Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ubications of WWTPs
2.2. Climate Analysis of Study Areas
2.3. Technical Characteristics of the WWTPs
2.4. Analysis of Operating Parameters in Constructed Wetlands
2.5. Sampling and Analyzed Parameters
2.6. Comparison of Pollutant Removals Between WWTPs
3. Results
3.1. Analysis of Meteorological Parameters
3.2. Comparison of Removal Efficiency Between Treatment Technologies
3.2.1. Efficiency Comparison of the Upflow Anaerobic Filter (UAF) at the Acchayacu WWTP and the Surface Flow Constructed Wetland (SF-CW) at the Churuguzo WWTP During 2015–2020
3.2.2. Efficiency Comparison of Two Constructed Wetlands Types at the Acchayacu and Churuguzo WWTPs During the Period 2021–2024
3.2.3. Comparison Between Different Treatment Technologies of of Acchayacu WWTP
4. Discussion
- Analysis of meteorological parameters
- Analysis of hydraulic parameters
- Comparative analysis of removal efficiency between SF-CW and VSSF-CW
- Influence of technological change
- Implications and limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Coello, E.; Burbano, I.; Molina, A. Polluting factors of the San Pablo River in the city of Babahoyo, Ecuador. J. Soc. Dev. Stud. Cuba. Lat. Am. 2023, 11, 20–26. [Google Scholar]
- Tchobanoglous, G.; Burton, F.L. Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed.; Impresos y Revistas, S.A.: Madrid, Spain, 1995; Volume 1. [Google Scholar]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef]
- Humanante, J.; Moreno, L.; Grijalva, A.; Saldoya, R.; Suárez, J. Removal Efficiency and impact of wastewater treatment system in the urban and rural sector of the Santa Elena Province. Manglar 2022, 19, 177–187. [Google Scholar] [CrossRef]
- Wijaya, I.M.W.; Soedjono, E.S. Physicochemical Characteristic of Municipal Wastewater in Tropical Area: Case Study of Surabaya City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 135, 012018. [Google Scholar] [CrossRef]
- Rojas, J.J.A.R. Wastewater Treatment: Theory and Design Principles, 3rd ed.; Nuevas Ediciones S.A.: Bogotá, Colombia, 2000; Volume 1. [Google Scholar]
- Jerves-Cobo, R.; Forio, M.A.E.; Lock, K.; Van Butsel, J.; Pauta, G.; Cisneros, F.; Nopens, I.; Goethals, P.L. Biological water quality in tropical rivers during dry and rainy seasons: A model-based analysis. Ecol. Indic. 2020, 108, 105769. [Google Scholar] [CrossRef]
- Isaza, C.A.A. Constructed wetlands for wastewater treatment. Gen. José María Córdova Sci. J. 2005, 3, 40–44. Available online: https://www.redalyc.org/articulo.oa?id=476259066011 (accessed on 31 December 2024).
- Chung, G.; Lansey, K.; Blowers, P.; Brooks, P.; Ela, W.; Stewart, S.; Wilson, P. A general water supply planning model: Evaluation of decentralized treatment. Environ. Model. Softw. 2008, 23, 893–905. [Google Scholar] [CrossRef]
- Llagas, W.; Gómez, E.G. Design of constructed wetlands for wastewater treatment at the National University of San Marcos. J. Inst. Res. Fac. Geol. Min. Metall. Geogr. Eng. 2006, 15, 85–96. [Google Scholar]
- Anil, A.; Sumavalli, K.; Charan, S.; Mounika, M.; Praveen, P.; Gayathri, A.; Ganesh, V.M. Constructed Wetland for Low-Cost Waste Water Treatment. Int. J. Sci. Res. Sci. Eng. Technol. 2023, 10, 328–334. [Google Scholar] [CrossRef]
- Rizaldi, M.A.; Limantara, L.M. Wetland as revitalization pond at urban area based on the eco hydrology concept. Int. J. Eng. Technol. 2018, 7, 143. [Google Scholar] [CrossRef]
- Delgadillo, O.; Camacho, A.; Pérez, L.F.; Andrade, M. Wastewater Treatment Through Constructed Wetlands; Antequera, N., Ed.; Andean Center for Water Management and Use (Centro AGUA): Bolivia, Cochabamba, 2010. [Google Scholar]
- United States Environmental Protection Agency (EPA). Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment; EPA: Washington, DC, USA, 1993. [Google Scholar]
- Aguado, R.; Parra, O.; García, L.; Manso, M.; Urkijo, L.; Mijangos, F. Modelling and simulation of subsurface horizontal flow constructed wetlands. J. Water Process Eng. 2022, 47, 102676. [Google Scholar] [CrossRef]
- Díaz, A.J.D.-G.; Paredes, P.M.P.-R. Use of treated domestic wastewater through a constructed wetland with Jatropha and sunflower. Knowl. Hub J. 2022, 7, 1478–1495. Available online: https://polodelconocimiento.com/ojs/index.php/es/article/view/3556 (accessed on 31 December 2024).
- Córdova, M.; Paz, D.; Santelices, M. Governance for Monitoring Access to Sanitation in Ecuador; Latin American Faculty of Social Sciences—FLACSO: Quito, Ecuador, 2023. [Google Scholar] [CrossRef]
- Terán, C.; Argüello, J.; Cando, C. Technical Bulletin of Environmental Economic Statistics in Municipal Decentralized Autonomous Governments: Drinking Water and Sanitation Management 2022; Agricultural and Environmental Statistics Directorate—DEAGA: Quito, Ecuador, 2023. [Google Scholar]
- Jerves-Cobo, R.; Benedetti, L.; Amerlinck, Y.; Lock, K.; De Mulder, C.; Van Butsel, J.; Cisneros, F.; Goethals, P.; Nopens, I. Integrated ecological modelling for evidence-based determination of water management interventions in urbanized river basins: Case study in the Cuenca River basin (Ecuador). Sci. Total Environ. 2020, 709, 136067. [Google Scholar] [CrossRef]
- Operacz, A.; Jóźwiakowski, K.; Rodziewicz, J.; Janczukowicz, W.; Bugajski, P. Impact of Climate Conditions on Pollutant Concentrations in the Effluent from a One-Stage Constructed Wetland: A Case Study. Sustainability 2023, 15, 13173. [Google Scholar] [CrossRef]
- Ramírez, J.S.; Loaiza, D.C.R.; Asprilla, W.J. Subsurface Constructed Wetlands: Comparison of Design Methodologies for Calculating Surface Area Based on Organic Matter Removal. Ing. USBMed 2022, 11, 65–73. [Google Scholar] [CrossRef]
- NTE INEN 2169:2013—Water; Water Quality. Sampling. Handling and Preservation of Samples (First Revision). Ecuadorian Institute for Standardization (INEN): Quito, Ecuador, 2013.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Cantelmo, N.F.; Ferreira, D.F. Performance of Multivariate Normality Tests Evaluated by Monte Carlo Simulation. Ciência Agrotecnologia 2007, 31, 1630–1636. [Google Scholar] [CrossRef]
- Khan, R.A.; Ahmad, F. Power Comparison of Various Normality Tests. Pak. J. Stat. Oper. Res. 2017, 11, 331–345. [Google Scholar] [CrossRef]
- Saculinggan, M.; Balase, E.A. Empirical Power Comparison of Goodness of Fit Tests for Normality in the Presence of Outliers. J. Phys. Conf. Ser. 2013, 435, 012041. [Google Scholar] [CrossRef]
- De La Mora-Orozco, C.; Saucedo-Terán, R.A.; González-Acuña, I.J.; Gómez-Rosales, S.; Flores-López, H.E. Effect of Water Temperature on the Reaction Rate Constant of Pollutants in a Constructed Wetland for Swine Wastewater Treatment. Rev. Mex. Cienc. Pecu. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bièvre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Navarro, L.; Torres, J.; Carlos, R. Review of Groundwater Quality Impacts Generated by Constructed Wetlands in Rural Areas. Desarro. Innovación Ingeniería 2021, 2, 10–24. [Google Scholar]
- EPA. Wastewater Technology Fact Sheet: Free Water Surface Wetlands; EPA 832-F-00-024; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- EPA. Wastewater Technology Fact Sheet: Subsurface Flow Wetlands; EPA 832-R-00-023; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- CONAGUA. Design of Municipal Wastewater Treatment Plants: Constructed Wetlands. Manual of Drinking Water, Sewerage and Sanitation (MAPAS); Book 30; National Water Commission (CONAGUA): Mexico City, Mexico, 2015.
- González, T.C.R.; Narváez, T.A.C. Evaluation and Redesign of the Acchayacu Wastewater Treatment Plant; Universidad de Cuenca: Cuenca, Ecuador, 2018. [Google Scholar]
- García, K.L.Q.; Zúñiga, D.P.R.; Duque, M.E.G.; Rojas, J.A.A. Evaluation of Nitrogen and Organic Matter Removal through Subsurface Flow Constructed Wetlands Coupled with Fixed-Bed Reactors with Microalgae at the Institución Universitaria Colegio Mayor de Antioquia. Ing. Región 2021, 25, 82–94. [Google Scholar] [CrossRef]
- Bedoya, J.C.; Ardila, A.N.; Reyes, J. Evaluation of a Subsurface Flow Constructed Wetland for the Treatment of Wastewater Generated at the Institución Universitaria Colegio Mayor de Antioquia, Colombia. Rev. Int. Contam. Ambient. 2014, 3, 275–283. [Google Scholar]
- Romero-Aguilar, M.; Colin-Cruz, A.; Sanchez-Salinas, E.; Ortiz-Hernandez, M.L. Wastewater treatment by a pilot constructed wetland system: Evaluation of organic load removal. Rev. Int. Contam. Ambient. 2009, 25, 157–167. [Google Scholar]
- Zahraeifard, V.; Deng, Z. Hydraulic residence time computation for constructed wetland design. Ecol. Eng. 2011, 37, 2087–2091. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.P.; Gómez, E.; Garavito, L.; López, F. Comparative study of domestic wastewater treatment using duckweed and water hyacinth in constructed wetlands. Tecnol. Cienc. Agua 2010, 1, 59–68. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed Wetlands: A Review on the Role of Radial Oxygen Loss in the Rhizosphere by Macrophytes. Water 2018, 10, 678. [Google Scholar] [CrossRef]
- Abdelhakeem, S.G.; Aboulroos, S.A.; Kamel, M.M. Performance of a vertical subsurface flow constructed wetland under different operational conditions. J. Adv. Res. 2016, 7, 803–814. [Google Scholar] [CrossRef]
- Carrillo-Anchundia, B.; Vera-Loor, J.; Loor-Vélez, J. Design of an upflow anaerobic filter for wastewater treatment. INGENIAR Eng. Technol. Res. 2022, 5, 2–16. [Google Scholar]
- Mosquera, Y. Leachate treatment using constructed wetlands. Tumbaga 2012, 1, 73–99. [Google Scholar]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef]
- Dotro, G.; et al. Constructed Wetlands for Pollution Control; IWA Publishing, Alliance House: London, UK, 2017; Volume 7, SW1H 0QS. [Google Scholar]
- Keyport, S.; Carson, B.D.; Johnson, O.; Lawrence, B.A.; Lishawa, S.C.; Tuchman, N.C.; Kelly, J.J. Effects of experimental harvesting of an invasive hybrid cattail on wetland structure and function. Restor. Ecol. 2019, 27, 389–398. [Google Scholar] [CrossRef]
- Arteaga-Cortez, V.M.; Quevedo-Nolasco, A.; del Valle-Paniagua, D.H.; Castro-Popoca, M.; Bravo-Vinaja, Á.; Ramírez-Zierold, J.A. State of the art: A current review on the mechanisms used by constructed wetlands for nitrogen and phosphorus removal. Tecnol. Cienc. Agua 2019, 10, 319–342. [Google Scholar] [CrossRef]
- Guerra, J.D.T.; Vargas, J.S.M.; Aguirre, R.R.P.; Huaranga, M.A.C. Evaluation of the efficiency in wastewater treatment for irrigation using Free Water Surface (FWS) Constructed Wetlands with Cyperus papyrus and Phragmites australis in Carapongo-Lurigancho. Rev. Investig. Cienc. Tecnol. Desarro. 2018, 3, 48–64. [Google Scholar] [CrossRef]
- Lahora, A. Wastewater purification through constructed wetlands: The Edar de los Gallardos (Almería). Ecol. Manag. Conserv. Wetl. 2003, 49, 99–112. [Google Scholar]
Parameter | Acchayacu UAF (Efficiency %) | Standard Deviation for Acchayaccu | Churuguzo SF-CW (Efficiency %) | Standard Deviation for Churuguzo |
---|---|---|---|---|
SS | 71.79 | 28.8 | 83.46 | 21.1 |
ST | 47.73 | 32.4 | 63.71 | 22 |
BOD5 | 60.20 | 25.4 | 74.30 | 23.3 |
COD | 48.91 | 31 | 68.44 | 23.4 |
TP | 37.23 | 27 | 45.04 | 21.2 |
N_amo | 20.43 | 13 | 33.17 | 20 |
N_org | 57.16 | 22 | 68.86 | 18.6 |
TC | 58.65 | 28 | 85.24 | 20.7 |
TTC | 53.18 | 29.3 | 92.85 | 9.47 |
Parameter | Acchayacu VSSF-CW (Efficiency %) | Standard Deviation for Acchayaccu | Churuguzo SF-CW (Efficiency %) | Standard Deviation for Churuguzo |
---|---|---|---|---|
SS | 95.66 | 8.93 | 95.88 | 12 |
ST | 75.20 | 21 | 83.57 | 13.3 |
BOD5 | 83.90 | 23.5 | 95.56 | 5.09 |
COD | 82.80 | 16.6 | 89.40 | 11.1 |
TP | 53.45 | 19.7 | 57.82 | 19.2 |
N_amo | 30.74 | 19.1 | 40.77 | 9.48 |
N_org | 65.87 | 31.7 | 71.82 | 31.5 |
TC | 69.18 | 29.4 | 94.70 | 5.33 |
TTC | 75.05 | 18.8 | 96.32 | 4.3 |
Parameter | Acchayacu | Standard | Acchayacu | Standard |
---|---|---|---|---|
UAF | Deviation UAF | VSSF-CW | Deviation VSSF-CW | |
SS | 71.79 | 28.8 | 95.66 | 8.93 |
ST | 47.73 | 32.4 | 75.2 | 21 |
BOD5 | 60.2 | 25.4 | 83.9 | 23.5 |
COD | 48.91 | 31 | 82.8 | 16.6 |
TP | 37.23 | 27 | 53.45 | 19.7 |
N_amo | 20.43 | 13 | 30.74 | 19.1 |
N_org | 57.16 | 22 | 65.87 | 31.7 |
TC | 58.65 | 28 | 69.18 | 29.4 |
TTC | 53.18 | 29.3 | 75.05 | 18.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerves-Cobo, R.; Maldonado, E.; Hidalgo-Cordero, J.F.; García-Herazo, H.; Mora-Serrano, D. Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites. Water 2025, 17, 1800. https://doi.org/10.3390/w17121800
Jerves-Cobo R, Maldonado E, Hidalgo-Cordero JF, García-Herazo H, Mora-Serrano D. Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites. Water. 2025; 17(12):1800. https://doi.org/10.3390/w17121800
Chicago/Turabian StyleJerves-Cobo, Rubén, Edwin Maldonado, Juan Fernando Hidalgo-Cordero, Hernán García-Herazo, and Diego Mora-Serrano. 2025. "Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites" Water 17, no. 12: 1800. https://doi.org/10.3390/w17121800
APA StyleJerves-Cobo, R., Maldonado, E., Hidalgo-Cordero, J. F., García-Herazo, H., & Mora-Serrano, D. (2025). Comparative Assessment of Wastewater Treatment Technologies for Pollutant Removal in High-Altitude Andean Sites. Water, 17(12), 1800. https://doi.org/10.3390/w17121800