Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organosolv Lignin Isolation from Miscanthus x giganteus
2.2. Characterization of the Miscanthus x giganteus Organosolv Lignin
2.2.1. Lignin Purity
2.2.2. HPLC Analysis of the Filtrate from Klason Lignin
2.2.3. Quantification of Nitrogenous Matter
2.2.4. Polymer Properties
2.2.5. FTIR Analysis of Miscanthus x giganteus Organosolv Lignin
2.2.6. XPS Analysis of the Miscanthus x giganteus Organosolv Lignins
2.3. Solubilization of Lignin in DMSO
2.4. Analyses of the Polymer Solution
2.4.1. Viscosity
2.4.2. Surface Tension
2.4.3. Electrical Conductivity
2.5. Electrospinning of Lignin Solutions
2.6. SEM-EDX Fiber Analysis
3. Results and Discussion
3.1. Purity Status of Organosolv Lignin from Miscanthus x giganteus
3.2. Lignin Polymer Properties
3.3. FTIR Analysis of Organosolv Lignin from Miscanthus x giganteus
3.4. XPS Analysis of Organosolv Lignins
3.5. Properties of Lignin Solutions
3.5.1. Viscosity
3.5.2. Electrical Conductivity
3.5.3. Surface Tension
3.6. Properties of the Electrospun Lignin Fibers
3.6.1. Effect of Lignin Concentration on Fiber Diameter
3.6.2. Effect of DMSO on the Sulfur Content of Lignin Fibers
3.7. FT IR Analysis of Lignin Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazhipkyzy, M.; Maltay, A.B.; Lesbayev, B.; Assylkhanova, D.D. Synthesis of Lignin/PAN Fibers from Sawdust. Fibers 2024, 12, 27. [Google Scholar] [CrossRef]
- Evon, P. Special issue “Natural fiber based composite II. Coatings 2023, 13, 1694. [Google Scholar] [CrossRef]
- Wang, S.; Bai, J.; Innocent, M.T.; Wang, Q.; Xiang, H.; Tang, J.; Zhu, M. Lignin-based carbon fibers: Formation, modification and potentials applications. Green Energy Environ. 2022, 7, 578–605. [Google Scholar] [CrossRef]
- Qu, W.; Hu, P.; Liu, J.; Jin, H.; Wang, K. Lignin based carbon fiber: A renewable and low cost substitute towards featured fiber-shaped pseudocapacitor electrodes. Clean. Prod. 2022, 343, 131030. [Google Scholar] [CrossRef]
- Fang, Z.; Jackson, J.E.; Hegg, E.L. Mild, Electroreductive Lignin Cleavage: Optimizing the depolimerization of authentic lignin. ACS Sustain. Chem. Eng. 2022, 10, 7545–7552. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, J.; Cheng, Y.; Lu, C. Lignin-Based Hight performance by textile spinning technique. Materials 2021, 14, 3378. [Google Scholar] [CrossRef]
- Parot, M.; Denis, R.; Stevanovic, T. Electrospinning of Softwood Organosolv Lignin without Polymer. ACS Sustain. Chem. Eng. 2022, 11, 607–616. [Google Scholar] [CrossRef]
- Facchi, D.P.; Souza, P.R.; Almeida, V.C.; Bonafé, E.G.; Martins, A.F. Optimizing the Ecovio and Ecovio/Zein solution parameters to achieve electrospinnability and provide thin fibers. J. Mol. Liq. 2021, 321, 114476. [Google Scholar] [CrossRef]
- Nainggolan, G.; Gea, S.; Marpongahtun; Harahap, M.; Dellyansyah; Siyumorang, S.A. Promoting Electrospun Lignin/PEO Nanofiber for High-Performance CO Filtration. Nat. Fibers 2023, 20, 2160402. [Google Scholar] [CrossRef]
- Roman, J.; Neri, W.; Derré, A.; Poulin, P. Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications. Carbon 2019, 145, 556–564. [Google Scholar] [CrossRef]
- Filip, P. Explicit Expressions for Mean Nanofibre Diameter Using Input Parameters in the Process of Electrospinning. Polymers 2023, 15, 3371. [Google Scholar] [CrossRef] [PubMed]
- Koshe, S.; Grabow, N.; Schmitz, K.P.; Eickner, T. Electrospinning of polyimide nanofibers-effects of working parameters on morphology. Curr. Dir. Biomed. Eng. 2017, 3, 687–690. [Google Scholar]
- Khan, I.; Hararat, B.; Fernando, G.F. Improved procedure for electro-spinning and carbonisation of neat solvent-fractionated softwood Kraft lignin. Sci. Rep. 2021, 11, 16237. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Ji, L.; Liu, L.; Johnson, A.M.; Potter, S.; Mansfield, S.D.; Renneckar, S. High performance electrospun carbon nanofiber mats derived from flax lignin. Ind. Crops Prod. 2020, 155, 112833. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Cheng, J.; Hu, G.; Xie, X.; Peng, C.; Yu, X.; Shen, H.; Zhao, Z.K.; Xie, H. Bio-refining corn stover into microbial lipid and advanced energy material using ionic liquid-based organic electrolyte. Ind. Crops Prod. 2020, 145, 112137. [Google Scholar] [CrossRef]
- Grote, T.; Storck, J.L.; Dotter, M.; Ehrmann, A. Impact of Solid Content in the Electrospinning Solution on the physical and chemical properties of Polyacrylonitrile (PAN) Nanofibrous Mat. Tesktilec 2020, 63, 225–232. [Google Scholar] [CrossRef]
- Zang, C.; Wang, F. Lignin Conversion Catalysis: Transformation to Aromatic Chemicals; Wiley-VCH GmbH: Weinheim, Germany, 2022; pp. 3–70. ISBN 978-527-83503-4. [Google Scholar]
- Stevanovic, T.; Perrin, D. Chimie du Bois, 1st ed.; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2016; ISBN 978-2-88074-799-2. [Google Scholar]
- El Hage, R. Prétraitement du Miscanthus x giganteus: Vers une Valorisation Optimale de la Biomasse Lignocellulosique; Université de Lorraine: Nancy, France, 2010; Available online: https://www.cfcopies.com/V2/leg/leg_droi.php (accessed on 23 March 2025).
- Li, D.; Qi, L.; Gibril, M.E.; Xue, Y.; Yang, G.; Yang, M.; Gu, Y.; Chen, J. Switchable Solvent for Separation and Extraction of Lignin from Lignocellulose Biomass: An Investigation of chemical structure and Molecular weight. Polymers 2024, 16, 3560. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- Schmatz, A.A.; Brienzo, M. Butylated Hydroxytoluene Improves Lignin Removal by Organosolv Preteatment of Sugarcane Bagasse. BioEnergy Res. 2022, 15, 166–174. [Google Scholar] [CrossRef]
- Bajpai, P. Carbopn Fibre from Lignin; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-981-10-4228-7. [Google Scholar]
- Koumba-Yoya, G.; Stevanovic, T. New Biorefinery Strategy for High Purity Lignin Production. Chem. Sel. 2016, 1, 6562–6570. [Google Scholar] [CrossRef]
- Parot, M. Etude des Lignines Organosolv de L’épinette Noire Comme Précurseurs de Fibres de Carbone Biosourcées. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2023. [Google Scholar]
- Huang, H.; Zheng, C.; Huang, C.; Wang, S. Dissolution behavior of ionic liquids for different ratio of lignin and cellulose in the preparation of nanocellulose/lignin blends. J. Colloid Interface Sci. 2024, 657, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Jassal, M.; Agrawal, A.K. The electrospinning behavior of poly(vinyl alcohol) in DMSO–water binary solvent mixtures. RSC Adv. 2016, 6, 102947–102955. [Google Scholar] [CrossRef]
- Corporation, Gaylord Chemical. Dimethyl Sulfoxide (DMSO) Physical Properties; Corporation, Gaylord Chemical: BogalusaT, LA, USA, 2005; Available online: www.gaylordchemical.com (accessed on 12 June 2025).
- Dehnad, D.; Ghorani, B.; Emadzadeh, B.; Zhang, F.; Yang, N.; Jafari, S.M. Electrospinning of legume proteins: Fundamentals, fiber production, characterization, and applications with a focus on soy proteins. Food Hydrocoll. 2023, 151, 109795. [Google Scholar] [CrossRef]
- Ranjit, K.S.; Raju, G.S.R.; Chodankar, N.R.; Ghoreishian, S.M.; Cha, Y.S.; Huh, Y.S.; Ha, Y.S. Lignin-derived carbon nanofibers-laminated redox-active-mixed metal sulfides for high-energy rechargeable hybrid supercators. Int. J. Energy Res. 2020, 45, 8018–8029. [Google Scholar] [CrossRef]
- Huang, C.; Thomas, N. L Fabricating porous poly(lactic acid) fibres via electrospinning. Eur. Polym. J. 2018, 99, 464–476. [Google Scholar] [CrossRef]
- Szabo, L.; Milotskyi, R.; Ueda, H.; Tsukegi, T.; Wada, N.; Takahashi, K. Controlled acetylation of Kraft lignin for tailoring polyacrylonitrile-Kraft lignin interactions towards the production of quality carbon nanofibers. Chem. Eng. J. 2020, 405, 126640. [Google Scholar] [CrossRef]
- Tampau, A.; González-Martínez, C.; Chiralt, A. Polylactic acid–based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Food Sci. 2020, 85, 1177–1184. [Google Scholar] [CrossRef]
- Geysoglu, M.; Callioglu, F.C. Electrospinning of protein based egg albumin nanofibers. J. Text. Inst. 2025, 116, 399–408. [Google Scholar] [CrossRef]
- Xia, Y.; He, G.; Wang, W.; Gao, Q.; Liu, Y. Low-Voltage Operating Fied-Effect Transitors and Investers Based on In2O3 Nanofiber Networkks. IEEE Trans. Electron. Devices 2021, 68, 2522–2529. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templetor, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass—NREL/TP-510-42618; Laboratory Analytical Procedure (LAP): Golden, CO, USA, 2008. [Google Scholar]
- Hamzah, M.H.; Bowra, S.; Cox, P. Effects of Ethanol Concentration on Organosolv Lignin Precipitation and Aggregation from Miscanthus x giganteus. Processes 2020, 8, 845. [Google Scholar] [CrossRef]
- Bergs, M.; Do, X.T.; Rumpf, J.; Kusch, P.; Monakhova, Y.; Know, C.; Volkering, G.; Pude, R.; Schulze, M. Comparing chemical composition and lignin structure of Micanthus x giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves. R. Soc. Chem. 2020, 10, 10740–10751. [Google Scholar] [CrossRef]
- Sunthornvarabhas, J.; Chatakanonda, P.; Piyachomkwan, K.; Sriroth, K. Electrospun polylactic acid and cassava starch fiber by conjugated solvent technique. Mater. Lett. 2011, 65, 985–987. [Google Scholar] [CrossRef]
- Campos, J.L.B.; Pinheiro, P.H.L.; da Silva, R.M.; Carvalho, C.T.; Trindate, M.A.G.; Rodrigues, R. Disclosing surface functionality evolution in H2SO4 assisted hydrothermally carbonized lignocellulosic precursors/Decephering the roles of lignin and cellulose. Fuel 2025, 382, 133610. [Google Scholar] [CrossRef]
- Kumar, Y.; Chauhan, D.K. An Efficient Approch of Fourier Transform Infrared Spectroscopy for Analysis of Lignin Derivates in the Vertetebraria indica Royle. Natl. Acad. Sci. Lett. 2016, 39, 291–294. [Google Scholar] [CrossRef]
- Le, D.M.; Nielsen, A.D.; Sorensen, H.R.; Meyer, A.S. Charactisation of Authentic Lignin Biorefinery Samples by Fourier Transform Infrared Spectroscopy and Determination of the Chemical Formula for Lignin. BioEnergy Res. 2017, 10, 1025–1035. [Google Scholar] [CrossRef]
- de Carvalho, D.M.; Colodette, J.L. Comparative Study of Acid Hydrolysis of Lignin and Polysaccharides in Biomasses. BioRessources 2017, 12, 6907–6923. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Chen, L.; An, Y.; Jin, X.; Li, X.; Liu, Z.; Wang, G.; Li, R. Study on the removal of lignin from pre-hydrolysis liquor by lacase-induced polymerization and the conversion of xylose to furfural. Green Chem. 2022, 24, 1603–1614. [Google Scholar] [CrossRef]
- Stark, N.M.; Yelle, D.J.; Agarwal, U.P. Techniques for Characterizing Lignin. In Lignin in Polymer Composites; Omar, F., Mohoni, S., Eds.; Elsevier: Oxford, UK, 2016; Chapter 4; pp. 49–66. ISBN 9780323355650. [Google Scholar] [CrossRef]
- Peterson, G.; Epps, T.H. Impact of zinc salt conterion on poly (ethylene oxide) solution viscosity, conductivity, and ability to generate electrospun MOF/nanofiber composites. Polymer 2022, 14, 124816. [Google Scholar] [CrossRef]
- Akbari, S.; Bahi, A.; Farahani, A.; Milani, A.S.; Ko, F. Fabrication and characterization of lignin/Dendrimer Electrospun blended fiber Mats. Molecules 2021, 26, 518. [Google Scholar] [CrossRef]
- Alvarez, A.K.G.; Dotter, M.; Tuvshinbayar, K.; Bondzio, L.; Ennen, I.; Hutten, A.; Blachowicz, T.; Ehrmann, A. Electrospinning Poly(acrylonitrile) containing Magnetite Nanoparticles: Influence of Magnetite Contents. Fibers 2024, 12, 19. [Google Scholar] [CrossRef]
- Dodero, A.; Brunengo, E.; Alloisio, M.; Sionkowska, A.; Vicini, S.; Castellano, M. Chitosan-based electrospun membranes: Effects of solution, coagulant and crosslinker. Carbohydr. Polym. 2020, 235, 115976. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Fu, X.; Wang, Y.D.; Wang, G.; Chen, X. Fabrication of bioactive glass containing nonocomposite fibers by combinaison of electrospinning and phase separation. Mater. Lett. 2019, 248, 185–188. [Google Scholar] [CrossRef]
Lignin Purity (%) | Impurities | Amount (%) |
---|---|---|
89.3 ± 1.2 | Glucose | 4.49 ± 0.20 |
Fructose | 1.22 ± 0.06 | |
Rhamnose | 0.22 ± 0.01 | |
Cellobiose | 0.62 ± 0.01 | |
Ashes | 2.04 ± 0.02 | |
Nitrogen | 0.91 ± 0.01 | |
Proteins | 5.67 ± 0.20 |
Lignin Concentration (%) | 0 | 55 | 60 | 62 | 63 |
Viscosity (Pa·s) | 2.0 | 4.3 | 35.2 | 32.2 | 284.3 |
Electrical conductivity (µS/cm) | 3.0 | 0.95 | 0.26 | 0.16 | 0.11 |
Surface tension (mN/m) | 43.53 | 27.2 | 24.1 | 22.5 | 20.8 |
Solution of lignin fiber (%) | 55 | 60 | 62 | 63 |
Average diameter (µm) | 1.14 ± 0.53 | 0.6 ± 0.45 | 0.93 ± 0.42 | 2.01 ± 0.69 |
Lignin concentration in DMSO (%) | 55 | 60 | 62 | 63 |
Sulfur concentration in the fibers (%) | 4.40 | 3.20 | 3.14 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekila, R.J.; Stevanovic, T.; Rodrigue, D. Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO). Polymers 2025, 17, 1695. https://doi.org/10.3390/polym17121695
Ekila RJ, Stevanovic T, Rodrigue D. Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO). Polymers. 2025; 17(12):1695. https://doi.org/10.3390/polym17121695
Chicago/Turabian StyleEkila, Roland Jacks, Tatjana Stevanovic, and Denis Rodrigue. 2025. "Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO)" Polymers 17, no. 12: 1695. https://doi.org/10.3390/polym17121695
APA StyleEkila, R. J., Stevanovic, T., & Rodrigue, D. (2025). Electrospinning of Miscanthus x giganteus Organosolv Lignin in Dimethyl Sulfoxide (DMSO). Polymers, 17(12), 1695. https://doi.org/10.3390/polym17121695