Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sampling and Isolation of Fungi
2.3. Screening for Potent Laccase Producers
2.4. Enzyme Production and Assay Procedure
2.5. Identification of the Potential Isolates
2.6. Phylogenetic Analysis
2.7. Upstream Processing of Laccase Production
2.8. Laccase Purification
2.9. Biochemical Characterization of Laccase
2.9.1. Effect of pH on Activity and Stability
2.9.2. Effect of Temperature on Activity and Stability
2.9.3. Effect of Reagents
2.9.4. Effect of Metal Ions
2.9.5. Substrate Specificity
2.9.6. Determination of Kinetic Constants
2.10. Statistical Analysis
3. Results
3.1. Isolation and Screening of Laccase-Producing Fungi
3.2. Characterization of Fungal Isolates
3.3. Optimization of Laccase Productivity
3.4. Laccase Purification and Biochemical Properties
3.5. Inhibition Study
3.6. Effect of Metal Ions on Laccase Activity
3.7. Substrate Specificity and Kinetics Against Various Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T1/2 | Half-life time |
1,4-DTT | 1,4-dithiothreitol |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
EDTA | Ethylenediamine-tetraacetate |
Kcat | Turnover number |
Kcat/Km | Kinetic efficiency constant |
Km | Michaelis–Menten constant |
NaN3 | Sodium azide |
PDA | Potato dextrose agar |
SDS | Sodium dodecyl sulfate |
SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
Vmax | Maximum velocity of reaction |
References
- Ben Ali, W.; Chaduli, D.; Navarro, D.; Lechat, C.; Turbé-Doan, A.; Bertrand, E.; Faulds, C.B.; Sciara, G.; Lesage-Meessen, L.; Record, E.; et al. Screening of Five Marine-Derived Fungal Strains for Their Potential to Produce Oxidases with Laccase Activities Suitable for Biotechnological Applications. BMC Biotechnol. 2020, 20, 27. [Google Scholar] [CrossRef]
- Hamed, A.A.; Abd-Elaziz, A.M.; Ghanem, M.M.E.; ElAwady, M.E.; Abdel-Aziz, M.S. Production of Laccase Enzyme from Curvularia lunata MY3: Purification and Characterization. Folia Microbiol. 2024, 69, 221–234. [Google Scholar] [CrossRef]
- Patel, H.; Gupte, S.; Gahlout, M.; Gupte, A. Purification and Characterization of an Extracellular Laccase from Solid-State Culture of Pleurotus ostreatus HP-1. 3 Biotech 2014, 4, 77–84. [Google Scholar] [CrossRef]
- Afreen, S.; Anwer, R.; Singh, R.K.; Fatma, T. Extracellular Laccase Production and Its Optimization from Arthrospira maxima Catalyzed Decolorization of Synthetic Dyes. Saudi J. Biol. Sci. 2018, 25, 1446–1453. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, W.; Wang, H.; Ziya, N.; Luo, Y.; Jia, P.; Zhang, G.; Ng, T. Purification and Properties of a Laccase from the Mushroom Agaricus sinodeliciosus. Biotechnol. Appl. Biochem. 2021, 68, 297–306. [Google Scholar] [CrossRef]
- Ezike, T.C.; Udeh, J.O.; Joshua, P.E.; Ezugwu, A.L.; Isiwu, C.V.; Eze, S.O.O.; Chilaka, F.C. Substrate Specificity of a New Laccase from Trametes polyzona WRF03. Heliyon 2021, 7, e06080. [Google Scholar] [CrossRef] [PubMed]
- Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.-H. Production, Purification and Characterization of Mid-Redox Potential Laccase from a Newly Isolated Trichoderma harzianum WL1. Process. Biochem. 2008, 43, 736–742. [Google Scholar] [CrossRef]
- Hmad, I.B.; Gargouri, A. Halophilic Filamentous Fungi and Their Enzymes: Potential Biotechnological Applications. J. Biotechnol. 2024, 381, 11–18. [Google Scholar] [CrossRef]
- Burel, C.; Direur, G.; Rivas, C.; Purevdorj-Gage, L. Colorimetric Detection of Residual Quaternary Ammonium Compounds on Dry Surfaces and Prediction of Antimicrobial Activity Using Bromophenol Blue. Lett. Appl. Microbiol. 2021, 72, 358–365. [Google Scholar] [CrossRef]
- Kotb, E.; Alabdalall, A.H.; Alghamdi, A.I.; Ababutain, I.M.; Aldakeel, S.A.; Al-Zuwaid, S.K.; Algarudi, B.M.; Algarudi, S.M.; Ahmed, A.A.; Albarrag, A.M. Screening for Chitin Degrading Bacteria in the Environment of Saudi Arabia and Characterization of the Most Potent Chitinase from Streptomyces variabilis Am1. Sci. Rep. 2023, 13, 11723. [Google Scholar] [CrossRef]
- Kotb, E.; Helal, G.E.-D.A.; Edries, F.M. Screening for Fibrinolytic Filamentous Fungi and Enzymatic Properties of the Most Potent Producer, Aspergillus brasiliensis AUMC 9735. Biologia 2015, 70, 1565–1574. [Google Scholar] [CrossRef]
- AlShaikh-Mubarak, G.A.; Kotb, E.; Alabdalall, A.H.; Aldayel, M.F. A survey of Elastase-Producing Bacteria and Characteristics of the Most Potent Producer, Priestia megaterium gasm32. PLoS ONE 2023, 18, e0282963. [Google Scholar] [CrossRef]
- de Jesus Fontes, B.; Kleingesinds, E.K.; Giovanella, P.; Junior, A.P.; Sette, L.D. Laccases Produced by Peniophora from Marine and Terrestrial Origin: A Comparative Study. Biocatal. Agric. Biotechnol. 2021, 35, 102066. [Google Scholar] [CrossRef]
- Banerjee, U.C.; Vohra, R.M. Production of Laccase by Curvularia sp. Folia Microbiol. 1991, 36, 343–346. [Google Scholar] [CrossRef]
- Fortina, M.G.; Acquati, A.; Rossi, P.; Manachini, P.L.; Di Gennaro, C. Production of Laccase by Botrytis cinerea and Fermentation Studies with Strain F226. J. Ind. Microbiol. 1996, 17, 69–72. [Google Scholar] [CrossRef]
- D’Souza, D.T.; Tiwari, R.; Sah, A.K.; Raghukumar, C. Enhanced Production of Laccase by a Marine Fungus during Treatment of Colored Effluents and Synthetic Dyes. Enzym. Microb. Technol. 2006, 38, 504–511. [Google Scholar] [CrossRef]
- Wikee, S.; Hatton, J.; Turbé-Doan, A.; Mathieu, Y.; Daou, M.; Lomascolo, A.; Kumar, A.; Lumyong, S.; Sciara, G.; Faulds, C.B.; et al. Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp. Int. J. Mol. Sci. 2019, 20, 1864. [Google Scholar] [CrossRef] [PubMed]
- Atalla, M.M.; Kheiralla, H.Z.; Hamed, R.E.; Youssry, A.A.; AbdElAty, A.A. Characterization and Kinetic Properties of the Purified Trematosphaeria mangrovei Laccase Enzyme. Saudi J. Biol. Sci. 2013, 20, 373–381. [Google Scholar] [CrossRef]
- Paul, S.; Bag, S.K.; Das, S.; Harvill, E.T.; Dutta, C. Molecular Signature of Hypersaline Adaptation: Insights from Genome and Proteome Composition of Halophilic Prokaryotes. Genome Biol. 2008, 9, R70. [Google Scholar] [CrossRef]
- Palmieri, G.; Giardina, P.; Bianco, C.; Fontanella, B.; Sannia, G. Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 2000, 66, 920–924. [Google Scholar] [CrossRef]
- Nakade, K.; Nakagawa, Y.; Yano, A.; Konno, N.; Sato, T.; Sakamoto, Y. Effective Induction of pblac1 Laccase by Copper Ion in Polyporus brumalis ibrc05015. Fungal Biol. 2013, 117, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Song, F.; Huang, F.; Yang, C.; Zhang, Z.; Zheng, Y.; Tian, X. Production of Laccase by a Newly Isolated Deuteromycete Fungus Pestalotiopsis sp. and Its Decolorization of Azo Dye. J. Ind. Microbiol. Biotechnol. 2007, 34, 233–240. [Google Scholar] [CrossRef]
- Piscitelli, A.; Vecchio, C.D.; Faraco, V.; Giardina, P.; Macellaro, G.; Miele, A.; Pezzella, C.; Sannia, G. Fungal laccases: Versatile tools for lignocellulose transformation. Comptes Rendus Biol. 2011, 334, 789–794. [Google Scholar] [CrossRef]
- Salem, M.M.; Mohamed, T.M.; Shaban, A.M.; Mahmoud, Y.A.-G.; Eid, M.A.; El-Zawawy, N.A. Optimization, Purification and Characterization of Laccase from a New Endophytic Trichoderma harzianum AUMC14897 Isolated from Opuntia ficus-indica and Its Applications in Dye Decolorization and Wastewater Treatment. Microb. Cell Factories 2024, 23, 266. [Google Scholar] [CrossRef]
- Othman, A.M.; Elshafei, A.M.; Hassan, M.M.; Haroun, B.M.; Elsayed, M.A.; Farrag, A.A. Purification, Biochemical Characterization and Applications of Pleurotus ostreatus ARC280 Laccase. Microbiol. Res. J. Int. 2014, 23, 1418–1439. [Google Scholar] [CrossRef]
- Vantamuri, A.B.; Kaliwal, B.B. Purification and Characterization of Laccase from Marasmius Species BBKAV79 and Effective Decolorization of Selected Textile Dyes. 3 Biotech 2016, 6, 189. [Google Scholar] [CrossRef]
- Jeon, S.-J.; Kim, T.-Y. Production, Purification and Characterization of a Melanin Bleaching Enzyme from Trametes velutina JS18. Microbiol. Biotechnol. Lett. 2020, 48, 463–470. [Google Scholar] [CrossRef]
- Yin, L.; Ye, J.; Kuang, S.; Guan, Y.; You, R. Induction, Purification, and Characterization of a Thermo and pH Stable Laccase from Abortiporus biennis J2 and Its Application on the Clarification of Litchi Juice. Biosci. Biotechnol. Biochem. 2017, 81, 1033–1040. [Google Scholar] [CrossRef]
- Nelson, A.A.; Anne, F.T. A Novel Acid-Stable Intracellular Laccase from Aureobasidium pullulans: Purification, Characterization and Application in the Removal of Bisphenol A from Solutions. Biocatal. Agric. Biotechnol. 2021, 33, 101966. [Google Scholar] [CrossRef]
- Mansur, M.; Arias, M.E.; Copa-Patiño, J.L.; Flärdh, M.; González, A.E. The White-Rot Fungus Pleurotus ostreatus Secretes Laccase Isozymes with Different Substrate Specificities. Mycologia 2003, 95, 1013–1020. [Google Scholar] [CrossRef]
- Brazkova, M.; Mercati, A.; Hristova, I.; Lante, A.; Krastanov, A. Isolation, Purification and Characterization of Laccase from the White-Rot Fungus Trametes versicolor. Food Sci. Eng. Technol. 2016, 63, 155–162. [Google Scholar]
- Zheng, F.; An, Q.; Meng, G.; Wu, X.-J.; Dai, Y.-C.; Si, J.; Cui, B.-K. A Novel Laccase from White Rot Fungus Trametes orientalis: Purification, Characterization, and Application. Int. J. Biol. Macromol. 2017, 102, 758–770. [Google Scholar] [CrossRef]
- Si, J.; Wu, Y.; Ma, H.-F.; Cao, Y.-J.; Sun, Y.-F.; Cui, B.-K. Selection of a pH- and Temperature-Stable Laccase from Ganoderma australe and Its Application for Bioremediation of Textile Dyes. J. Environ. Manage. 2021, 299, 113619. [Google Scholar] [CrossRef] [PubMed]
- Mtibaà, R.; Barriuso, J.; de Eugenio, L.; Aranda, E.; Belbahri, L.; Nasri, M.; Martínez, M.J.; Mechichi, T. Purification and Characterization of a Fungal Laccase from the Ascomycete Thielavia sp. and Its Role in the Decolorization of a Recalcitrant Dye. Int. J. Biol. Macromol. 2018, 120, 1744–1751. [Google Scholar] [CrossRef]
- Vázquez, M.A.; Cabrera, E.C.V.; Aceves, M.A.; Mallol, J.L.F. Cellulolytic and Ligninolytic Potential of New Strains of Fungi for the Conversion of Fibrous Substrates. Biotechnol. Res. Innov. 2019, 3, 177–186. [Google Scholar] [CrossRef]
- Baldrian, P. Fungal Laccases–Occurrence and Properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef]
- Zou, Y.-J.; Wang, H.-X.; Ng, T.-B.; Huang, C.-Y.; Zhang, J.-X. Purification and Characterization of a Novel Laccase from the Edible Mushroom Hericium coralloides. J. Microbiol. 2012, 50, 72–78. [Google Scholar] [CrossRef]
- Arias, M.E.; Arenas, M.; Rodríguez, J.; Soliveri, J.; Ball, A.S.; Hernández, M. Kraft Pulp Biobleaching and Mediated Oxidation of a Nonphenolic Substrate by Laccase from Streptomyces cyaneus CECT 3335. Appl. Environ. Microbiol. 2003, 69, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Adamafio, N.A.; Sarpong, N.S.; Mensah, C.A.; Obodai, M. Extracellular Laccase from Pleurotus ostreatus Strain EM-1: Thermal Stability and Response to Metal Ions. Asian. J. Biochem. 2012, 7, 143–150. [Google Scholar] [CrossRef]
- Ademakinwa, A.N.; Agboola, F.K. Biochemical Characterization and Kinetic Studies on a Purified Yellow Laccase from Newly Isolated Aureobasidium pullulans NAC8 Obtained from Soil Containing Decayed Plant Matter. J. Genet. Eng. Biotechnol. 2016, 14, 143–151. [Google Scholar] [CrossRef]
- More, S.S.; Renuka, P.S.; Pruthvi, K.; Swetha, M.; Malini, S.; Veena, S.M. Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp. Enzym. Res. 2011, 2011, 248735. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Mahmoud, M.; Abdel Karim, G.S.A.; Abdelraof, M.; Othman, A.M. Purification and Biochemical Characterization of Two Laccase Isoenzymes Isolated from Trichoderma harzianum S7113 and Its Application for Bisphenol A Degradation. Microb. Cell Factories 2023, 22, 1. [Google Scholar] [CrossRef]
- Safary, A.; Moniri, R.; Hamzeh-Mivehroud, M.; Dastmalchi, S. A Strategy for Soluble Overexpression and Biochemical Characterization of Halo-Thermotolerant Bacillus Laccase in Modified E. coli. J. Biotechnol. 2016, 227, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Castaño, J.D.; Cruz, C.; Torres, E. Optimization of the Production, Purification and Characterization of a Laccase from the Native Fungus Xylaria sp. Biocatal. Agric. Biotechnol. 2015, 4, 710–716. [Google Scholar] [CrossRef]
- Olajuyigbe, F.M.; Fatokun, C.O. Biochemical Characterization of an Extremely Stable pH-Versatile Laccase from Sporothrix carnis CPF-05. Int. J. Biol. Macromol. 2017, 94, 535–543. [Google Scholar] [CrossRef]
- Schmidt, G.; Krings, U.; Nimtz, M.; Berger, R.G. A Surfactant Tolerant Laccase of Meripilus giganteus. World J. Microbiol. Biotechnol. 2012, 28, 1623–1632. [Google Scholar] [CrossRef]
- Marques De Souza, C.G.; Peralta, R.M. Purification and Characterization of the Main Laccase Produced by the White-Rot Fungus Pleurotus pulmonarius on Wheat Bran Solid State Medium. J. Basic. Microbiol. 2003, 43, 278–286. [Google Scholar] [CrossRef]
- Das, N.; Chakraborty, T.K.; Mukherjee, M. Purification and Characterization of a Growth-Regulating Laccase from Pleurotus florida. J. Basic. Microbiol. 2001, 41, 261–267. [Google Scholar] [CrossRef]
- Nuskern, L.; Tkalec, M.; Srezović, B.; Ježić, M.; Gačar, M.; Ćurković-Perica, M. Laccase Activity in Fungus Cryphonectria parasitica Is Affected by Growth Conditions and Fungal–Viral Genotypic Interactions. J. Fungi 2021, 7, 958. [Google Scholar] [CrossRef]
- Tinoco, R.; Pickard; Duhalt, V. Vazquez-Duhalt Kinetic Differences of Purified Laccases from Six Pleurotus ostreatus Strains. Lett. Appl. Microbiol. 2001, 32, 331–335. [Google Scholar] [CrossRef]
- Johannes, C.; Majcherczyk, A. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems. Appl. Environ. Microbiol. 2000, 66, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Viikari, L.; Suurnäkki, A.; Grönqvist, S.; Raaska, L.; Ragauskas, A. Forest Products: Biotechnology in Pulp and Paper Processing. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009; pp. 80–94. ISBN 978-0-12-373944-5. [Google Scholar]
Isolate Code | Location | Source | Laccase Activity (U/mL) | Isolate Characterization | GenBank Accession Number |
---|---|---|---|---|---|
EK12 | Jubail | Farm #2 with a history of pesticide application | 66.52 ± 4.24 | Alternaria alternata | PQ106852.1 |
MLK46 | Qatif | Mangrove rhizosphere | 295.65 ± 17.94 | Curvularia lunata | PQ100161.1 |
EK56 | Dammam | Shoreline #2 | 70.43 ± 6.42 | Acrophialophora levis | PQ056709.1 |
EK59 | Jabil | Farm #1 with a history of pesticide application | 222.17 ± 12.42 | Alternaria alternata | PQ056708.1 |
EQ75 | Dhahran | Yellow sponge siphon | 73.91 ± 6.23 | Aspergillus terreus | PQ056704.1 |
EK81 | Jubail | Annual seablite rhizosphere | 193.04 ± 12.52 | Alternaria alternata | PQ056707.1 |
EK107 | Ras Tanura | Shoreline #1 | 140.86 ± 10.57 | Aspergillus nidulans | PQ056706.1 |
Parameter | Optimal Value | Maximal Productivity (U/mL) | Fold (x) |
---|---|---|---|
Unoptimized conditions | NA | 95.65 | 1.00 |
Fermentation pH | 6.5 | 130.87 | 1.37 |
Fermentation temperature | 30 °C | 141.74 | 1.48 |
Incubation period | 120 h | 211.73 | 2.21 |
NaCl | 0.26 mM | 221.36 | 2.31 |
MnSO4 | 0.3 mM | 116.09 | 1.21 |
CuSO4 | 0.2 mM | 257.83 | 2.70 |
FeCl3 | 61.65 mM | 267.39 | 2.79 |
Nitrogen source | 1.0% sodium nitrate | 286.52 | 2.99 |
Carbon source | 1.0% galactose | 324.34 | 3.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammary, M.; Kotb, E.; Ababutain, I.M.; Alabdalall, A.H.; Aldakeel, S.A.; Alsanie, S.I.; Alhamad, S.; Alshwyeh, H.; Albarrag, A.M. Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere. Biology 2025, 14, 402. https://doi.org/10.3390/biology14040402
Alshammary M, Kotb E, Ababutain IM, Alabdalall AH, Aldakeel SA, Alsanie SI, Alhamad S, Alshwyeh H, Albarrag AM. Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere. Biology. 2025; 14(4):402. https://doi.org/10.3390/biology14040402
Chicago/Turabian StyleAlshammary, Malak, Essam Kotb, Ibtisam M. Ababutain, Amira H. Alabdalall, Sumayh A. Aldakeel, Sumayah I. Alsanie, Salwa Alhamad, Hussah Alshwyeh, and Ahmed M. Albarrag. 2025. "Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere" Biology 14, no. 4: 402. https://doi.org/10.3390/biology14040402
APA StyleAlshammary, M., Kotb, E., Ababutain, I. M., Alabdalall, A. H., Aldakeel, S. A., Alsanie, S. I., Alhamad, S., Alshwyeh, H., & Albarrag, A. M. (2025). Production, Biochemical Characterization, and Application of Laccase from Halophilic Curvularia lunata MLK46 Recovered from Mangrove Rhizosphere. Biology, 14(4), 402. https://doi.org/10.3390/biology14040402