Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = noble-gas complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2769 KB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Cited by 3 | Viewed by 1051
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

43 pages, 43241 KB  
Article
Excess 40Ar in Alkali Feldspar and 206,207Pb in Apatite Caused by Fluid-Induced Recrystallisation in a Semi-Closed Environment in Proterozoic (Meta)Granites of the Mt Isa Inlier, NE Australia
by Daniil Popov, Richard Spikings, André Navin Paul, Maria Ovtcharova, Massimo Chiaradia, Martin Kutzschbach, Alexey Ulianov, Gary O’Sullivan, David Chew, Kalin Kouzmanov, Eszter Badenszki, J. Stephen Daly and Joshua H. F. L. Davies
Geosciences 2024, 14(12), 358; https://doi.org/10.3390/geosciences14120358 - 21 Dec 2024
Cited by 2 | Viewed by 1883
Abstract
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have [...] Read more.
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have conducted a holistic study of alkali feldspar, apatite and other minerals from the Mt. Isa Inlier in NE Australia. Mineral characterisation by electron microscopy, optical cathodoluminescence imaging and element mapping reveal a complex interplay of textures resulting from magmatic crystallisation, deuteric recrystallisation, local deformation with subsequent higher-temperature alteration, and finally ubiquitous low-temperature alteration. U-Pb and Pb isotopic data for zircon, apatite, fluorite and alkali feldspar suggest that the latter event occurred at ~300 Ma and was associated with fluid-assisted exchange of Pb isotopes between minerals in the same rock, causing some apatite grains to have 207Pb-corrected U-Pb dates that exceed their crystallisation age. However, this event had no unequivocal effect on the 40Ar/39Ar or Rb-Sr systematics of the alkali feldspar, which were disturbed by higher-temperature alteration at ~1450 Ma. The age of the latter event is derived from Rb-Sr data. 40Ar/39Ar dates are very scattered and suggest that 40Ar redistribution proceeded by diffusion in the presence of traps in some places and by dissolution-reprecipitation with variable amounts of recycling in other places. Our results demonstrate the complex effects that interaction with limited amounts of fluids can have on 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite and thereby reinforce previous critique of their suitability for thermochronological reconstructions. We further identify and discuss potential implications for noble gas geochronology of groundwaters and fission track dating of apatite. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

58 pages, 15704 KB  
Review
Rydberg-State Double-Well Potentials of Van der Waals Molecules
by Tomasz Urbańczyk, Andrzej Kędziorski, Marek Krośnicki and Jarosław Koperski
Molecules 2024, 29(19), 4657; https://doi.org/10.3390/molecules29194657 - 30 Sep 2024
Cited by 1 | Viewed by 1758
Abstract
Recent progress in studies of Rydberg double-well electronic energy states of MeNg (Me = 12-group atom, Ng = noble gas atom) van der Waals (vdW) molecules is presented and analysed. The presentation covers approaches in experimental studies as well as ab initio-calculations of [...] Read more.
Recent progress in studies of Rydberg double-well electronic energy states of MeNg (Me = 12-group atom, Ng = noble gas atom) van der Waals (vdW) molecules is presented and analysed. The presentation covers approaches in experimental studies as well as ab initio-calculations of potential energy curves (PECs). The analysis is shown in a broader context of Rydberg states of hetero- and homo-diatomic molecules with PECs possessing complex ‘exotic’ structure. Laser induced fluorescence (LIF) excitation spectra and dispersed emission spectra employed in the spectroscopical characterization of Rydberg states are presented on the background of the diverse spectroscopic methods for their investigations such as laser vaporization–optical resonance (LV-OR), pump-and-probe methods, and polarization labelling spectroscopy. Important and current state-of-the-art applications of Rydberg states with irregular potentials in photoassociation (PA), vibrational and rotational cooling, molecular clocks, frequency standards, and molecular wave-packet interferometry are highlighted. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 4018 KB  
Article
Rapid Synthesis of Noble Metal Colloids by Plasma–Liquid Interactions
by Yuanwen Pang, Hong Li, Yue Hua, Xiuling Zhang and Lanbo Di
Materials 2024, 17(5), 987; https://doi.org/10.3390/ma17050987 - 21 Feb 2024
Cited by 9 | Viewed by 2165
Abstract
The interactions between plasma and liquids cause complex physical and chemical reactions at the gas–liquid contact surface, producing numerous chemically active particles that can rapidly reduce noble metal ions. This study uses atmospheric-pressure surface dielectric barrier discharge (DBD) plasma to treat ethanol aqueous [...] Read more.
The interactions between plasma and liquids cause complex physical and chemical reactions at the gas–liquid contact surface, producing numerous chemically active particles that can rapidly reduce noble metal ions. This study uses atmospheric-pressure surface dielectric barrier discharge (DBD) plasma to treat ethanol aqueous solutions containing noble metal precursors, and stable gold, platinum, and palladium colloids are obtained within a few minutes. To evaluate the mechanism of the reduction of noble metal precursors by atmospheric-pressure surface DBD plasma, the corresponding metal colloids are prepared first by activating an ethanol aqueous solution with plasma and then adding noble metal precursors. It is found that the long-lived active species hydrogen peroxide (H2O2) plays a dominant role in the synthesis process, which has distinct effects on different metal ions. When HAuCl4 and H2PdCl4 are used as precursors, H2O2 acts as a reducing agent, and AuCl4 and PdCl42− ions can be reduced to metallic Au and Pd. However, when AgNO3 is the precursor, H2O2 acts as an oxidising agent, and Ag+ ions cannot be reduced to obtain metal colloids because metallic Ag can be dissolved in H2O2 under acidic conditions. A similar phenomenon was also observed for the preparation of Pd colloid-PA with a plasma-activated ethanol aqueous solution using Pd(NO3)2 as a Pd precursor. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

22 pages, 9468 KB  
Article
Bader’s Topological Bond Path Does Not Necessarily Indicate Stabilizing Interaction—Proof Studies Based on the Ng@[3n]cyclophane Endohedral Complexes
by Mirosław Jabłoński
Molecules 2023, 28(17), 6353; https://doi.org/10.3390/molecules28176353 - 30 Aug 2023
Cited by 8 | Viewed by 2010
Abstract
According to Bader’s quantum theory of atoms in molecules (QTAIM), the simultaneous presence of a bond path and the corresponding bond critical point between any two atoms is both a necessary and sufficient condition for the atoms to be bonded to one another. [...] Read more.
According to Bader’s quantum theory of atoms in molecules (QTAIM), the simultaneous presence of a bond path and the corresponding bond critical point between any two atoms is both a necessary and sufficient condition for the atoms to be bonded to one another. In principle, this means that this pair of atoms should make a stabilizing contribution to the molecular system. However, the multitude of so-called counterintuitive bond paths strongly suggests that this statement is not necessarily true. Particularly ‘troublesome’ are endohedral complexes, in which encapsulation-enforced proximity between the trapped guest (e.g., an atom) and the host’s cage system usually ‘produces’ many counterintuitive bond paths. In the author’s opinion, the best evidence to demonstrate the repulsive nature of the intra-cage guest⋯host interaction is the use of some trapping systems containing small escape channels and then showing that the initially trapped entity spontaneously escapes outside the host’s cage during geometry optimization of the initially built guest@host endohedral complex. For this purpose, a group of 24 Ng@[3n]cyclophane (3n6) endohedral complexes is used. As a result, arguments are presented showing that Bader’s topological bond path does not necessarily indicate a stabilizing interaction. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Graphical abstract

24 pages, 698 KB  
Article
Complexes of HXeY with HX (Y, X = F, Cl, Br, I): Symmetry-Adapted Perturbation Theory Study and Anharmonic Vibrational Analysis
by Bartosz Dzięcioł, Irina Osadchuk, Janusz Cukras and Jan Lundell
Molecules 2023, 28(13), 5148; https://doi.org/10.3390/molecules28135148 - 30 Jun 2023
Viewed by 1501
Abstract
A comprehensive analysis of the intermolecular interaction energy and anharmonic vibrations of 41 structures of the HXeY⋯HX (X, Y = F, Cl, Br, I) family of noble-gas-compound complexes for all possible combinations of Y and X was conducted. New structures were identified, and [...] Read more.
A comprehensive analysis of the intermolecular interaction energy and anharmonic vibrations of 41 structures of the HXeY⋯HX (X, Y = F, Cl, Br, I) family of noble-gas-compound complexes for all possible combinations of Y and X was conducted. New structures were identified, and their interaction energies were studied by means of symmetry-adapted perturbation theory, up to second-order corrections: this provided insight into the physical nature of the interaction in the complexes. The energy components were discussed, in connection to anharmonic frequency analysis. The results show that the induction and dispersion corrections were the main driving forces of the interaction, and that their relative contributions correlated with the complexation effects seen in the vibrational stretching modes of Xe–H and H–X. Reasonably clear patterns of interaction were found for different structures. Our findings corroborate previous findings with better methods, and provide new data. These results suggest that the entire group of the studied complexes can be labelled as “naturally blueshifting”, except for the complexes with HI. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Figure 1

17 pages, 1648 KB  
Review
On the Nature of the Partial Covalent Bond between Noble Gas Elements and Noble Metal Atoms
by Ranita Pal and Pratim Kumar Chattaraj
Molecules 2023, 28(7), 3253; https://doi.org/10.3390/molecules28073253 - 5 Apr 2023
Cited by 5 | Viewed by 4437
Abstract
This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM−(bipy)]+, NgMCCH, and [...] Read more.
This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM−(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr−Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding)
Show Figures

Figure 1

13 pages, 2025 KB  
Article
Spectroscopy of Laser-Induced Dielectric Breakdown Plasma in Mixtures of Air with Inert Gases Ar, He, Kr, and Xe
by Andrew Martusevich, Roman Kornev, Artur Ermakov, Igor Gornushkin, Vladimir Nazarov, Lyubov Shabarova and Vladimir Shkrunin
Sensors 2023, 23(2), 932; https://doi.org/10.3390/s23020932 - 13 Jan 2023
Cited by 1 | Viewed by 2841
Abstract
The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of [...] Read more.
The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of NO and NO2 noticeably depends on the type of inert gas; the more complex electronic configuration and the lower ionization potential of the inert gas led to increased production of NO and NO2. The formation of ozone occurs mainly due to the photolytic reaction outside the gas discharge zone. Equilibrium thermodynamic analysis showed that the formation of NO in mixtures of air with inert gases does not depend on the choice of an inert gas, while the equilibrium concentration of the NO+ ion decreases with increasing complexity of the electronic configuration of an inert gas. Full article
(This article belongs to the Special Issue Plasma Diagnostics)
Show Figures

Figure 1

12 pages, 6817 KB  
Article
A Detailed Study of Electronic and Dynamic Properties of Noble Gas–Oxygen Molecule Adducts
by Caio Vinícius Sousa Costa, Guilherme Carlos Carvalho de Jesus, Luiz Guilherme Machado de Macedo, Fernando Pirani and Ricardo Gargano
Molecules 2022, 27(21), 7409; https://doi.org/10.3390/molecules27217409 - 1 Nov 2022
Cited by 1 | Viewed by 2364
Abstract
In this work, the binding features of adducts formed by a noble gas (Ng = He, Ne, Ar, Kr, Xe, and Rn) atom and the oxygen molecule (O2) in its ground Σg3, in the past target of [...] Read more.
In this work, the binding features of adducts formed by a noble gas (Ng = He, Ne, Ar, Kr, Xe, and Rn) atom and the oxygen molecule (O2) in its ground Σg3, in the past target of several experimental studies, have been characterized under different theoretical points of view to clarify fundamental aspects of the intermolecular bond. For the most stable configuration of all Ng–O2 systems, binding energy has been calculated at the theory’s CCSD(T)/aug-cc-pVTZ level and compared with the experimental findings. Rovibrational energies, spectroscopic constants, and lifetime as a function of temperature were also evaluated by adopting properly formulated potential energy curves. The nature of the interaction involved was deeply investigated using charge displacement analysis, symmetry-adapted perturbation theory (SAPT), and natural bond orbital (NBO) methods. In all adducts, it was found that the charge transfer plays a minor role, although O2 is an open shell species exhibiting a positive electron affinity. Obtained results also indicate that the dispersion attraction contribution is the main responsible for the complex stability. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry II)
Show Figures

Figure 1

17 pages, 10579 KB  
Article
Noble Gas—Silicon Cations: Theoretical Insights into the Nature of the Bond
by Stefano Borocci, Felice Grandinetti and Nico Sanna
Molecules 2022, 27(14), 4592; https://doi.org/10.3390/molecules27144592 - 19 Jul 2022
Cited by 3 | Viewed by 1869
Abstract
The structure, stability, and bonding situation of some exemplary noble gas-silicon cations were investigated at the MP2/aVTZ level of theory. The explored species include the mono-coordinated NgSiX3+ (Ng = He-Rn; X = H, F, Cl) and NgSiF22+ (Ng = [...] Read more.
The structure, stability, and bonding situation of some exemplary noble gas-silicon cations were investigated at the MP2/aVTZ level of theory. The explored species include the mono-coordinated NgSiX3+ (Ng = He-Rn; X = H, F, Cl) and NgSiF22+ (Ng = He-Rn), the di-coordinated Ar2SiX3+ (X = H, F, Cl), and the “inserted” FNgSiF2+ (Ng = Kr, Xe, Rn). The bonding analysis was accomplished by the method that we recently proposed to assay the bonding situation of noblegas compounds. The Ng-Si bonds are generally tight and feature a partial contribution of covalency. In the NgSiX3+, the degree of the Ng-Si interaction mirrors the trends of two factors, namely the polarizability of Ng that increases when going from Ng = He to Ng = Rn, and the Lewis acidity of SiX3+ that decreases in the order SiF3+ > SiH3+ > SiCl3+. For the HeSiX3+, it was also possible to catch peculiar effects referable to the small size of He. When going from the NgSiF3+ to the NgSiF22+, the increased charge on Si promotes an appreciable increase inthe Ng-Si interaction, which becomes truly covalent for the heaviest Ng. The strength of the bond also increases when going from the NgSiF3+ to the “inserted” FNgSiF2+, likely due to the cooperative effect of the adjacent F atom. On the other hand, the ligation of a second Ar atom to ArSiX3+ (X = H, F, Cl), as to form Ar2(SiX3+), produces a weakening of the bond. Our obtained data were compared with previous findings already available in the literature. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry II)
Show Figures

Figure 1

18 pages, 2089 KB  
Viewpoint
Determining Repulsion in Cyclophane Cages
by Mirosław Jabłoński
Molecules 2022, 27(13), 3969; https://doi.org/10.3390/molecules27133969 - 21 Jun 2022
Cited by 7 | Viewed by 2390
Abstract
Superphane, i.e., [2.2.2.2.2.2](1,2,3,4,5,6)cyclophane, is a very convenient molecule in studying the nature of guest⋯host interactions in endohedral complexes. Nevertheless, the presence of as many as six ethylene bridges in the superphane molecule makes it practically impossible for the trapped entity to escape out [...] Read more.
Superphane, i.e., [2.2.2.2.2.2](1,2,3,4,5,6)cyclophane, is a very convenient molecule in studying the nature of guest⋯host interactions in endohedral complexes. Nevertheless, the presence of as many as six ethylene bridges in the superphane molecule makes it practically impossible for the trapped entity to escape out of the superphane cage. Thus, in this article, I have implemented the idea of using the superphane derivatives with a reduced number of ethylene linkers, which leads to the [2n] cyclophanes where n<6. Seven such cyclophanes are then allowed to form endohedral complexes with noble gas (Ng) atoms (He, Ne, Ar, Kr). It is shown that in the vast majority of cases, the initially trapped Ng atom spontaneously escapes from the cyclophane cage, creating an exohedral complex. This is the best proof that the Ng⋯cyclophane interaction in endohedral complexes is indeed highly repulsive, i.e., destabilizing. Apart from the ‘sealed’ superphane molecule, endohedral complexes are only formed in the case of the smallest He atom. However, it has been shown that in these cases, the Ng⋯cyclophane interaction inside the cyclophane cage is nonbonding, i.e., repulsive. This highly energetically unfavorable effect causes the cyclophane molecule to ‘swell’. Full article
(This article belongs to the Special Issue Endohedral Chemistry)
Show Figures

Graphical abstract

19 pages, 791 KB  
Review
Spectral Signatures of Protonated Noble Gas Clusters of Ne, Ar, Kr, and Xe: From Monomers to Trimers
by Jake A. Tan and Jer-Lai Kuo
Molecules 2022, 27(10), 3198; https://doi.org/10.3390/molecules27103198 - 17 May 2022
Cited by 8 | Viewed by 2570
Abstract
The structures and spectral features of protonated noble gas clusters are examined using a first principles approach. Protonated noble gas monomers (NgH+) and dimers (NgH+Ng) have a linear structure, while the protonated noble gas trimers (Ng3H+ [...] Read more.
The structures and spectral features of protonated noble gas clusters are examined using a first principles approach. Protonated noble gas monomers (NgH+) and dimers (NgH+Ng) have a linear structure, while the protonated noble gas trimers (Ng3H+) can have a T-shaped or linear structure. Successive binding energies for these complexes are calculated at the CCSD(T)/CBS level of theory. Anharmonic simulations for the dimers and trimers unveil interesting spectral features. The symmetric NgH+Ng are charactized by a set of progression bands, which involves one quantum of the asymmetric Ng-H+ stretch with multiple quanta of the symmetric Ng-H+ stretch. Such a spectral signature is very robust and is predicted to be observed in both T-shaped and linear isomers of Ng3H+. Meanwhile, for selected asymmetric NgH+Ng’, a Fermi resonance interaction involving the first overtone of the proton bend with the proton stretch is predicted to occur in ArH+Kr and XeH+Kr. Full article
(This article belongs to the Special Issue Noble Gas Compounds and Chemistry II)
Show Figures

Figure 1

15 pages, 3592 KB  
Article
Mechanistic Investigation of the Formation of Nickel Nanocrystallites Embedded in Amorphous Silicon Nitride Nanocomposites
by Norifumi Asakuma, Shotaro Tada, Erika Kawaguchi, Motoharu Terashima, Sawao Honda, Rafael Kenji Nishihora, Pierre Carles, Samuel Bernard and Yuji Iwamoto
Nanomaterials 2022, 12(10), 1644; https://doi.org/10.3390/nano12101644 - 11 May 2022
Cited by 12 | Viewed by 3410
Abstract
Herein, we report the mechanistic investigation of the formation of nickel (Ni) nanocrystallites during the formation of amorphous silicon nitride at a temperature as low as 400 °C, using perhydropolysilazane (PHPS) as a preformed precursor and further coordinated by nickel chloride (NiCl2 [...] Read more.
Herein, we report the mechanistic investigation of the formation of nickel (Ni) nanocrystallites during the formation of amorphous silicon nitride at a temperature as low as 400 °C, using perhydropolysilazane (PHPS) as a preformed precursor and further coordinated by nickel chloride (NiCl2); thus, forming the non-noble transition metal (TM) as a potential catalyst and the support in an one-step process. It was demonstrated that NiCl2 catalyzed dehydrocoupling reactions between Si-H and N-H bonds in PHPS to afford ternary silylamino groups, which resulted in the formation of a nanocomposite precursor via complex formation: Ni(II) cation of NiCl2 coordinated the ternary silylamino ligands formed in situ. By monitoring intrinsic chemical reactions during the precursor pyrolysis under inert gas atmosphere, it was revealed that the Ni-N bond formed by a nucleophilic attack of the N atom on the Ni(II) cation center, followed by Ni nucleation below 300 °C, which was promoted by the decomposition of Ni nitride species. The latter was facilitated under the hydrogen-containing atmosphere generated by the NiCl2-catalyzed dehydrocoupling reaction. The increase of the temperature to 400 °C led to the formation of a covalently-bonded amorphous Si3N4 matrix surrounding Ni nanocrystallites. Full article
Show Figures

Graphical abstract

16 pages, 6260 KB  
Article
Potential Energy Surfaces for Noble Gas (Ar, Kr, Xe, Rn)–Propylene Oxide Systems: Analytical Formulation and Binding
by Federico Palazzetti, Cecilia Coletti, Alessandro Marrone and Fernando Pirani
Symmetry 2022, 14(2), 249; https://doi.org/10.3390/sym14020249 - 27 Jan 2022
Cited by 6 | Viewed by 3231
Abstract
Multidimensional potential energy surfaces for heavy noble gas–propylene oxide systems are obtained by applying the phenomenological method successfully used to describe homologous systems involving He and Ne atoms. Such potential energy surfaces, where the interaction exclusively arises from the anisotropic van der Waals [...] Read more.
Multidimensional potential energy surfaces for heavy noble gas–propylene oxide systems are obtained by applying the phenomenological method successfully used to describe homologous systems involving He and Ne atoms. Such potential energy surfaces, where the interaction exclusively arises from the anisotropic van der Waals interaction components, are given in an analytical form. Therefore, they can be easily used as force fields to carry out molecular simulations to evaluate spectroscopic features and the dynamical selectivity of weakly bound complexes formed by propylene oxide (a prototype chiral species) with a noble gas atom (a prototype isotropic partner) by two-body collisions under a variety of conditions. Several potential energy minima are identified on the surfaces, which are confirmed and characterized by high level ab initio calculations. The next step to further generalize this methodology is its extension to systems involving propylene oxide-diatomic molecules (as H2, O2 and N2), as well as to propylene oxide dimers. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Graphical abstract

12 pages, 555 KB  
Article
The Classical–Quantum Passage: A van der Waals Description
by Flavia Pennini and Angel Plastino
Entropy 2022, 24(2), 182; https://doi.org/10.3390/e24020182 - 26 Jan 2022
Cited by 3 | Viewed by 2436
Abstract
We undertake a van der Waals inquiry at very low temperatures so as to find signs of a classical–quantum frontier. We investigate the relation of such signs with the celebrated van der Waals gas–liquid transition. We specialize the discussion with respect to the [...] Read more.
We undertake a van der Waals inquiry at very low temperatures so as to find signs of a classical–quantum frontier. We investigate the relation of such signs with the celebrated van der Waals gas–liquid transition. We specialize the discussion with respect to the noble gases. For such purpose, we use rather novel thermal statistical quantifiers such as the disequilibrium, the statistical complexity, and the thermal efficiency. Fruitful insights are thereby gained. Full article
(This article belongs to the Special Issue Current Trends in Quantum Phase Transitions)
Show Figures

Figure 1

Back to TopTop