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Abstract: We undertake a van der Waals inquiry at very low temperatures so as to find signs of a
classical–quantum frontier. We investigate the relation of such signs with the celebrated van der
Waals gas–liquid transition. We specialize the discussion with respect to the noble gases. For such
purpose, we use rather novel thermal statistical quantifiers such as the disequilibrium, the statistical
complexity, and the thermal efficiency. Fruitful insights are thereby gained.
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1. Introduction

The van der Waals (vdW) fluid is the simplest instance of a system endowed with inter-
acting particles. It is well known that it exhibits a gas–liquid phase transition (GLPT) [1–10].
We wish to point out here that there exists a second vdW instability, at low temperatures T,
that could be interpreted as pre-announcing the classical quantum passage (CQP) [11] (see
also Ref. [12]).

An important proviso: we definitely not studying quantum phase transitions such as
those found in the excellent book [13] or the interesting papers [14–16]. We are dealing only
with a classical equation and investigating its low T validity limits. At low temperatures,
we find indeed one such limitation that is interpreted as stated above.

More precisely, we ask how the GLPT and the putative CQP are related. Is there
an interplay between them? This effort is devoted to answer these questions, using the
noble gases as the target-system and rather novel thermal statistical quantifiers as the
appropriate mathematical tools. We will try to set the ensuing discussion into an order–
disorder disjunction framework, using the thermal quantifiers referred to above. They are
the thermal efficiency η, the statistical complexity C, and the disequilibrium D. Further, C
is intimately associated to D via the entropy S [17]

C = SD. (1)

We point out that it is well known that C and D are useful quantities for detecting phase
transitions [17].

1.1. Special Thermal Quantifiers Used Here

Consider some particular probability distributions (PDs). Maximum statistical disor-
der is associated to a uniform probability distribution (UF) [18]. The more dissimilar the
extant PD is from the UF, the more statistically “ordered” this PD is [18]. The dissimilarity
we are speaking about is linked to a distance in probability space between our actual PD
and UF called the disequilibrium D [18]. Note that [18]
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0 ≤ D ≤ 1. (2)

As stated above, the quantifier called statistical complexity C is given by [18] C = D S.
Such C−form is today routinely employed in dozens of papers [19–27]. In addition, we
use the standard forms for the Helmholtz’ free energy F [1]. With it, we introduce a further
thermal quantifier called the thermal efficiency η [17,28] of an arbitrary control parameter X
of our system

η = − 1
kB

∂S/∂X
∂F/∂X

, (3)

that represents the work needed to change from X to X + dX [28].

1.2. Goal

In this work, we use the thermal quantifiers D, C, and η to scrutinize the relations that
may exist between the vdW’s (1) liquid–gas transition (GLPT) and (2) putative quantum–
classic frontier (CQ). Some rewarding insights will be obtained.

1.3. Organization

This paper has the following organization. In Section 2, we introduce preliminary
concepts. In Section 3, we present our results and exhaustively discuss the relation between
our GLPT and the CQP for five noble gases. Finally, we draw some conclusions in Section 4.

2. Basic Relations for Ideal and van der Waals Gases

To undertake the present endeavor, we collect in this section some basic gas relations,
as recounted in Refs. [11,12]. We will need expressions for the partition function, the mean
energy U, the free energy F, etc.

The ideal gas is a collection of N identical particles contained in a volume V. One
assumes thermal equilibrium at temperature T. The Hamiltonian readsH0 = ∑N

i=1 p2
i /2m.

m is the mass and pi the momenta, i = 1, . . . , N. One deals with a canonical partition
function [1]

Q(0)
N (V, T) =

∫
dΩ exp(−βH0) =

1
N!

(
V
λ3

)N
, (4)

where dΩ = d3Nr d3N p/N!h3N . λ is the average thermal wavelength

λ =

(
2πh̄2

mkBT

)1/2

. (5)

The free energy becomes [1]

Fideal = −NkBT
[
ln
( v

λ3

)
+ 1
]
, (6)

with v = V/N the specific volume.[1]. Having F, one also has all the important ther-
modynamic quantities, that we enumerate below,and one also deals with the chemical
potential [1]

µideal = kBT ln
(

λ3

v

)
. (7)

The classical entropy (Sackur–Tetrode equation) is

Sideal = −NkB ln
(

λ3

v

)
+

5
2

NkB = NkB ln
(

e5/2
( v

λ3

))
, (8)

One has S > 0 for λ3/v� e5/2 [12], which is already telling us just where the classical
regime is tenable. S < 0 indicates that the classical description is failing [12].
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Next, the internal energy reads

Uideal = Fideal + TSideal =
3
2

NkBT. (9)

Amongst the main thermal statistical quantifiers, we have the disequilibrium D [12]

D(N)
ideal =

∫
dΩ ρ2

ideal(r, p). (10)

D can also be obtained from the free energy as shown in Ref. [20].
One obtains

D(N)
ideal =

(
λ3

v

)N

e−N 2−3N/2, (11)

and, for the statistical complexity one has [12],

C(N)
ideal =

(
λ3

v

)N

e−N 2−3N/2 ln

(
e5N/2

(
λ3

v

)−N)
. (12)

The complexity and D vanish for N → ∞ and T → ∞ [12,29]. It is useful to have a
disequilibrium and complexity per particle:

Dideal =

(
λ3

v

)
e−1 2−3/2, (13)

Cideal =

(
λ3

v

)
e−1 2−3/2 ln

(
e5/2

(
λ3

v

)−1)
. (14)

2.1. Van der Waals Scenario

Now we add to our former picture inter-particle interactions and face the Hamiltonian [1]

H = H0 + ∑
i<j

uij, (15)

with uij = u(|ri − rj|) representing the interaction energy between molecules i and j, that
depends only on the distance rij = rj − ri. One sums i, j over the N(N − 1)/2 possible
pairs [1].

Now, the associated canonical partition function (CPF) reads [1]

QN(V, T) = Q(0)
N (V, T) ZN(V, T), (16)

where Q(0)
N (V, T) is given by Equation (4). ZN(V, T) is an integral, denominated the

configuration one (CI) [1,2]

ZN(V, T) =
1

VN

∫
d3Nr exp (−β ∑

i<j
uij). (17)

For n = N/V � 1 the CI becomes [2]

ZN(V, T) ≈ exp
(
−NB2(T)

v

)
. (18)

Here B2(T) is called the second virial coefficient [2]. One usually approximates the interac-
tion in the form of a particular u(r)-form to be explained below (see Equation (22)) [2]. Then

B2(T) =
1
2

∫
d3r (1− exp(−βu(r))). (19)
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The grand partition function is of the form [1]

ZGC =
∞

∑
N=0

zNQN(V, T), (20)

with z = exp (µvdW/kBT) called the fugacity. µvdW is the chemical potential [1]. Via
Equation (16), we analytically obtain

ZGC = exp
(

z
V
λ3 e−B2(T)/v

)
. (21)

The essential van der Waals step is to take the particle–particle interaction as [12]

u(r) =
{

∞ r < ro
exp(−βu(r)) ≈ 1− βu(r) r > ro,

(22)

where ro is the minimum possible distance between molecules [2]. One is led then, via
Equation (19), to write

B2(T) = b− βa, (23)

with b = 2πr3
0/3, with an average potential a

a = 2π
∫ ∞

r0

dr r2u(r). (24)

2.2. The van der Waals (vdW) Thermal Quantifiers

Noting that B2 = b− a/kBT one has [11]

FvdW = Fideal +
NkBT

v

(
b− a

kBT

)
, (25)

where Fideal is that of Equation (6) [1]. Now, following usual text book-recipes [1], from
the relation

N = z
(

∂ ln ZGC
∂z

)
V,T

, (26)

we easily are led to a chemical potential of the form

µvdW = kBT ln
(

λ3

v
eB2(T)/v

)
. (27)

The entropy S is given by

SvdW = −
(

∂FvdW
∂T

)
V,N

, (28)

that using Equation (25) becomes

SvdW = Sideal − NkB

(
b
v

)
, (29)

where Sideal is gained from by Equation (8) [1]. The internal energy UvdW reads then

UvdW = FvdW + TSvdW = Uideal −
Na
v

, (30)

where Uideal is given by Equation (9).
For the pressure PvdW one has
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PvdW = − 1
N

(
∂FvdW

∂v

)
T,N

, (31)

so that using Equation (25) we encounter

PvdW =
kBT

v

(
1 +

b
v

)
− a

v2 . (32)

For a dilute gas with v � b (low density) one specializes this, in the case of the van
der Waals gas, to [1]

PvdW =
kBT

v− b
− a

v2 . (33)

For the vdW distribution [11]

ρvdW(r, p) = exp(−βH)/QN , (34)

the disequilibrium D becomes

D(N)
vdW =

∫
dΩ ρ2

vdW(r, p), (35)

that, per particle, reads

DvdW = Dideal exp(b/v), (36)

where Dideal is found in (13). Thus, C per particle becomes

CvdW = DvdW(SvdW/kB). (37)

2.3. The vdW QC Passage and the Temperature Benchmark T2

This is a central topic. One looks for it by following the prescriptions of Ref. [12]. We
take (1) ε = UvdW/N equal to the energy per particle of the vdW gas and (2) µ = µvdW as
the chemical potential. Accordingly, the vdW classical regime is characterized by [12]

exp (βµvdW)� exp (βUvdW). (38)

Furthermore (see again Ref. [12]), the classical regime is characterized by [11](
λ3

v

)
exp

(
B2(T)

v

)
� exp (βUvdW), (39)

and thus

λ3

v
� exp

(
3
2
− b

v

)
, (40)

so that, calling T2 an indicator of the CQ passage temperature, the classical vdW regime is
found at T’s such that [11]

T � T2 =
2πh̄2

m kB e v2/3 exp
(

2b
3v

)
. (41)

Note that the QC-passage’s indicative temperature T2 is merely a theoretical benchmark,
not an experimental quantity.

2.4. The Thermal Efficiency η

According to Ref. [28], if we regard the vdW constant b as a control parameter then
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ηvdW = − 1
kB

∂SvdW/∂b
∂FvdW/∂b

. (42)

Via Equations (25) and (29), we come up with

ηvdW = − 1
kBT

. (43)

For the classical–quantum passage’s indicative temperature T2, Equation (43) yields

ηvdW(T2) = η2 = −me v2/3 e1−2b/3v

2πh̄2 . (44)

In addition, we calculate, for the gas–liquid transition temperature Tc

ηvdW(Tc) = ηc = −
27b
8a

, (45)

with Tc = 27kBb/8a [11].

2.5. Boyle Temperature

The Boyle temperature can be defined as the point in the temperature range at which
a real gas starts to behave like an ideal one. Define the reduced variables

v̂ =
v
vc

, τ̂ =
τ

τc
, p̂ =

p
pc

, (46)

with τ = kBT and

vc = 3b, τc =
8a

27b
, pc =

a
27b2 , (47)

the well-known critical points of the van dew Waals equation [6]. The so called Boyle
temperature is the τ value [6]

τ̂B =
27
8

(
3v̂− 1

3v̂

)
. (48)

The thermal efficiency here is

ηB = η(τB) = −
8v̂

9(3v̂− 1)
, (49)

and diverges for v̂ = 1/3, i.e., when v = b (close-packing). When v̂ tends to infinity, one
has ηB = −1/τ̂Bmax = −8/27 = −0.296, with τ̂Bmax = 27/8 being the limit of the Boyle
temperature for large volumes (v̂ → ∞) [6]. According to Ref. [6], the minimum value
of v̂min = 1/3. Thus, our ηvdW < 0 always (see Figure 1). We have now collected all the
necessary weaponry in order to tackle our job. We illustrate the usefulness of this quantifier
in Figure 1. The thermal efficiency displays a singularity at close packing.
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ηB

Figure 1. Thermal efficiency at the Boyle temperature versus v̂. There is, of course, a singularity at
close packing, as b can nor be diminished there.

3. The Relation between our Two vdW-Significant Points for Five Noble Gases

We have two kinds of vdW-significant points:

• That which signals the gas–liquid phase transition. For this, we use the sub-index “c”,
e.g., Tc.

• That which preannounces the classical–quantum passage. For this, we use the sub-
index “2”, e.g., T2.

We deal with Helium, Neon, Argon, Krypton, and Xenon, vdW-parametrized by
Johnston in Ref. [6]. The b parameter fitted for each gas is called b∗ = NAb, with NA the
Avogadro constant [6]. We concoct a special icon for each of our noble gases (see Figure 2).
In each of the following figures, gas-icons appearing in the upper portion of the graph
correspond to the QC-values, while those depicted in the lower portion correspond to the
GL-value. Additionally, the lines depicted in the graphs are visual aids.

Remember that the disequilibrium D signals statistical order. The larger D, the larger
the order-degree of the concomitant system. In Figure 2, we consider the disequilibrium
D for each of the two significant points: (1) gas–liquid (GL) Dc and (2) quantum–classical
(QC) D2. We see that the D-values are different for the two benchmarks. The lower values
in our graphs always correspond to Dc (the GL phase). What is this fact telling us? That
there is a larger ordering degree in the classical–quantum (CQ) passage than in the GL one,
a novel fact discovered here. The ensuing differences for a given gas are much smaller for
He than for the other gases. Let us emphasize that D = 0.58 represents a high degree of
statistical order, as Dmaximum = 1.

Figure 3 is the counterpart of Figure 2 but for the complexity quantifier. The same
rather surprising finding is here re-encountered. The vicinity of a quantum regime generates
more statistical complexity than passing from the gas to the liquid phase, a novel fact
discovered here. Note that the complexity-difference QC–GL is much smaller for He than
for the remaining gases.
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Helium
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Krypton

Xenon
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Figure 2. Disequilibrium D for each of the two benchmarks, Dc for the GL and D2 for the QC versus
b∗. Icons correspond to fitted b∗-values. The lower values are ascribed to the GL passage. We take
the molar volume v = 1 L. We appreciate the notable fat that the QC passage is associated to a larger
D than the GL one. Thus, the need to pass from the classical formalism to a quantum one seems
to generate more statistical order than passing from the gas to the liquid phase. Note that, save for
Helium, the difference QC–GL is a constant for the remaining gases. Note that Dc vanishes in most
instances. The lines are visual aids representing virtual trajectories as b∗ varies.

Helium
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Xenon

0.00 0.01 0.02 0.03 0.04 0.05 0.06
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0.2

0.3
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0.5

0.6

0.7
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*

C
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ity

C2

Cc

Figure 3. Complexity C for each of the two benchmarks (GL) and (QC) versus b∗. Icons correspond
to fitted b∗-values. GL values are the lower ones. We take the molar volume v = 1 L. We appreciate
the notable fat that the QC passage is associated to a larger C than the GL one. Note that Cc vanishes
in most instances and that the complexity-difference QC–GL tends to be constant, save for He. The
lines are visual aids representing virtual trajectories as b∗ varies.

In Figure 4, we deal with the vdW entropy S for the noble gases. S tends to grow with
the molecule’s mass. Helium is a special case, as explained in the caption.
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Helium Neon Argon Krypton Xenon

0.00 0.02 0.04 0.06 0.08 0.10

65

70

75

80

85

b
*

E
nt
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v=vc, T=Tc

Figure 4. vdW entropy for T = Tc and v = vc versus their proper b∗ for the noble gases. Helium’s
entropy is not positive. This is so because the QC passage’s indicative temperature T2 > Tc. At Tc,
He must therefore be treated in quantum fashion. Its liquid phase is strictly quantal and thus the
classical vdW entropy does not make physical sense, becoming negative. The lines are visual aids
representing virtual trajectories as b∗ varies.

In Figure 5 we inspect the complexities C(T2) (larger values) and C(Tc) (smaller values)
versus the temperature T for v = 1 L. T2 is the critical temperature for the QC passage,
while Tc is that for the GL one. Notably enough, for most of them, this difference between
C(T2) and C(Tc) is constant. Note that, consistently, C(T2) > C(Tc). This entails that
complexity at the putative classical–quantum stage is larger than that at the gas–liquid one.
Furthermore, the complexity is maximal at the benchmark T2.

Helium

Neon

Argon

Krypton

Xenon

0 1.×10-19 2.×10-19 3.×10-19 4.×10-19 5.×10-19
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T(°K)

C
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ity

Helium
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Krypton

Xenon
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0

1.×10-28

2.×10-28

3.×10-28

4.×10-28

5.×10-28

T(°K)

C
om
pl
ex
ity

Figure 5. Complexity C versus T for five noble gases. The icons correspond to Tc and T2. Left, we find
C2 values. Right, the Cc ones. Here we take v = 1 L. We see that C(T2) > C(Tc). The lines are visual
aids representing virtual trajectories as T varies. Note that C2 is maximized at the Johnston-fitted [6]
b∗-value.

Figure 6 displays the disequilibrium-difference d2c = D(T2)− D(Tc) for v = 1 L. T2 is
the indicative temperature for the QC passage, while Tc is that for the GL one. We consider
the noble gases and find always D(T2) > D(Tc). Notably enough, for most of them (save
for He), this difference d2c is constant. d2c is the “degree of statistical order-difference”,
a constant here. The order–disorder disjunction is seen to display a characteristic vdW
behavior. D(T2) > D(Tc) entails, let us insist, that the statistical order generated at the
putative classical–quantum passage is larger than that at the gas–liquid one.
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Figure 6. Disequilibrium D versus T for five noble gases. Left, we find D2 values. Right, the Dc ones.
Here we take v = 1 L. We note that D(T2) > D(Tc). The lines are visual aids representing virtual
trajectories as T varies.

We consider the thermal efficiency η in Figure 7. This quantity measures the work
involved in changing the b∗-value. The larger the atom’s mass, the more work is performed
by the atom in modifying its b∗-value.

Helium

Neon

Argon

Krypton

Xenon

0.00 0.01 0.02 0.03 0.04 0.05 0.06
-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

b
*

1/
η
c

Figure 7. Noble gases’ inverse thermal efficiency versus their proper b∗ for T = Tc and v = vc

(Remember that Helium is a special case). The larger the atom’s mass, the more work is needed in
modifying its b∗ value. The lines are visual aids representing virtual trajectories as b∗ varies.

In Figure 7, we encounter a major difference between (1) the GL and (2) the (putative)
QC passages. This difference is related to the b∗-value. In the GL transition, the system
needs to release energy to change its b∗-value. One might be reminded of the fact that when
vapor condenses to a liquid, the vapor’s latent energy is released.

In the second passage (CQ) one must work on the atom to change that b∗-value. This
is a typical quantum effect in the sense that the observer somehow becomes involved in
dealing with quantum matters.

Another interesting plot is that of Figure 8. We depict ηc versus b∗ for several gases.
Values are negative, as expected from previous considerations. As mass augments, less
work is involved in changing b∗.
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Figure 8. Critical thermal efficiency ηc versus b∗ for noble gases. The icons correspond to the b∗

values fitted for noble gases. The lines are visual aids representing virtual trajectories as b∗ varies.

4. Conclusions

In this work, we have performed a thermal statistical study of the (putative) classical–
quantum frontier in a van der Waals scenario, with emphasis on the noble gases. For the
purpose, we used rather novel thermal statistical quantifiers such as the disequilibrium,
the statistical complexity, and the thermal efficiency. Fruitful insights have been thereby
gained. The two benchmark temperatures are Tc (GL) and T2 (QC).

We discovered that there is a larger (statistical) ordering degree in the classical–
quantum (CQ) passage than in the GL one. This a novel fact discovered here. The need
to effect a “CQ change of appropriate describing-formalism” carries more order than the
entirely classic vdW GL description. The same kind of comparison applies also to the
statistical complexity. Furthermore, the differences D(T2)− D(Tc) and C(T2)− C(Tc) tend
to be constant for most noble gases (He excluded).

In the GL transition, the system needs to release energy to change its b∗-value, while
in the putative CQ passage we must do work on the atom to change that b∗ value, a
notable difference between the two kinds of transformation. One might perhaps dare
to interpret this work that we must do as that of Schrödinger–Heisenberg in creating
quantum mechanics.

We emphasize the fact that the classical vdW-structure somehow anticipates, at low
enough T, a jump in the statistical order-degree that we a posteriori associate with the
quantum–classical frontier.

Our present classical van der Waals treatment is not capable to allow us to discuss out
of equilibrium systems such as Josephson junction systems and many body systems [30–32].
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