Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (398)

Search Parameters:
Keywords = nitrogen preference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2059 KiB  
Article
Strain Engineering of Cu2O@C2N for Enhanced Methane-to-Methanol Conversion
by Shuxin Kuai, Bo Li and Jingyao Liu
Molecules 2025, 30(15), 3073; https://doi.org/10.3390/molecules30153073 - 23 Jul 2025
Abstract
Inspired by the active site of methane monooxygenase, we designed a Cu2O cluster anchored in the six-membered nitrogen cavity of a C2N monolayer (Cu2O@C2N) as a stable and efficient enzyme-like catalyst. Density functional theory (DFT) [...] Read more.
Inspired by the active site of methane monooxygenase, we designed a Cu2O cluster anchored in the six-membered nitrogen cavity of a C2N monolayer (Cu2O@C2N) as a stable and efficient enzyme-like catalyst. Density functional theory (DFT) calculations reveal that the bridged Cu-O-Cu structure within C2N exhibits strong electronic coupling, which is favorable for methanol formation. Two competing mechanisms—the concerted and radical-rebound pathways—were systematically investigated, with the former being energetically preferred due to lower energy barriers and more stable intermediate states. Furthermore, strain engineering was employed to tune the geometric and electronic structure of the Cu-O-Cu site. Biaxial strain modulates the Cu-O-Cu bond angle, adsorption properties, and d-band center alignment, thereby selectively enhancing the concerted pathway. A volcano-like trend was observed between the applied strain and the methanol formation barrier, with 1% tensile strain yielding the overall energy barrier to methanol formation (ΔGoverall) as low as 1.31 eV. N2O effectively regenerated the active site and demonstrated strain-responsive kinetics. The electronic descriptor Δε (εd − εp) captured the structure–activity relationship, confirming the role of strain in regulating catalytic performance. This work highlights the synergy between geometric confinement and mechanical modulation, offering a rational design strategy for advanced C1 activation catalysts. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
by Xianzhi Wang, Bingxue Zhou and Qian Yang
Agronomy 2025, 15(7), 1602; https://doi.org/10.3390/agronomy15071602 - 30 Jun 2025
Viewed by 336
Abstract
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of [...] Read more.
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of rhizosphere soil microorganisms in alfalfa (Medicago sativa L.) of different ages and their relationships with soil physicochemical properties. This study used Biolog EcoPlates to evaluate the carbon metabolism activity, functional diversity, and carbon-source utilization preferences of rhizosphere soil microbial communities in 5-, 7-, and 9-year-old alfalfa grasslands on the semi-arid Loess Plateau of western China. We analyzed the relationships between soil physicochemical properties and microbial carbon metabolism characteristics, considering their potential covariation. The results showed that, with the extension of alfalfa planting years, the rhizosphere soil water content decreased significantly, pH decreased slightly, but soil organic carbon, total nitrogen, and total phosphorus contents increased significantly. The rhizosphere soil microbial community of 9-year-old alfalfa exhibited the highest carbon metabolism activity, Shannon diversity index, and carbon-source utilization. Rhizosphere soil microorganisms from different-aged alfalfa showed significantly different preferences for carbon-source utilization, with microorganisms from 9-year-old alfalfa preferentially utilizing carbon sources such as N-acetyl-D-glucosamine, D-mannitol, and D-cellobiose. Redundancy analysis revealed that soil water content was among the most important factors influencing the carbon metabolism activity of rhizosphere soil microbial communities while acknowledging that the relative contributions of soil water content, organic carbon, and nitrogen require careful interpretation, owing to their potential collinearity. This study demonstrates that, under rain-fed conditions in the semi-arid Loess Plateau, the continuous cultivation of alfalfa for nine years led to a significant decrease in soil water content but enhanced the rhizosphere soil nutrient status and microbial carbon metabolism activity, with no apparent signs of microbial functional degradation, although soil water depletion was observed. These findings highlight the complex interactions among multiple soil factors in influencing microbial carbon metabolism, providing valuable microbiological insights for understanding the sustainability of alfalfa grasslands and a theoretical basis for the scientific management of alfalfa grasslands in the semi-arid Loess Plateau region. Future research should consider longer planting periods to determine the critical age of alfalfa grassland degradation under semi-arid conditions and its associated microbial mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 4324 KiB  
Article
Effect of Grassland Vegetation Units on Soil Biochemical Properties and the Abundance of Selected Microorganisms in the Obra River Valley
by Justyna Mencel, Anna Wojciechowska and Agnieszka Mocek-Płóciniak
Agronomy 2025, 15(7), 1573; https://doi.org/10.3390/agronomy15071573 - 27 Jun 2025
Viewed by 207
Abstract
The study examined seasonal variability in soil enzymatic activity and microbial abundance across five grassland vegetation units: Molinietum caeruleae, Alopecuretum pratensis, Arrhenatheretum elatioris, LolioCynosuretum, and com. Poa pratensisFestuca rubra. Soils under Molinietum caeruleae showed [...] Read more.
The study examined seasonal variability in soil enzymatic activity and microbial abundance across five grassland vegetation units: Molinietum caeruleae, Alopecuretum pratensis, Arrhenatheretum elatioris, LolioCynosuretum, and com. Poa pratensisFestuca rubra. Soils under Molinietum caeruleae showed higher fungal abundance and greater plant diversity, while LolioCynosuretum was notable for elevated Azotobacter spp. populations. Actinobacteria preferred soils with more organic matter, whereas Azotobacter spp. favored higher pH. A negative correlation was observed between the Shannon diversity index (H′) and heterotrophic bacterial abundance in Arrhenatheretum elatioris and with fungal abundance in com. Poa pratensisFestuca rubra. Acid and alkaline phosphatase and catalase activities were also negatively correlated with H′. Redundancy analysis showed these enzymes were related to total nitrogen content, and enzyme activity decreased with rising soil pH. In autumn 2022, high fungal abundance coincided with a reduction in other microorganisms. Seasonal trends were evident: catalase and urease activities peaked in autumn 2023, while other enzymes were more active in spring 2022. The results emphasize the significance of seasonal shifts in shaping microbial and enzymatic soil processes, which are vital for nutrient cycling, carbon sequestration, and climate regulation. Further research is essential to guide sustainable grassland soil management. Full article
Show Figures

Figure 1

18 pages, 1718 KiB  
Article
Characteristic Functional Genera (CFG) Mediate Nitrogen Priming Effect in the Microbiome of Saline–Alkaline Farmland
by Yicong Li, Yao Xiao, Wei Zhao, Jiarui Kang, Kejun Yang and Jian Fu
Plants 2025, 14(12), 1806; https://doi.org/10.3390/plants14121806 - 12 Jun 2025
Viewed by 497
Abstract
This study aimed to investigate the impact of nitrogen priming effect on the makeup of the maize rhizosphere microbial community structure in saline–alkali agriculture, focusing on characteristic functional genera. In 2020, three nitrogen levels of 60 kg·ha−1 (N1), 180 kg·ha−1 (N2), [...] Read more.
This study aimed to investigate the impact of nitrogen priming effect on the makeup of the maize rhizosphere microbial community structure in saline–alkali agriculture, focusing on characteristic functional genera. In 2020, three nitrogen levels of 60 kg·ha−1 (N1), 180 kg·ha−1 (N2), and 300 kg·ha−1 (N3), along with a control group, were established in the meadow saline–alkali soil farmland of Daqing in Heilongjiang Province. The maize cultivar was Xianyu 335. Rhizosphere soil was taken for nutritional analysis and high-throughput sequencing of the microbial population. The findings indicated that the bacterial community structure in the N1 and N2 treatment groups was comparable; however, the N3 treatment dramatically altered the community structure (p < 0.01). A notable disparity existed between the fungal nitrogen application group and the control group. Screening identified ten genera, including Lysobacter and Coniophora, as characteristic functional genera, with their habitats and functions dramatically altered during nitrogen priming effect. Nitrogen priming effect enhanced bacterial functionality for nitrogen source augmentation but diminished the capacity for nitrogen transformation, while also altering the nutritional preferences of fungus. Soil nitrogen and organic matter content showed distinct responses to different nitrogen application rates and exhibited significant interactions with the microbial community. The impacts of low, medium, and high nitrogen treatments on microbial and soil indicators varied, suggesting that effective nutrient management necessitates the regulation of microbial community function and accurate nitrogen administration. The research findings hold substantial importance and promotional potential for the sustainable advancement of saline–alkali agriculture. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 1335 KiB  
Article
Planting Patterns Affect the Differences in Growth and Its Responses to Nitrogen Forms and Levels Between Three Invasive and Their Respective Related Native Species
by Wei-Wei Feng, Kai Huang, Si-Miao Sun, Jian-Kun Sun, Ming Guan, Fa-Zhao Qi, Ming-Chao Liu, Bo Qu and Yu-Long Feng
Plants 2025, 14(12), 1768; https://doi.org/10.3390/plants14121768 - 10 Jun 2025
Viewed by 351
Abstract
Global changes, such as atmospheric nitrogen deposition, can facilitate alien plant invasions, which are often attributed to the increase in soil nitrogen availability. However, few studies have considered the effects of global change-driven alterations in soil nitrogen forms, especially under conditions with interspecific [...] Read more.
Global changes, such as atmospheric nitrogen deposition, can facilitate alien plant invasions, which are often attributed to the increase in soil nitrogen availability. However, few studies have considered the effects of global change-driven alterations in soil nitrogen forms, especially under conditions with interspecific competition. In this study, we first determined the differences in growth, biomass allocation, and photosynthesis under different nitrogen forms and addition levels between three noxious invasive species (Xanthium strumarium, Ambrosia trifida, and Bidens frondosa) and their respective related natives grown with and without interspecific competition and then assessed the interspecific difference in nitrogen form preference using the 15N labeling technique. Interspecific competition significantly decreased the positive responses of growth to nitrogen addition for all three natives, while increasing the responses for all three invaders, particularly under nitrate addition. When grown in competition, all invaders showed significant growth advantages over their related natives in most cases, and responded more positively to the addition of nitrate relative to ammonium, while the natives responded more positively to ammonium addition. These findings indicate that the invaders prefer nitrate, while the natives prefer ammonium. Consistently, the growth advantages are more pronounced for the invaders under nitrate relative to ammonium addition, indicating that nitrate-rich habitats may be more vulnerable to the invaders. When grown in monoculture, however, the growth advantage of the invaders became smaller or even disappeared. Nitrogen form preference also disappeared in Siegesbeckia glabrescens (native) and Bidens frondosa (invasive). Interestingly, the native plant Xanthium sibiricum showed significantly higher total biomass than its invasive congener under ammonium addition in both mixed and monoculture conditions. Our 15N labeling experiment showed that all six species preferred nitrate over ammonium, although this was not significant for two natives (S. glabrescens and X. sibiricum), which is not completely consistent with the results from our nitrogen addition experiment. Our results indicate that global change-driven alterations in soil nitrogen forms, particularly the shift from ammonium to nitrate, may facilitate alien plant invasions. Planting patterns significantly affect the responses of invasive and native species to nitrogen forms and addition levels, with mixed-culture experiments providing better insights into the invasiveness of alien species. Full article
(This article belongs to the Special Issue Climate Change and Invasive Plants)
Show Figures

Figure 1

28 pages, 1796 KiB  
Article
Effects of Climate Change Scenarios on Growth, Flowering Characteristics, and Honey Production Potential of Pseudolysimachion rotundum var. subintegrum
by Kyeong-Cheol Lee, Yeong-Geun Song, Hyun-Jung Koo, Kyung-Jun Kim, Hyung-Joo Kim, Ha-Young Baek and Sung-Joon Na
Plants 2025, 14(11), 1647; https://doi.org/10.3390/plants14111647 - 28 May 2025
Viewed by 502
Abstract
Climate change significantly influences plants’ physiology, flowering phenology, and nectar production, affecting pollinator interactions and apicultural sustainability. This study examines the physiological responses of Pseudolysimachion rotundum (Nakai) Holub var. subintegrum (Nakai) T.Yamaz. (Plantaginaceae) under projected climate change scenarios, focusing on flowering traits, nectar [...] Read more.
Climate change significantly influences plants’ physiology, flowering phenology, and nectar production, affecting pollinator interactions and apicultural sustainability. This study examines the physiological responses of Pseudolysimachion rotundum (Nakai) Holub var. subintegrum (Nakai) T.Yamaz. (Plantaginaceae) under projected climate change scenarios, focusing on flowering traits, nectar secretion, and honey production potential. Elevated CO2 levels enhanced its net photosynthesis and water-use efficiency, supporting sustained carbohydrate assimilation and promoting aboveground biomass accumulation. However, the increased nitrogen demand for vegetative growth and inflorescence production may have led to reduced allocation of nitrogen to the nectar, contributing to a decline in its amino acid concentrations. The flowering period advanced with rising temperatures, with peak bloom occurring up to four days earlier under the SSP5 conditions. While the nectar secretion per flower remained stable, an increase in floral abundance led to a 3.8-fold rise in the estimated honey production per hectare. The analysis of the nectar’s composition revealed that sucrose hydrolysis intensified under higher temperatures, shifting the nectar toward a hexose-rich profile. Although nectar quality slightly declined due to reductions in sucrose and nitrogen-rich amino acids, phenylalanine—the most preferred amino acid by honeybees—remained dominant across all scenarios. These findings confirm the strong climate resilience of P. rotundum var. subintegrum, highlighting its potential as a sustainable nectar source in future apicultural landscapes. Given the crucial role of nitrogen in both plant growth and nectar composition, future research should explore soil nitrogen dynamics and plant nitrogen metabolism to ensure long-term sustainability in plant–pollinator interactions and apicultural practices. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 1046 KiB  
Article
Screening and Validation of Rhizobial Strains for Improved Lentil Growth
by Tianda Chang, Tao Yang, Meng Ren, Xinghui Li, Xuerui Fang, Bingjie Niu, Hongbin Yang, Lixiang Wang and Ximing Chen
Microorganisms 2025, 13(6), 1242; https://doi.org/10.3390/microorganisms13061242 - 28 May 2025
Viewed by 381
Abstract
Lentil is a nutritionally valuable legume crop, rich in protein, carbohydrates, amino acids, and vitamins, and is also used as green manure. Symbiotic nitrogen fixation (SNF) plays a crucial role in lentil growth and development, yet there is limited research on isolating and [...] Read more.
Lentil is a nutritionally valuable legume crop, rich in protein, carbohydrates, amino acids, and vitamins, and is also used as green manure. Symbiotic nitrogen fixation (SNF) plays a crucial role in lentil growth and development, yet there is limited research on isolating and identifying lentil rhizobia related to nodulation and nitrogen fixation. This study employed tissue block isolation, line purification, and molecular biology to isolate, purify, and identify rhizobial strains from lentils, analyzing their physiological characteristics, including bromothymol blue (BTB) acid and alkali production capacity, antibiotic resistance, salt tolerance, acid and alkali tolerance, growth temperature range, and drought tolerance simulated by PEG6000. Additionally, the nodulation capacity of these rhizobia was assessed through inoculation experiments using the identified candidate strains. The results showed that all isolated rhizobial strains were resistant to Congo red, and nifH gene amplification confirmed their potential as nitrogen fixers. Most strains were positive for H2O2 and BTB acid and base production, with a preference for alkaline environments. In terms of salt tolerance, the strains grew normally at 0.5–2% NaCl, and six strains were identified as salt stress resistant at 4% NaCl. The temperature range for growth was between 4 °C and 49 °C. Antibiotic assays revealed resistance to ampicillin and low concentrations of streptomycin, while kanamycin significantly inhibited growth. Two drought-tolerant strains, TG25 and TG55, were identified using PEG6000-simulated drought conditions. Inoculation with candidate rhizobial strains significantly increased lentil biomass, highlighting their potential for enhancing crop productivity. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 3898 KiB  
Article
Research on the Combustion of Mixed Biomass Pellets in a Domestic Boiler
by Penka Zlateva, Angel Terziev, Kalin Krumov, Mariana Murzova and Nevena Mileva
Fuels 2025, 6(2), 40; https://doi.org/10.3390/fuels6020040 - 21 May 2025
Viewed by 750
Abstract
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the [...] Read more.
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the impact of the ratio between primary and secondary air on the combustion process, emission characteristics, and thermal balance. The results show that an air distribution ratio of 60/40 (primary/secondary) leads to more complete combustion, reducing emissions of carbon monoxide (CO) and nitrogen oxides (NOx), while also improving the efficiency of the boiler. The analysis of the numerical modeling results shows that CO emissions decrease by 12% and NOx emissions by 27%. The calculated model is validated using experimental data on flue gas temperature, oxygen (O2) and carbon dioxide (CO2) concentrations, and combustion efficiency, and a high degree of correspondence between theoretical and actual measurements is established. The simulations reveal the dynamics of the temperature field, the movement of flue gases, and the role of turbulence in the combustion chamber. Optimization of the air distribution is proven to improve the combustion process and reduce the harmful emissions generated. The obtained results highlight the potential of mixed biomass pellets as a sustainable alternative to conventional fuels, provided that combustion parameters are precisely regulated. They can serve as a foundation for the enhancement of biomass-based heating systems in order to achieve higher efficiency and environmental sustainability. A market research study is also conducted, revealing that mixed pellets are preferred due to their high calorific value, low cost, and low ash content. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

20 pages, 4646 KiB  
Article
The Production of High-Permeable and Macrovoid-Free Polysulfone Hollow Fiber Membranes and Their Utilization in CO2 Capture Applications via the Membrane-Assisted Gas Absorption Technique
by Pavel Țiuleanu, Artem A. Atlaskin, Kirill A. Smorodin, Sergey S. Kryuchkov, Maria E. Atlaskina, Anton N. Petukhov, Andrey V. Vorotyntsev, Nikita S. Tsivkovskiy, Alexander A. Sysoev and Ilya V. Vorotyntsev
Polymers 2025, 17(10), 1407; https://doi.org/10.3390/polym17101407 - 20 May 2025
Viewed by 483
Abstract
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but [...] Read more.
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but also a complex study of the materials. It covers the spinning of hollow fibers with specific properties that provide sufficient mass transfer for their implementation in the hybrid membrane-assisted gas absorption technique and the design of an absorbent with a new ionic liquid—bis(2-hydroxyethyl) dimethylammonium glycinate, which allows the selective capture of carbon dioxide. In addition, the obtained hollow fibers are characterized not only by single gas permeation but with regard to mixed gases, including the transfer of water vapors. A quasi-real flue gas, which consists of nitrogen, oxygen, carbon dioxide, and water vapors, is used to evaluate the separation efficiency of the proposed membrane-assisted gas absorption technique and to determine its ultimate performance in terms of the CO2 content in the product flow and recovery rate. As a result of this study, it is found that highly permeable fibers in combination with the obtained absorbent provide sufficient separation and their implementation is preferable compared to a selective but much less permeable membrane. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

22 pages, 7024 KiB  
Article
Isolation and Identification of Colletotrichum nymphaeae as a Causal Agent of Leaf Spot on Rhododendron hybridum Ker Gawl and Its Effects on the Ultrastructure of Host Plants
by Yajiao Sun, Yunjing Tian, Jian Liu, Huali Li, Junjia Lu, Mengyao Wang and Shuwen Liu
J. Fungi 2025, 11(5), 392; https://doi.org/10.3390/jof11050392 - 19 May 2025
Viewed by 637
Abstract
Rhododendron hybridum Ker Gawl, a widely cultivated horticultural species in China, is highly valued for its ornamental and medicinal properties. However, with the expansion of its cultivation, leaf spot disease has become more prevalent, significantly affecting the ornamental value of R. hybridum Ker [...] Read more.
Rhododendron hybridum Ker Gawl, a widely cultivated horticultural species in China, is highly valued for its ornamental and medicinal properties. However, with the expansion of its cultivation, leaf spot disease has become more prevalent, significantly affecting the ornamental value of R. hybridum Ker Gawl. In this study, R. hybridum Ker Gawl from the Kunming area was selected as the experimental material. The tissue isolation method was employed in this study to isolate pathogenic strains. The biological characteristics of the pathogens were determined using the mycelial growth rate method. The pathogens’ influence on the host plant’s ultrastructure was investigated using transmission electron microscopy (TEM). Colletotrichum nymphaeae was identified as the pathogen implicated in the development of leaf spot disease in R. hybridum Ker Gawl across three regions in Kunming City through the integration of morphological traits and phylogenetic analyses of multiple genes (ITS, ACT, GAPDH, HIS3, CHS1, and TUB2). Its mycelial growth is most effective at a temperature of 25 °C. pH and light have relatively minor effects on the growth of mycelium. The preferred carbon and nitrogen sources were identified as mannitol and yeast extract, respectively. Additionally, TEM observations revealed significant damage to the cell structure of R. hybridum Ker Gawl leaves infected by the pathogen. The cell walls were dissolved, the number of chloroplasts decreased markedly, starch granules within chloroplasts were largely absent, and the number of osmiophilic granules increased. This is the first report of leaf spot disease in R. hybridum Ker Gawl caused by C. nymphaeae. The results of this study provide valuable insights for future research on the prevention and control of this disease. Full article
Show Figures

Figure 1

22 pages, 1996 KiB  
Article
Emergent Plants Improve Nitrogen Uptake Rates by Regulating the Activity of Nitrogen Assimilation Enzymes
by Yu Hong, Ruliang Liu, Wenhua Xiang, Pifeng Lei and Xi Fang
Plants 2025, 14(10), 1484; https://doi.org/10.3390/plants14101484 - 15 May 2025
Viewed by 585
Abstract
Effectively utilizing aquatic plants to absorb nitrogen from water bodies and convert it into organic nitrogen via nitrogen assimilation enzyme activity reduces water nitrogen concentrations. This serves as a critical strategy for mitigating agricultural non-point source pollution in the Yellow River Basin However, [...] Read more.
Effectively utilizing aquatic plants to absorb nitrogen from water bodies and convert it into organic nitrogen via nitrogen assimilation enzyme activity reduces water nitrogen concentrations. This serves as a critical strategy for mitigating agricultural non-point source pollution in the Yellow River Basin However, emergent plants’ rate and mechanism of uptake of different forms of nitrogen remain unclear. This study determined the nitrogen uptake rates, nitrogen assimilation activities, root properties, and photosynthetic parameters of four emergent plants, Phragmites australis, Typha orientalis, Scirpus validus, and Lythrum salicaria, under five NH4+/NO3 ratios (9:1, 7:3, 5:5, 3:7, and 1:9) using 15N hydroponic simulations. The results demonstrated that both the form of nitrogen and the plant species significantly influenced the nitrogen uptake rates of emergent plants. In water bodies with varying NH4+/NO3 ratios, P. australis and T. orientalis exhibited significantly higher inorganic nitrogen uptake rates than S. validus and L. salicaria, increasing by 11.83–114.69% and 14.07–130.46%, respectively. When the ratio of NH4+/NO3 in the water body was 9:1, the uptake rate of inorganic nitrogen by P. australis reached its peak, which was 729.20 μg·N·g−1·h−1 DW (Dry Weight). When the ratio of NH4+/NO3 was 5:5, the uptake rate of T. orientalis was the highest, reaching 763.71 μg·N·g−1·h−1 DW. The plants’ preferences for different forms of nitrogen exhibited significant environmental plasticity. At an NH4+/NO3 ratio of 5:5, P. australis and T. orientalis preferred NO3-N, whereas S. validus and L. salicaria favored NH4+-N. The uptake rate of NH4+-N by the four plants was significantly positively correlated with glutamine synthetase and glutamate synthase activities, while the uptake rate of NO3-N was significantly positively correlated with NR activity. These findings indicate that the nitrogen uptake and assimilation processes of these four plant species involve synergistic mechanisms of environmental adaptation and physiological regulation, enabling more effective utilization of different nitrogen forms in water. Additionally, the uptake rate of NH4+-N by P. australis and T. orientalis was significantly positively correlated with glutamate dehydrogenase (GDH), suggesting that they are better adapted to eutrophication via the GDH pathway. The specific root surface area plays a crucial role in regulating the nitrogen uptake rates of plants. The amount of nitrogen uptake exerted the greatest total impact on the nitrogen uptake rate, followed by root traits and nitrogen assimilation enzymes. Therefore, there were significant interspecific differences in the uptake rates of and physiological response mechanisms of emergent plants to various nitrogen forms. It is recommended to prioritize the use of highly adaptable emergent plants such as P. australis and T. orientalis in the Yellow River irrigation area. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

19 pages, 3235 KiB  
Article
Metabolomics Combined with Photosynthetic Analysis Reveals Potential Mechanisms of Phenolic Compound Accumulation in Lonicera japonica Induced by Nitrate Nitrogen Supply
by Yiwen Cao, Yating Yang, Zhengwei Tan, Xihan Feng, Zhiyao Tian, Tianheng Liu, Yonghui Pan, Min Wang, Xiaoyu Su, Huizhen Liang and Shiwei Guo
Int. J. Mol. Sci. 2025, 26(9), 4464; https://doi.org/10.3390/ijms26094464 - 7 May 2025
Viewed by 514
Abstract
Mineral nutrition is of vital importance in plant growth and secondary metabolites accumulation, and thereby in the nutritional value of plants. In Lonicera japonica, a preference to nitrate (NO3−N) in comparison to ammonium (NH4+−N) was found [...] Read more.
Mineral nutrition is of vital importance in plant growth and secondary metabolites accumulation, and thereby in the nutritional value of plants. In Lonicera japonica, a preference to nitrate (NO3−N) in comparison to ammonium (NH4+−N) was found in our previous study, which can be revealed from the rapid growth rate of L. japonica under NO3−N. This study assessed whether a preference for nitrogen sources could invoke metabolic reprogramming and interrelationships between factors. NO3−fed plants exhibited substantial enhancement of carbon stimulation, which was strongly and positively correlated with mesophyll conductance. As a result, the elevated carbon flux by NO3 supplement was shuttled to phenolic metabolites synthesis, including flavones and caffeoylquinic acids compounds. Notably, the stimulation was triggered by changes in the NO3 and C/N ratio and was mediated by the induction of several enzymes in the phenylpropanoid pathway. On the contrary, NH4+ plants showed an increment in the content of nitrogen, carbohydrates, and amino acids (mainly a strong increase in citrulline and theanine). Within secondary metabolism, NH4+ may involve active lignin metabolism, showing a dramatic increment in hydroxy−ferulic acid and lignin content. This work provides significant insights regarding the mechanisms of L. japonica in response to diverse nitrogen regimes and effective strategies of nitrogen fertilizer input for L. japonica. Full article
Show Figures

Figure 1

22 pages, 3602 KiB  
Article
Fertilization Improves the Yield of Sapindus saponaria by Affecting Leaf–Soil–Microbial C–N–P Content and Stoichiometry
by Juntao Liu, Hongbing Yang, Ling Zhou, Shangpeng Zhang, Jie Chen, Xu Wang, Shixiong Wu, Yingyun Gong, Guoqing Zhang, Weihua Zhang and Liming Jia
Plants 2025, 14(9), 1360; https://doi.org/10.3390/plants14091360 - 30 Apr 2025
Viewed by 371
Abstract
The purpose of this study was to evaluate the effects of different nitrogen (N), phosphorus (P), and potassium (K) fertilization ratios on the carbon (C), N, and P contents and their ecological stoichiometric characteristics in the leaf–soil–microbial system of Sapindus saponaria and elucidate [...] Read more.
The purpose of this study was to evaluate the effects of different nitrogen (N), phosphorus (P), and potassium (K) fertilization ratios on the carbon (C), N, and P contents and their ecological stoichiometric characteristics in the leaf–soil–microbial system of Sapindus saponaria and elucidate their relationship with yield. A “3414” experimental design was employed in a 6-year-old Sapindus saponaria woodland located in Fujian Province of China. Fourteen N–P–K fertilization treatments with three replicates were established. Leaf, soil, and microbial samples were collected and analyzed for C, N, and P contents. Redundancy Analysis (RDA), Partial Least Squares Path Modeling (PLS–PM), and the entropy-weighted technique of ranking preferences by similarity to optimal solutions (TOPSIS) were utilized to assess the relationships among variables and determine optimal fertilization strategies. It was found through research that different fertilization treatment methods have a significant impact on both the soil nutrient content and the C, N, and P contents of soil microorganisms. Compared with the control group, soil organic C, total N, and total P, and microbial C, N, and P contents increased by 14.25% to 52.61%, 3.90% to 39.84%, 9.52% to 150%, 6.65% to 47.45%, 11.84% to 46.50%, and 14.91% to 201.98%, respectively. Results from Redundancy Analysis (RDA) indicated that soil organic C, total N, and total P exerted a significant influence on the leaf nutrients. PLS-PM demonstrated that fertilization indirectly affected leaf nutrient accumulation and yield by altering soil properties, with soil total phosphorus and leaf phosphorus being key determinants of yield. Additionally, soil microbial entropy impacted yield by regulating microbial biomass stoichiometric ratios. The entropy-weighted TOPSIS model identified the N2P2K2 treatment (600 kg/ha N, 500 kg/ha P, and 400 kg/ha K) as the most effective fertilization strategy. Optimizing N–P–K fertilization ratios significantly enhances leaf nutrient content and soil microbial biomass C, N, and P, thereby increasing Sapindus saponaria yield. This research clarifies the underlying mechanisms through which fertilization exerts an impact on the C–N–P stoichiometry within the leaf–soil–microbial system. Moreover, it furnishes a scientific foundation for the optimization of fertilization management strategies in Sapindus saponaria plantations. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

14 pages, 4554 KiB  
Article
Investigating the Effect of Sputtering Particle Energy on the Crystal Orientation and Microstructure of NbN Thin Films
by Yam Prasad Dahal, Bingfu Gu, Zhenping Su and Sansheng Wang
Coatings 2025, 15(4), 460; https://doi.org/10.3390/coatings15040460 - 13 Apr 2025
Viewed by 771
Abstract
Niobium nitride (NbN) thin films are crucial materials for various applications, including superconductivity and hard coatings. However, precisely controlling their microstructure and crystal orientation during synthesis remains a challenge. This study addresses this gap by systematically investigating the effect of sputtering particle energy [...] Read more.
Niobium nitride (NbN) thin films are crucial materials for various applications, including superconductivity and hard coatings. However, precisely controlling their microstructure and crystal orientation during synthesis remains a challenge. This study addresses this gap by systematically investigating the effect of sputtering particle energy on NbN film properties. This research aims to elucidate the relationship between sputtering particle energy and the resulting microstructure and crystal structure of NbN thin films synthesized by reactive magnetron sputtering. NbN thin films were deposited on Si (100) substrates using reactive magnetron sputtering. The effects of sputtering power, total sputtering pressure, and nitrogen partial pressure on the films’ preferred orientation, grain size, and crystallinity were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The preferred orientation of NbN films can be controlled by sputtering parameters. Increasing sputtering power leads to a texture transition from a single -phase (111) orientation to mixed (111) and (200) orientations. Sputtering pressure influences the energy of sputtering particles and can shift the preferred orientation from mixed (111) and (200) to single-phase (200). Higher nitrogen partial pressure affects the crystallinity of NbN films, potentially introducing defects that reduce crystallinity. This study demonstrates that sputtering particle energy significantly influences the microstructure and crystal orientation of NbN thin films. Precise control of sputtering parameters enables tailored film properties, which are crucial for optimizing NbN performance in diverse technological applications. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

21 pages, 4658 KiB  
Article
Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere
by Malak Alshammary, Essam Kotb, Ibtisam M. Ababutain, Amira H. Alabdalall, Sumayh A. Aldakeel, Sumayah I. Alsanie, Salwa Alhamad, Hussah Alshwyeh and Ahmed M. Albarrag
Biology 2025, 14(4), 402; https://doi.org/10.3390/biology14040402 - 11 Apr 2025
Cited by 1 | Viewed by 713
Abstract
Laccase production was evaluated in 108 fungal isolates recovered from the eastern coast of Saudi Arabia, a critical element in environmental biodegradation and biotransformation. The most active isolate was identified as Curvularia lunata MLK46 (GenBank accession no. PQ100161). It exhibited maximal productivity at [...] Read more.
Laccase production was evaluated in 108 fungal isolates recovered from the eastern coast of Saudi Arabia, a critical element in environmental biodegradation and biotransformation. The most active isolate was identified as Curvularia lunata MLK46 (GenBank accession no. PQ100161). It exhibited maximal productivity at pH 6.5, 30 °C, and incubation for 5 d, with 1% sodium nitrate and 1% galactose as the preferred nitrogen and carbon sources, respectively. Productivity was enhanced by NaCl, CuSO4, and FeCl3 supplementation, with a maximum at 0.3 mM, 0.2 mM, and 61.7 mM concentrations, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for the purified enzyme through diethylaminoethyl (DEAE)-Sepharose chromatography revealed a prominent band at 71.1 kDa with maximum activity at pH 6 and stability at pH 6–9. Furthermore, it was optimally active at 50 °C and thermally stable at 50–80 °C with a half-life time (T1/2) of 333.7 min to 80.6 min, respectively. Its activity was also enhanced by many metallic ions, especially Fe3+ ions; however, it was inhibited by Hg2+ and Ag+ ions. The enzyme demonstrated significant degradation of specific substrates such as 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine, and 2,6-dichlorophenol, with a kinetic efficiency constant which ranged from 40.95 mM−1 s−1 to 238.20 mM−1 s−1. UV spectrophotometry confirmed efficient oxidation peaks by electron transition against guaiacol (at 300 nm), o-dianisidine (at 480 nm), ABTS (at 420 nm), and 2,6-dichlorophenol (at 600 nm). The results collectively demonstrate the potential of laccase from C. lunata MLK46 as a promising agent for the effective biodegradation of several industrial pollutants under extreme conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Back to TopTop