The evaluation of nanomechanical parameters of native NPs demonstrated changes in Young’s modulus from 58 to 234 kPa and adhesion from −0.3 to −3.57 pN. Possible mechanisms of NPs’ formation preliminary based on ionic interactions between ionogenic functional groups were proposed by IR spectroscopy and dynamic rheology. The study of the parameters and kinetics of TMZ sorption made it possible to identify compounds that most effectively immobilize and release the active substance in model liquids that simulate the internal environment of the body. A polyelectrolyte carrier based on an equal ratio of pectin–chitosan (0.1% by weight) was selected as the most effective for the delivery of TMZ among a series of obtained NPs, which indicates a promising approach to the treatment of brain tumors. Full article
Show Figures

Figure 1

14 pages, 3285 KB  
Article
Assessment of Bitterness in Non-Charged Pharmaceuticals with a Taste Sensor: A Study on Substances with Xanthine Scaffold and Allopurinol
by Zeyu Zhao, Fang Song, Shunsuke Kimura, Takeshi Onodera, Takahiro Uchida and Kiyoshi Toko
Molecules 2024, 29(11), 2452; https://doi.org/10.3390/molecules29112452 - 23 May 2024
Cited by 2 | Viewed by 1928
Abstract
Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in [...] Read more.
Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor’s value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals. Full article
(This article belongs to the Special Issue Electrochemical Biosensors: From Design to Application)
Show Figures

Figure 1

21 pages, 3863 KB  
Article
Constant-pH Simulations of a Coarse-Grained Model of Polyfunctional Weak Charged Biopolymers
by David Naranjo, Pablo M. Blanco, Josep L. Garcés, Sergio Madurga and Francesc Mas
Biophysica 2024, 4(1), 107-127; https://doi.org/10.3390/biophysica4010008 - 28 Feb 2024
Viewed by 1672
Abstract
A coarse-grained model of linear polyfunctional weak charged biopolymers was implemented, formed of different proportions of acid-base groups resembling the composition of humic substances. These substances are mainly present in dissolved organic matter in natural water. The influence of electrostatic interactions computing methods, [...] Read more.
A coarse-grained model of linear polyfunctional weak charged biopolymers was implemented, formed of different proportions of acid-base groups resembling the composition of humic substances. These substances are mainly present in dissolved organic matter in natural water. The influence of electrostatic interactions computing methods, factors concerning the structure of the chain, different functional groups, and the ionic strength on polyelectrolytes were studied. Langevin dynamics with constant pH simulations were performed using the ESPResSO package and the Python-based Molecule Builder for ESPResSo (pyMBE) library. The coverage was fitted to a polyfunctional Frumkin isotherm, with a mean-field interaction between charged beads. The composition of the chain affects the charge while ionic strength affects both the charge and the radius of gyration. Additionally, the parameters intrinsic to the polyelectrolyte model were well reproduced by fitting the polyfunctional Frumkin isotherm. In contrast, the non-intrinsic parameters depended on the ionic strength. The method developed and applied to a polyfunctional polypeptide model, that resembles a humic acid, will be very useful for characterizing biopolymers with several acid-base functional groups, where their structure, the composition of the different functional groups, and the determination of the main intrinsic proton binding constants and their proportion are not exactly known. Full article
(This article belongs to the Special Issue Molecular Structure and Simulation in Biological System 2.0)
Show Figures

Figure 1

13 pages, 1496 KB  
Article
Development of Taste Sensor with Lipid/Polymer Membranes for Detection of Umami Substances Using Surface Modification
by Wenhao Yuan, Zeyu Zhao, Shunsuke Kimura and Kiyoshi Toko
Biosensors 2024, 14(2), 95; https://doi.org/10.3390/bios14020095 - 11 Feb 2024
Cited by 3 | Viewed by 3169
Abstract
A taste sensor employs various lipid/polymer membranes with specific physicochemical properties for taste classification and evaluation. However, phosphoric acid di(2-ethylhexyl) ester (PAEE), employed as one of the lipids for the taste sensors, exhibits insufficient selectivity for umami substances. The pH of sample solutions [...] Read more.
A taste sensor employs various lipid/polymer membranes with specific physicochemical properties for taste classification and evaluation. However, phosphoric acid di(2-ethylhexyl) ester (PAEE), employed as one of the lipids for the taste sensors, exhibits insufficient selectivity for umami substances. The pH of sample solutions impacts the dissociation of lipids to influence the membrane potential, and the response to astringent substances makes accurate measurement of umami taste difficult. This study aims to develop a novel taste sensor for detecting umami substances like monosodium L-glutamate (MSG) through surface modification, i.e., a methodology previously applied to taste sensors for non-charged bitter substance measurement. Four kinds of modifiers were tested as membrane-modifying materials. By comparing the results obtained from these modifiers, the modifier structure suitable for measuring umami substances was identified. The findings revealed that the presence of carboxyl groups at para-position of the benzene ring, as well as intramolecular H-bonds between the carboxyl group and hydroxyl group, significantly affect the effectiveness of a modifier in the umami substance measurement. The taste sensor treated with this type of modifier showed excellent selectivity for umami substances. Full article
Show Figures

Figure 1

12 pages, 1965 KB  
Article
Laser-Scribed Pencil Lead Electrodes for Amperometric Quantification of Indapamide
by Thawan G. Oliveira, Irlan S. Lima, Wilson A. Ameku, Josué M. Gonçalves, Rodrigo S. Souza, Henrique E. Toma and Lúcio Angnes
Chemosensors 2023, 11(12), 574; https://doi.org/10.3390/chemosensors11120574 - 5 Dec 2023
Cited by 2 | Viewed by 2495
Abstract
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical [...] Read more.
Laser engraving is a convenient, fast, one-step, and environmentally friendly technique used to produce more conductive surfaces by local pyrolysis. The laser’s thermal treatment can also remove non-conductive materials from the electrode surfaces and improve electrochemical performance. The improvement was assessed by electrochemical tools such as cyclic voltammograms and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− and dopamine as redox probes. The electrochemical results observed showed that a treated surface showed an improvement in electron transfer and less resistance to charge transfer. To optimize the electrode performance, it was necessary to search for the most favorable graphite mines and optimize the parameters of the laser machine (laser power, scan rate, and output distance). The resultant material was adequately characterized by Raman spectroscopy and scanning electron microscopy (SEM), where an irregular surface composed of crystalline graphite particles was noticed. Furthermore, as a proof-of-concept, it was applied to detect indapamide (IND) in synthetic urine by flow injection analysis (FIA), a diuretic drug often used by athletes to alter urine composition to hide forbidden substance consumption in doping tests. Full article
(This article belongs to the Special Issue Advanced Electrochemical Sensors or Biosensors Based on Nanomaterial)
Show Figures

Figure 1

20 pages, 5349 KB  
Article
Triphenylphosphine Derivatives of Allylbenzenes Express Antitumor and Adjuvant Activity When Solubilized with Cyclodextrin-Based Formulations
by Igor D. Zlotnikov, Sergey S. Krylov, Marina N. Semenova, Victor V. Semenov and Elena V. Kudryashova
Pharmaceuticals 2023, 16(12), 1651; https://doi.org/10.3390/ph16121651 - 26 Nov 2023
Cited by 2 | Viewed by 1973
Abstract
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three [...] Read more.
Allylbenzenes (apiol, dillapiol, myristicin and allyltetramethoxybenzene) are individual components of plant essential oils that demonstrate antitumor activity and can enhance the antitumor activity of cytotoxic drugs, such as paclitaxel, doxorubicin, cisplatin, etc. Triphenylphosphine (PPh3) derivatives of allylbenzenes are two to three orders of magnitude more potent than original allylbenzenes in terms of IC50. The inhibition of efflux pumps has been reported for allylbenzenes, and the PPh3 moiety is deemed to be responsible for preferential mitochondrial accumulation and the depolarization of mitochondrial membranes. However, due to poor solubility, the practical use of these substances has never been an option. Here, we show that this problem can be solved by using a complex formation with cyclodextrin (CD-based molecular containers) and polyanionic heparin, stabilizing the positive charge of the PPh3 cation. Such containers can solubilize both allylbenzenes and their PPh3 derivatives up to 0.4 mM concentration. Furthermore, we have observed that solubilized PPh3 derivatives indeed work as adjuvants, increasing the antitumor activity of paclitaxel against adenocarcinomic human alveolar basal epithelial cells (A549) by an order of magnitude (in terms of IC50) in addition to being quite powerful cytostatics themselves (IC50 in the range 1–10 µM). Even more importantly, CD-solubilized PPh3 derivatives show pronounced selectivity, being highly toxic for the A549 tumor cell line and minimally toxic for HEK293T non-tumor cells, red blood cells and sea urchin embryos. Indeed, in many cancers, the mitochondrial membrane is more prone to depolarization compared to normal cells, which probably explains the observed selectivity of our compounds, since PPh3 derivatives are known to act as mitochondria-targeting agents. According to the MTT test, 100 µM solution of PPh3 derivatives of allylbenzenes causes the death of up to 85% of A549 cancer cells, while for HEK293T non-cancer cells, only 15–20% of the cells died. The hemolytic index of the studied substances did not exceed 1%, and the thrombogenicity index was < 1.5%. Thus, this study outlines the experimental foundation for developing combined cytostatic medications, where effectiveness and selectivity are achieved through decreased concentration of the primary ingredient and the inclusion of adjuvants, which are safe or practically harmless substances. Full article
(This article belongs to the Topic Research in Pharmacological Therapies)
Show Figures

Graphical abstract

Back to TopTop