Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = nitrogen flow rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2179 KiB  
Article
Conversion of Oil Palm Kernel Shell Wastes into Active Biocarbons by N2 Pyrolysis and CO2 Activation
by Aik Chong Lua
Clean Technol. 2025, 7(3), 66; https://doi.org/10.3390/cleantechnol7030066 - 4 Aug 2025
Abstract
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed [...] Read more.
Oil palm kernel shell is an abundant agricultural waste generated by the palm oil industry. To achieve sustainable use of this waste, oil palm kernel shells were converted into valuable resources as active biocarbons. A two-stage preparation method involving N2 pyrolysis, followed by CO2 activation, was used to produce the active biocarbon. The optimum pyrolysis conditions that produced the largest BET surface area of 519.1 m2/g were a temperature of 600 °C, a hold time of 2 h, a nitrogen flow rate of 150 cm3/min, and a heating rate of 10 °C/min. The optimum activation conditions to prepare the active biocarbon with the largest micropore surface area or the best micropore/BET surface area combination were a temperature of 950 °C, a CO2 flow rate of 300 cm3/min, a heating rate of 10 °C/min, and a hold time of 3 h, yielding BET and micropore surface areas of 1232.3 and 941.0 m2/g, respectively, and consisting of 76.36% of micropores for the experimental optimisation technique adopted here. This study underscores the importance of optimising both the pyrolysis and activation conditions to produce an active biocarbon with a maximum micropore surface area for gaseous adsorption applications, especially to capture CO2 greenhouse gas, to mitigate global warming and climate change. Such a comprehensive and detailed study on the conversion of oil palm kernel shell into active biocarbon is lacking in the open literature. The research results provide a practical blueprint on the process parameters and technical know-how for the industrial production of highly microporous active biocarbons prepared from oil palm kernel shells. Full article
Show Figures

Graphical abstract

15 pages, 2232 KiB  
Article
A Multi-Objective Approach for Improving Ecosystem Services and Mitigating Environmental Externalities in Paddy Fields and Its Emergy Analysis
by Naven Ramdat, Hongshuo Zou, Shiwen Sheng, Min Fu, Yingying Huang, Yaonan Cui, Yiru Wang, Rui Ding, Ping Xu and Xuechu Chen
Water 2025, 17(15), 2244; https://doi.org/10.3390/w17152244 - 29 Jul 2025
Viewed by 289
Abstract
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural [...] Read more.
Traditional intensive agricultural system impedes ecological functions, such as nutrient cycling and biodiversity conservation, resulting in excessive nitrogen discharge, CH4 emission, and ecosystem service losses. To enhance critical ecosystem services and mitigate environmental externalities in paddy fields, we developed a multi-objective agricultural system (MIA system), which combines two eco-functional units: paddy wetlands and Beitang (irrigation water collection pond). Pilot study results demonstrated that the MIA system enhanced biodiversity and inhibited pest outbreak, with only a marginal reduction in rice production compared with the control. Additionally, the paddy wetland effectively removed nitrogen, with removal rates of total nitrogen and dissolved inorganic nitrogen ranging from 0.06 to 0.65 g N m−2 d−1 and from 0.02 to 0.22 g N m−2 d−1, respectively. Continuous water flow in the paddy wetland reduced the CH4 emission by 84.4% compared with the static water conditions. Furthermore, a simulation experiment indicated that tide flow was more effective in mitigating CH4 emission, with a 68.3% reduction compared with the drying–wetting cycle treatment. The emergy evaluation demonstrated that the MIA system outperformed the ordinary paddy field when considering both critical ecosystem services and environmental externalities. The MIA system exhibited higher emergy self-sufficiency ratio, emergy yield ratio, and emergy sustainable index, along with a lower environmental load ratio. Additionally, the system required minimal transformation, thus a modest investment. By presenting the case of the MIA system, we provide a theoretical foundation for comprehensive management and assessment of agricultural ecosystems, highlighting its significant potential for widespread application. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 274
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

25 pages, 5652 KiB  
Article
Modeling and Optimization of the Vacuum Degassing Process in Electric Steelmaking Route
by Bikram Konar, Noah Quintana and Mukesh Sharma
Processes 2025, 13(8), 2368; https://doi.org/10.3390/pr13082368 - 25 Jul 2025
Viewed by 258
Abstract
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at [...] Read more.
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at the bubble–steel interface (Z1). The model incorporates key process parameters such as argon flow rate, vacuum pressure, and initial nitrogen and sulfur concentrations. A robust empirical correlation was established between de-N efficiency and the mass of Z1, reducing prediction time from a day to under a minute. Additionally, the model was further improved by incorporating a dynamic surface exposure zone (Z_eye) to account for transient ladle eye effects on nitrogen removal under deep vacuum (<10 torr), validated using synchronized plant trials and Python-based video analysis. The integrated approach—combining thermodynamic-kinetic modeling, plant validation, and image-based diagnostics—provides a robust framework for optimizing VD control and enhancing nitrogen removal control in EAF-based steelmaking. Full article
Show Figures

Figure 1

14 pages, 857 KiB  
Article
Short-Term Intake of Euphorbia tirucalli Latex Modifies Kidney Function in Rats: Possible Role of Oxidative Stress and Inflammatory Response
by Edgar Hell Kampke, Maria Eduarda Souza Barroso, Leonardo da Silva Escouto, Luciana Polaco Covre, Ágata Lages Gava, Bianca Prandi Campagnaro, Ricardo Machado Kuster and Silvana Santos Meyrelles
Antioxidants 2025, 14(7), 856; https://doi.org/10.3390/antiox14070856 - 13 Jul 2025
Viewed by 416
Abstract
Medicinal plants have been traditionally used for generations, often without scientific validation. Euphorbia tirucalli (E. tirucalli), a plant native to Africa, is commonly employed in folk medicine for treating various ailments, including cancer. However, most studies involving this species are limited [...] Read more.
Medicinal plants have been traditionally used for generations, often without scientific validation. Euphorbia tirucalli (E. tirucalli), a plant native to Africa, is commonly employed in folk medicine for treating various ailments, including cancer. However, most studies involving this species are limited to in vitro models, and its systemic effects remain poorly understood. This study aimed to evaluate the impact of E. tirucalli latex on renal function in healthy Wistar rats. Animals were divided into two groups: a control group receiving water and a treated group receiving E. tirucalli latex (13.47 mg/kg) by gavage for 15 days. Renal function was assessed by measuring glomerular filtration rate (GFR), renal plasma flow (RPF), renal blood flow (RBF), renal vascular resistance (RVR), and mean arterial pressure (MAP). Additionally, oxidative stress markers, reactive oxygen/nitrogen species, and inflammatory activity were analyzed in renal tissue. E. tirucalli significantly reduced GFR, RPF, and RBF, while increasing RVR and MAP. Renal tissue exhibited elevated levels of advanced oxidation protein products, myeloperoxidase, nitric oxide, and peroxynitrite/hydroxyl radicals. These findings indicate that E. tirucalli latex adversely affects renal hemodynamics and promotes oxidative and inflammatory damage, suggesting potential nephrotoxic effects, even in healthy subjects. Full article
Show Figures

Figure 1

19 pages, 5829 KiB  
Article
Retrieval and Evaluation of NOX Emissions Based on a Machine Learning Model in Shandong
by Tongqiang Liu, Jinghao Zhao, Rumei Li and Yajun Tian
Sustainability 2025, 17(13), 6100; https://doi.org/10.3390/su17136100 - 3 Jul 2025
Viewed by 274
Abstract
Nitrogen oxides (NOX) are important precursors of ozone and secondary aerosols. Accurate and timely NOX emission estimates are essential for formulating measures to mitigate haze and ozone pollution. Bottom–up and satellite–constrained top–down methods are commonly used for emission inventory compilation; [...] Read more.
Nitrogen oxides (NOX) are important precursors of ozone and secondary aerosols. Accurate and timely NOX emission estimates are essential for formulating measures to mitigate haze and ozone pollution. Bottom–up and satellite–constrained top–down methods are commonly used for emission inventory compilation; however, they have limitations of time lag and high computational demands. Here, we propose a machine learning model, WOA-XGBoost (Whale Optimization Algorithm–Extreme Gradient Boosting), to retrieve NOX emissions. We constructed a dataset incorporating satellite observations and conducted model training and validation in the Shandong region with severe NOX pollution to retrieve high spatiotemporal resolution of NOX emission rates. The 10–fold cross–validation coefficient of determination (R2) for the NOX emission retrieval model was 0.99, indicating that WOA-XGBoost has high accuracy. Validation of the model for the other year (2019) showed high agreement with MEIC (Multi–resolution Emission Inventory for China), confirming its strong robustness and good temporal transferability. The retrieved NOX emissions for 2021–2022 revealed that emission rate hotspots were located in areas with heavy traffic flow. Among 16 prefecture–level cities in Shandong, Zibo exhibited the highest NOX rate (>1 μg/m2/s), explaining its high NO2 pollution levels. In the future, priority areas for emission reduction should focus on heavy industry clusters such as Zibo and high traffic urban centers. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

16 pages, 3499 KiB  
Article
Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios
by Wen-Jie Chen, Yang-Chao Liu, Zhen-Yu Wang, Lin Gu, Yi Shen and Hong-Ping Ma
Nanomaterials 2025, 15(13), 958; https://doi.org/10.3390/nano15130958 - 20 Jun 2025
Viewed by 545
Abstract
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned [...] Read more.
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned across a wide range from 1.45 to 2.3. However, the underlying mechanism governing the influence of elemental composition on film structural quality remains insufficiently understood. To address this knowledge gap, we systematically investigate the effects of key industrial plasma-enhanced chemical vapor deposition (PECVD) parameters—including precursor gas selection and flow rate ratios—on SiON film properties. Our experimental measurements reveal that stoichiometric SiOxNy (x = y) achieves a minimum surface roughness of 0.18 nm. As oxygen content decreases and nitrogen content increases, progressive replacement of Si-O bonds by Si-N bonds correlates with increased structural defect density within the film matrix. Capacitance–voltage (C-V) characterization demonstrates a corresponding enhancement in device capacitance following these compositional modifications. Recent studies confirm that controlled modulation of film stoichiometry enables precise tailoring of dielectric properties and capacitive behavior, as demonstrated in SiON-based power electronics, thereby advancing applications in related fields. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 1827 KiB  
Article
Tropical Wetlands as Nature-Based Solutions to Remove Nutrient and Organic Inputs from Stormwater Discharge and Wastewater Effluent in Urban Environments
by Flavia Byekwaso, Gabriele Weigelhofer, Rose Kaggwa, Frank Kansiime, Guenter Langergraber and Thomas Hein
Water 2025, 17(12), 1821; https://doi.org/10.3390/w17121821 - 18 Jun 2025
Viewed by 537
Abstract
Natural wetlands are critical water quality regulators, especially in developing tropical countries. The Lubigi wetland is a large urban wetland in Kampala, the largest city in Uganda in Africa. We studied whether stormwater discharge and wastewater effluent from a nearby stormwater channel and [...] Read more.
Natural wetlands are critical water quality regulators, especially in developing tropical countries. The Lubigi wetland is a large urban wetland in Kampala, the largest city in Uganda in Africa. We studied whether stormwater discharge and wastewater effluent from a nearby stormwater channel and a sewage treatment plant in the western part of the city were cleaned as they flowed through the wetland. Despite the significant pollution, the wetland removed ammonium-nitrogen, orthophosphate, and particulate nutrients during both seasons, achieving removal rates ranging from 50 to 60% for orthophosphate but only 20–40% for ammonium-nitrogen. Overall, seasonal differences in loads and retention rates of nutrient and organic matter inputs were minimal. Interestingly, the wetland mostly released nitrate and nitrite during water passage through the wetland, most likely due to the mineralization of organic nitrogen and agricultural run-off during rainy events in the wet season. However, the limited capacity of the sewage treatment plant and untreated stormwater discharge from the Nsooba main channel reduced the wetland’s ability to clean water. The insufficient carrying capacity of the treatment plant and the release of untreated sewage into the wetland significantly impact the self-purification capacity of the Lubigi wetland. Thus, the concept of Nature-Based Solutions is ineffective if the wetland systems are overloaded. Full article
Show Figures

Graphical abstract

19 pages, 3134 KiB  
Article
Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO)
by Roland Jacks Ekila, Tatjana Stevanovic and Denis Rodrigue
Polymers 2025, 17(12), 1695; https://doi.org/10.3390/polym17121695 - 18 Jun 2025
Viewed by 366
Abstract
Electrospinning is a simple technique to produce fibers with small diameters. These fibers can be made from different polymers, but the focus is now on biobased materials. In this work, the lignin obtained from Miscanthus x giganteus, an herbaceous plant, was isolated [...] Read more.
Electrospinning is a simple technique to produce fibers with small diameters. These fibers can be made from different polymers, but the focus is now on biobased materials. In this work, the lignin obtained from Miscanthus x giganteus, an herbaceous plant, was isolated by an Organosolv process leading to a high purity (90%), which is essential for its electrospinning. This lignin also had a carbon content of 72.2% with 24.8% oxygen and a low nitrogen content (1%). The isolated lignin was then solubilized in dimethyl sulfoxide (DMSO). Finally, an optimization step showed that a stable process was possible using a 62% lignin solution in DMSO with a needle-to-collector distance of 20 cm, a flow rate of 0.3 mL/h, a voltage of 25 kV, and a humidity of 35%. Nevertheless, lignin concentrations between 55 and 63% were studied to determine the effect of this parameter on the final fibers. A morphological analysis (SEM-EDX) enabled us to understand both the evolution of the diameter and the effect of dimethyl sulfoxide on the electrospun fibers. This study showed that electrospinning of the lignin obtained from Miscanthus x giganteus was possible, even without any additives. Full article
(This article belongs to the Collection Electrospun Nanofibers)
Show Figures

Figure 1

29 pages, 3595 KiB  
Article
Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites
by Rubén Jerves-Cobo, Edwin Maldonado, Juan Fernando Hidalgo-Cordero, Hernán García-Herazo and Diego Mora-Serrano
Water 2025, 17(12), 1800; https://doi.org/10.3390/w17121800 - 16 Jun 2025
Viewed by 1203
Abstract
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned [...] Read more.
This study evaluated the pollutant removal efficiency of two decentralized wastewater treatment plants (WWTPs) located in the high-altitude southern Andes of Ecuador, Acchayacu and Churuguzo, from 2015 to 2024. Acchayacu previously operated using an upflow anaerobic filter (UAF), and from 2021, it transitioned to using vertical-subsurface-flow constructed wetlands (VSSF-CWs). In contrast, Churuguzo employs surface-flow constructed wetlands (SF-CWs). These systems were assessed based on parameters such as the five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total phosphorus, organic nitrogen, ammonia nitrogen, total solids, fecal coliforms (TTCs), and total coliforms (TCs). The data were divided into two subperiods to account for the change in technology in Acchayacu. Statistical analysis was conducted to determine whether significant differences existed between the treatment efficiencies of these technologies, and the SF-CW was found to consistently outperform both the UAF and VSSF-CW in removing organic matter and microbial pollutants. This difference is likely attributed to the longer hydraulic retention time, lower hydraulic loading rate, and vegetation type. The findings highlight the environmental implications of treatment technology selection in WWTPs, particularly regarding the quality of receiving water bodies and their potential applications for public health, proper water resource management, and the design of decentralized systems in high-altitude regions, especially in developing countries. Full article
Show Figures

Figure 1

13 pages, 3758 KiB  
Article
Effect of Sputtering Process Parameters on Physical Properties and Electron Emission Level of Titanium Nitride Films
by Yang Xia and Dan Wang
Inorganics 2025, 13(6), 201; https://doi.org/10.3390/inorganics13060201 - 16 Jun 2025
Viewed by 424
Abstract
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the [...] Read more.
Titanium nitride (TiN) is a typical inorganic compound capable of achieving resistance modulation by adjusting the element ratio. In this work, to deeply investigate the resistance-tunable characteristics and electron emission properties of TiN, we prepared 10 sets of TiN films by adjusting the magnetron sputtering parameters. The microscopic analyses show that the film thicknesses ranged from about 355 to 459 nm. Moreover, with the process parameters used in this work, TiN nanostructures are formed more easily when the nitrogen flow rate is ≤5 sccm, and compact TiN films are formed more easily when the nitrogen flow rate is ≥10 sccm. Elemental analyses showed that the N:Ti atomic ratios of the TiN films ranged from about 0.587 to 1.40. The results of surface analysis showed the presence of a certain amount of oxygen on the surface of the TiN film, indicating that the surface TiN may exist in the form of TiN:O. The electrical resistance test showed that the resistivity of the TiN coating ranges from 1.59 × 10−4 to 1.83 × 10−1 Ω·m. And the closer the N:Ti atomic ratio is to one, the lower the TiN film resistivity is. The electron emission coefficient (EEC) results show that among the film samples from #3 to #10, sample #8 has the lowest EEC, with a peak EEC of only 1.61. By comparing the resistivity and EEC data, a novel phenomenon was discovered: a decrease in the resistivity of TiN films leads to a decrease in their EEC values. The results show that the resistivity and EEC of TiN films can be adjusted according to the film-forming components, which is important for the application of TiN in the electronics industry. Full article
(This article belongs to the Special Issue Novel Inorganic Coatings and Thin Films)
Show Figures

Figure 1

15 pages, 15944 KiB  
Article
Impact of Models of Thermodynamic Properties and Liquid–Gas Mass Transfer on CFD Simulation of Liquid Hydrogen Release
by Chenyu Lu, Jianfei Yang, Jian Yuan, Luoyi Feng, Wenbo Li, Cunman Zhang, Liming Cai and Jing Cao
Energies 2025, 18(12), 3052; https://doi.org/10.3390/en18123052 - 9 Jun 2025
Viewed by 384
Abstract
The safety performance of liquid hydrogen storage has a significant influence on its large-scale commercial application. Due to the complexity and costs of experimental investigation, computational fluid dynamics (CFD) simulations have been extensively applied to investigate the dynamic behaviors of liquid hydrogen release. [...] Read more.
The safety performance of liquid hydrogen storage has a significant influence on its large-scale commercial application. Due to the complexity and costs of experimental investigation, computational fluid dynamics (CFD) simulations have been extensively applied to investigate the dynamic behaviors of liquid hydrogen release. The involved physical and chemical models, such as models of species thermodynamic properties and liquid–gas mass transfer, play a major role for the entire CFD model performance. However, comprehensive investigations into their impacts remain insufficient. In this study, CFD models of liquid hydrogen release were developed by using two widely used commercial simulation tools, Fluent and FLACS, and validated against experimental data available in the literature. Comparisons of the model results reveal strong discrepancies in the prediction accuracy of temperature and hydrogen volume fraction between the two models. The impact of the models of thermodynamic properties and liquid–gas mass transfer on the prediction results was subsequently explored by incorporating the FLACS sub-models to Fluent and evaluating the resulting prediction differences in temperatures and hydrogen volume fractions. The results show that the models of thermodynamic properties and liquid–gas mass transfer used in FLACS underestimate the vertical rise height and the highest hydrogen volume fraction of the cloud. Sensitivity analyses on the parameters in these sub-models indicate that the specific heats of hydrogen and nitrogen, in conjunction with the mass flow rate and outflow density of the mass transfer model, have a significant influence on model prediction of temperature. Full article
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
Treatment of Natural Rubber Skim Latex Using Ultrafiltration Process with PVDF-TiO2 Mixed-Matrix Membranes
by Rianyza Gayatri, Erna Yuliwati, Tuty Emilia Agustina, Nor Afifah Khalil, Md Sohrab Hossain, Wirach Taweepreda, Muzafar Zulkifli and Ahmad Naim Ahmad Yahaya
Polymers 2025, 17(12), 1598; https://doi.org/10.3390/polym17121598 - 8 Jun 2025
Viewed by 939
Abstract
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and [...] Read more.
Natural rubber skim latex is commonly discarded as waste or turned into skim natural rubber products such as skim crepe and skim blocks. It is challenging to retrieve all residual rubbers in skim latex since it has a very low rubber content and many non-rubber components like protein. Manufacturers conventionally utilize concentrated sulfuric acid as a coagulant. This method generates many effluents and hazardous pollutants that negatively impact the environment. This work presents an innovative method for enhancing the skim latex’s value by employing an ultrafiltration membrane. This study aims to establish a hydrophilic PVDF-TiO2 mixed-matrix membrane. The skim latex was processed through a membrane-based ultrafiltration process, which yielded two products: skim latex concentrate and skim serum. Skim latex deposits that cause fouling on the membrane surface can be identified by SEM-EDX and FTIR analysis. The PVDF–PVP-TiO2 mixed-matrix membrane generated the maximum skim serum flux of 12.72 L/m2h in contrast to the PVDF pure membranes, which showed a lower flux of 8.14 L/m2h. CHNS analysis shows that a greater amount of nitrogen, which is indicative of the protein composition, was successfully extracted by the membrane separation process. These particles may adhere to the membrane surface during filtration, obstructing or decreasing the number of fluid flow channels. The deposition reduces the effective size of membrane pores, leading to a decline in flux rate. The hydrophilic PVDF-TiO2 mixed-matrix membrane developed in this study shows strong potential for application in the latex industry, specifically for treating natural rubber skim latex, a challenging by-product known for its high fouling potential. This innovative ultrafiltration approach offers a promising method to enhance the value of skim latex by enabling more efficient separation and recovery. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 1452 KiB  
Article
An Investigation of the Flashing Process of Liquid Xenon in a Refueling Pipe
by Zongyu Wu, Chao Jiang, Kai Li, Yiyong Huang, Guangyu Li and Yun Cheng
Aerospace 2025, 12(6), 516; https://doi.org/10.3390/aerospace12060516 - 8 Jun 2025
Viewed by 363
Abstract
To investigate the phenomenon of liquid xenon flashing in a filling pipeline, the two-phase flow in a pipe is calculated and analyzed by using a one-dimensional homogeneous equilibrium model (HEM) and a two-dimensional mixture model. The distribution of xenon two-phase flow parameters along [...] Read more.
To investigate the phenomenon of liquid xenon flashing in a filling pipeline, the two-phase flow in a pipe is calculated and analyzed by using a one-dimensional homogeneous equilibrium model (HEM) and a two-dimensional mixture model. The distribution of xenon two-phase flow parameters along the pipeline is observed by the numerical solution of a one-dimensional HEM and simulation by Fluent. The comparison and analysis of the results of different models show that the one-dimensional HEM can quickly attach the critical mass flux faster than Fluent’s simulation under the given filling conditions, which verifies the rationality and rapidity of the numerical solution in calculating the flash process. The influence of the diameter and length of the pipeline on the flashing process of liquid xenon is analyzed by a one-dimensional theoretical model. The results show that the geometric parameters of the pipeline have a great impact on the mass flow rate and the position of the initial phase transition point, but have little effect on the void fraction at the outlet. An increase in pipe diameter and pipeline length delays the onset of phase transition. Compared with liquid oxygen and liquid nitrogen, liquid xenon is more likely to undergo a phase transition. The phase change kinetics of oxygen and nitrogen are roughly 70% as fast as those of xenon. Full article
(This article belongs to the Special Issue Numerical Simulations in Electric Propulsion)
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
Influence of N2 Flow Rate on Mechanical and Tribological Properties of TAlN Coatings Deposited on 300M Substrate and Nitrocarburized Layer
by Shiwei Zuo, Qinghua Li, Zhehang Fan, Xiaoyong Tao, Xiangjie Wang, Hui Xie, Qianqian Shen, Tianshi Jia and Hongyan Wu
Lubricants 2025, 13(6), 254; https://doi.org/10.3390/lubricants13060254 - 6 Jun 2025
Viewed by 533
Abstract
This study systematically investigates the influence of nitrogen (N2) flow rates and nitrocarburized (PNC) interlayers on the mechanical and tribological properties of TiAlN coatings deposited on 300M steel substrates via magnetron sputtering. The coatings were fabricated under three N2 flow [...] Read more.
This study systematically investigates the influence of nitrogen (N2) flow rates and nitrocarburized (PNC) interlayers on the mechanical and tribological properties of TiAlN coatings deposited on 300M steel substrates via magnetron sputtering. The coatings were fabricated under three N2 flow rates (30, 90, and 150 sccm), with microstructure evolution, elemental composition, and phase transitions analyzed using SEM, EDS, AFM, and XRD. The results indicate that the PNC/TiAlN composite coatings exhibited superior interfacial adhesion and load-bearing capacity compared to standalone TiAlN coatings, attributed to the graded hardness transition and stress distribution optimization at the coating–substrate interface. Nanoindentation tests revealed enhanced hardness and elastic modulus in PNC/TiAlN systems under high N2 flow conditions. Tribological evaluations demonstrated that the composite coatings achieved lower specific wear rates (25.23 × 10−8 mm3·N−1·m−1) under 7.3 N, outperforming monolithic TiAlN coatings by mitigating abrasive wear and delamination. The synergy between N2 flow modulation and nitrocarburizing pretreatment effectively optimized coating–substrate compatibility, establishing a robust framework for designing wear-resistant TiAlN coatings in extreme service environments. This work provides critical insights into tailoring PVD coating architectures for aerospace and heavy-load applications. Full article
Show Figures

Figure 1

Back to TopTop