Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = nitrogen doped graphite oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 309
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

18 pages, 2923 KiB  
Article
Nitrogen-Doped Carbon Dots as a Fluorescent “Off–On” Probe for Selective Ascorbic Acid Detection via H2O2-Mediated Quenching
by Jingjing Jia, Xue Liu and Wenjing Wang
Nanomaterials 2025, 15(13), 976; https://doi.org/10.3390/nano15130976 - 23 Jun 2025
Viewed by 463
Abstract
Nitrogen-doped carbon dots (NCDs) exhibiting superior fluorescence characteristics were synthesized employing o-phenylenediamine and 2-methylimidazole as precursors. The synthesized NCDs exhibited yellow photoluminescence with an excitation/emission maxima of 410/554 nm with a quantum yield of 28.41%. The presence of pyridinic N, pyrrolic N, graphitic [...] Read more.
Nitrogen-doped carbon dots (NCDs) exhibiting superior fluorescence characteristics were synthesized employing o-phenylenediamine and 2-methylimidazole as precursors. The synthesized NCDs exhibited yellow photoluminescence with an excitation/emission maxima of 410/554 nm with a quantum yield of 28.41%. The presence of pyridinic N, pyrrolic N, graphitic N, and amino N functionalities on the NCDs’ surface provided strong evidence for the successful nitrogen doping of the carbon dots. Upon exposure to hydrogen peroxide (H2O2), the NCDs exhibited a significant reduction in fluorescence intensity, which could be restored by the addition of ascorbic acid (AA), demonstrating a quantitative relationship between ascorbic acid and fluorescence efficiency. A novel fluorescence “off–on” system utilizing these NCDs was developed for the quantification of AA. The sensing mechanism relies on H2O2-induced fluorescence quenching via the selective oxidation of the NCDs’ surface, followed by fluorescence restoration upon AA addition due to the reduction in surface defects. Meanwhile, further experiments confirmed that the quenching mechanism was static quenching. The NCDs demonstrated a limit of detection (LOD) of 0.605 μM for AA detection. The use of NCDs for AA sensing was validated through the analysis of commercially available beverages. This study aimed to establish a simplified method for ascorbic acid detection. The experimental findings indicated that the developed technique exhibited high accuracy in quantifying ascorbic acid. These findings suggest that the developed NCDs possess considerable potential as a multifunctional sensing tool for various analytical applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

23 pages, 4636 KiB  
Article
Effect of Metal Additives on the Structure, Morphology, and Adsorption Characteristics of the Composites: Silicon Monoxide/Phenol–Formaldehyde-Derived Carbon
by Mariia Galaburda, Agnieszka Chrzanowska, Dariusz Sternik, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Int. J. Mol. Sci. 2025, 26(10), 4770; https://doi.org/10.3390/ijms26104770 - 16 May 2025
Viewed by 419
Abstract
The role of metal additives in the synthesis of composite materials based on the silicon and carbon-containing materials to create the desired structural and adsorption properties is analyzed. A two-step procedure was applied to obtain a series of nanocomposites doped with metal oxides. [...] Read more.
The role of metal additives in the synthesis of composite materials based on the silicon and carbon-containing materials to create the desired structural and adsorption properties is analyzed. A two-step procedure was applied to obtain a series of nanocomposites doped with metal oxides. Various techniques were used to characterize the phase composition and the textural, structural, morphological, and thermal properties of the synthesized materials: X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nitrogen adsorption–desorption, and thermal analysis. The adsorption processes on the obtained nanocomposites were studied for aqueous solutions of aniline, benzoic acid, and phenol. The influence of the metal additives on the formation of carbonaceous structures, the adsorption efficiency, and the adsorption mechanism was determined. The synthesized composites show mesoporous and microporous structures, with varied proportions of both pore types. They are differentiated, taking into account the quality of the carbon material (defect density and degree of graphitization), which decreases in the Co > Ni > Cu > Zn > SiO line. The complex effect of the factors determining the adsorption mechanism and efficiency was investigated: textural, structural, and morphological characteristics and the role of the active metal centers. Generally, the results provide valuable insights into the adaptation of hybrid materials for various industrial applications and underline their versatility. Full article
Show Figures

Graphical abstract

18 pages, 3885 KiB  
Article
A Pathway to Circular Economy-Converting Li-Ion Battery Recycling Waste into Graphite/rGO Composite Electrocatalysts for Zinc–Air Batteries
by Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand
Batteries 2025, 11(4), 165; https://doi.org/10.3390/batteries11040165 - 21 Apr 2025
Viewed by 1132
Abstract
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted [...] Read more.
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted the scientific community to seek ways to improve material utilization through the recycling of end-of-life LIBs. While valuable battery metals are already being recycled on an industrial scale, graphite—a material classified as a critical resource—continues to be discarded. In this study, graphite waste recovered from the recycling of LIBs was successfully upcycled into an active graphite/rGO (reduced graphene oxide) composite oxygen electrocatalyst. The precursor graphite for rGO synthesis was also extracted from LIBs. Incorporating rGO into the graphite significantly enhanced the specific surface area and porosity of the resulting composite, facilitating effective doping with residual metals during subsequent nitrogen doping via pyrolysis. These composite catalysts enhanced both the oxygen reduction and oxygen evolution reactions, enabling their use as air electrode catalyst materials in zinc–air batteries (ZABs). The best-performing composite catalyst demonstrated an impressive power density of 100 mW cm−2 and exceptional cycling stability for 137 h. This research further demonstrates the utilization of waste fractions from LIB recycling to drive advancements in energy conversion technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Graphical abstract

20 pages, 6022 KiB  
Article
Nitrogen/Sulfur Co-Doped Biochar for Peroxymonosulfate Activation in Paracetamol Degradation: Mechanism Insight and Toxicity Evaluation
by Jiaqi Cui, Hong Meng, Yu Chen, Yongqing Zhang, Waseem Hayat and Charles Q. Jia
Catalysts 2025, 15(2), 121; https://doi.org/10.3390/catal15020121 - 26 Jan 2025
Cited by 1 | Viewed by 1300
Abstract
Advanced oxidation processes based on either peroxydisulfate (PDS) or peroxymonosulfate (PMS), collectively termed persulfate-based advanced oxidation processes (PS-AOPs), show potential in wastewater treatment applications. In this work, the nitrogen (N) and sulfur (S) co-doped biochar (NSBC) was prepared via a one-step pyrolysis of [...] Read more.
Advanced oxidation processes based on either peroxydisulfate (PDS) or peroxymonosulfate (PMS), collectively termed persulfate-based advanced oxidation processes (PS-AOPs), show potential in wastewater treatment applications. In this work, the nitrogen (N) and sulfur (S) co-doped biochar (NSBC) was prepared via a one-step pyrolysis of coffee grounds at 400 to 800 °C as a PMS activator for degrading paracetamol (PCT). The non-metallic NSBC demonstrated exceptional catalytic activity in activating PMS. In the NSBC-800/PMS system, 100% of PCT was completely degraded within 20 min, with a high reaction rate constant (kobs) of 0.2412 min−1. The system’s versatility was highlighted by its degradation potential across a wide pH range (3–11) and in the presence of various background ions and humic acids. The results of various experiments and characterization techniques showed that the system relied on an NSBC-800-mediated electron transfer as the main mechanism for PCT degradation. Additionally, there was a minor involvement of 1O2 in a non-radical degradation pathway. The graphitic N and thiophene-S (C-S-C) moieties introduced by N/S co-doping, as well as the carbonyl (C=O) groups of the biochar, were considered active sites promoting 1O2 generation. The total organic carbon (TOC) removal rate reached 37% in 120 min, while the assessment of the toxicity of the degradation products also affirmed the system’s environmental safety. This research provides a novel method for preparing environmentally friendly and cost-effective carbon-based catalysts for environmental remediation. Full article
Show Figures

Graphical abstract

17 pages, 5343 KiB  
Article
In Situ Synthesis of Co3O4 Nanoparticles on N-Doped Biochar as High-Performance Oxygen Reduction Reaction Electrocatalysts
by Renata Matos, Jorge V. Manuel, António J. S. Fernandes, Victor K. Abdelkader-Fernández, Andreia F. Peixoto and Diana M. Fernandes
Catalysts 2024, 14(12), 951; https://doi.org/10.3390/catal14120951 - 23 Dec 2024
Viewed by 1184
Abstract
The development of sustainable and high-performance oxygen reduction reaction (ORR) electrocatalysts is fundamental to fuel cell implementation. Non-precious transition metal oxides present interesting electrocatalytic behavior, and their incorporation into N-doped carbon supports leads to excellent ORR performance. Herein, we prepared a shrimp shell-derived [...] Read more.
The development of sustainable and high-performance oxygen reduction reaction (ORR) electrocatalysts is fundamental to fuel cell implementation. Non-precious transition metal oxides present interesting electrocatalytic behavior, and their incorporation into N-doped carbon supports leads to excellent ORR performance. Herein, we prepared a shrimp shell-derived biochar (CC), which was doped with nitrogen via a ball milling approach (N-CC), and then used as support for Co3O4 nanoparticles growth (N-CC@Co3O4). Co3O4 loading was optimized using three different amounts of cobalt precursor: 1.56, 2.33 and 3.11 mmol in N-CC@Co3O4_1, N-CC@Co3O4_2 and N-CC@Co3O4_3, respectively. Interestingly, all prepared electrocatalysts, including the initial biochar CC, presented electrocatalytic activity towards ORR. Both N-doping and the introduction of Co3O4 NPs had a significant positive effect on ORR performance. Meanwhile, the three composites showed distinct ORR behavior, demonstrating that it is possible to tune their electrocatalytic performance by changing the Co3O4 loading. Overall, N-CC@Co3O4_2 achieved the most promising ORR results, displaying an Eonset of 0.84 V vs. RHE, jL of −3.45 mA cm−2 and excellent selectivity for the 4-electron reduction (n = 3.50), besides good long-term stability. These results were explained by a combination of high content of pyridinic-N and graphitic-N, high ratio of pyridinic-N/graphitic-N, and optimized Co3O4 loading interacting synergistically with the porous N-CC support. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Electrocatalysts)
Show Figures

Figure 1

15 pages, 3650 KiB  
Article
Enhanced Peroxydisulfate (PDS) Activation for Sulfamethoxazole (SMX) Degradation by Modified Sludge Biochar: Focusing on the Role of Functional Groups
by Yuting He, Jiantao Lin, Yuchuan Yang, Minghua Liu and Yifan Liu
Water 2024, 16(3), 505; https://doi.org/10.3390/w16030505 - 4 Feb 2024
Cited by 5 | Viewed by 2585
Abstract
Modified sludge biochar, recognized for its notable economic and environmental benefits, demonstrates potential as an effective catalyst for peroxydisulfate (PDS) activation. Nevertheless, the specific mechanisms underlying its catalytic performance require more comprehensive investigation. In this study, a modified biochar (TSBC) doped with oxygen [...] Read more.
Modified sludge biochar, recognized for its notable economic and environmental benefits, demonstrates potential as an effective catalyst for peroxydisulfate (PDS) activation. Nevertheless, the specific mechanisms underlying its catalytic performance require more comprehensive investigation. In this study, a modified biochar (TSBC) doped with oxygen (O) and nitrogen (N) atoms was synthesized from sewage sludge and tannin extract, which significantly enhanced the activation of PDS for the degradation of sulfamethoxazole (SMX). The TSBC/PDS system demonstrated robust performance for SMX degradation, achieving over 90% efficiency over a wide pH range (3–10). Subsequent quenching experiments demonstrated that TSBC predominantly catalyzed PDS to generate O21, which effectively degraded SMX via a non-radical pathway. The O- and N-containing functional groups in TSBC were identified as the primary catalytic sites. Besides, density functional theory (DFT) calculations revealed that the incorporation of graphitic N significantly improved the adsorption capacity of PDS on the TSBC surface. Furthermore, based on the identification of intermediates and theoretical calculations, SMX was degraded mainly by two different pathways: S-N cleavage and O21 oxidation. This study offers a foundational framework for the targeted modification of sludge biochar, thereby expanding its applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 6132 KiB  
Article
Preparation and Lithium-Ion Capacitance Performance of Nitrogen and Sulfur Co-Doped Carbon Nanosheets with Limited Space via the Vermiculite Template Method
by Fang Yang, Pingzheng Jiang, Qiqi Wu, Wei Dong, Minghu Xue and Qiao Zhang
Molecules 2024, 29(2), 536; https://doi.org/10.3390/molecules29020536 - 22 Jan 2024
Cited by 2 | Viewed by 1594
Abstract
Nitrogen and sulfur co-doped graphene-like carbon nanosheets (CNSs) with a two-dimensional structure are prepared by using methylene blue as a carbon source and expanded vermiculite as a template. After static negative pressure adsorption, high-temperature calcination, and etching in a vacuum oven, they are [...] Read more.
Nitrogen and sulfur co-doped graphene-like carbon nanosheets (CNSs) with a two-dimensional structure are prepared by using methylene blue as a carbon source and expanded vermiculite as a template. After static negative pressure adsorption, high-temperature calcination, and etching in a vacuum oven, they are embedded in the limited space of the vermiculite template. The addition of an appropriate number of mixed elements can improve the performance of a battery. Via scanning electron microscopy, it is found that the prepared nitrogen–sulfur-co-doped carbon nanosheets exhibit a thin yarn shape. The XPS results show that there are four elements of C, N, O, and S in the carbon materials (CNS-600, CNS-700, CNS-800, CNS-900) prepared at different temperatures, and the N atom content shows a gradually decreasing trend. It is mainly doped into a graphene-like network in four ways (graphite nitrogen, pyridine nitrogen, pyrrole nitrogen, and pyridine nitrogen oxide), while the S element shows an increasing trend, mainly in the form of thiophene S and sulfur, which is covalently linked to oxygen. The results show that CNS-700 has a discharge-specific capacity of 460 mAh/g at a current density of 0.1 A/g, and it can still maintain a specific capacity of 200 mAh/g at a current density of 2 A/g. The assembled lithium-ion capacitor has excellent energy density and power density, with a maximum power density of 20,000 W/kg. Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials for Energy Conversion and Storage)
Show Figures

Graphical abstract

20 pages, 5487 KiB  
Article
Nitrogen-Doped Graphene Materials with High Electrical Conductivity Produced by Electrochemical Exfoliation of Graphite Foil
by Hela Kammoun, Benjamin D. Ossonon and Ana C. Tavares
Nanomaterials 2024, 14(1), 123; https://doi.org/10.3390/nano14010123 - 4 Jan 2024
Cited by 4 | Viewed by 3969
Abstract
Nitrogen-doped graphene-based materials are of utmost importance in sensing and energy conversion devices due to their unique physicochemical properties. However, the presence of defects such as pyrrolic nitrogen and oxygenated functional groups reduces their electrical conductivity. Herein, a two-step approach based on the [...] Read more.
Nitrogen-doped graphene-based materials are of utmost importance in sensing and energy conversion devices due to their unique physicochemical properties. However, the presence of defects such as pyrrolic nitrogen and oxygenated functional groups reduces their electrical conductivity. Herein, a two-step approach based on the electrochemical exfoliation of graphite foils in aqueous mixed electrolytes followed by thermal reduction at 900 °C is used to prepare high-quality few layers of N-doped graphene-based materials. The exfoliations were conducted in 0.1 M (NH4)2SO4 or H2SO4 and HNO3 (5 mM or 0.1 M) electrolytes mixtures and the HNO3 vol% varied. Chemical analysis demonstrated that the as-prepared graphene oxides contain nitro and amine groups. Thermal reduction is needed for substitutional N-doping. Nitrogen and oxygen surface concentrations vary between 0.23–0.96% and 3–8%, respectively. Exfoliation in (NH4)2SO4 and/or 5 mM HNO3 favors the formation of pyridinic-N (10–40% of the total N), whereas 1 M HNO3 favors the formation of graphitic-N (≈60%). The electrical conductivity ranges between 166–2705 Scm−1. Raman spectroscopy revealed a low density of defects (ID/IG ratio between 0.1 and 0.7) and that most samples are composed of mono-to-bilayer graphene-based materials (IG/I2D integrated intensities ratio). Structural and compositional stability of selected samples after storage in air for three months is demonstrated. These results confirm the high quality of the synthesized undoped and N-doped graphene-type materials. Full article
(This article belongs to the Special Issue Electronic Applications of Graphene-Based Composites)
Show Figures

Figure 1

18 pages, 10555 KiB  
Article
Cobalt Encapsulated in Nitrogen-Doped Graphite-like Shells as Efficient Catalyst for Selective Oxidation of Arylalkanes
by Shuo Li, Shafqat Ali, Zareen Zuhra, Huahuai Shen, Jiaxiang Qiu, Yanbin Zeng, Ke Zheng, Xiaoxia Wang, Guanqun Xie and Shujiang Ding
Molecules 2024, 29(1), 65; https://doi.org/10.3390/molecules29010065 - 21 Dec 2023
Cited by 5 | Viewed by 1744
Abstract
Selective oxidation of ethylbenzene to acetophenne is an important process in both organic synthesis and fine chemicals diligence. The cobalt-based catalysts combined with nitrogen-doped carbon have received great attention in ethylbenzene (EB) oxidation. Here, a series of cobalt catalysts with metallic cobalt nanoparticles [...] Read more.
Selective oxidation of ethylbenzene to acetophenne is an important process in both organic synthesis and fine chemicals diligence. The cobalt-based catalysts combined with nitrogen-doped carbon have received great attention in ethylbenzene (EB) oxidation. Here, a series of cobalt catalysts with metallic cobalt nanoparticles (NPs) encapsulated in nitrogen-doped graphite-like carbon shells (Co@NC) have been constructed through the one-pot pyrolysis method in the presence of different nitrogen-containing compounds (urea, dicyandiamide and melamine), and their catalytic performance in solvent-free oxidation of EB with tert-butyl hydrogen peroxide (TBHP) as an oxidant was investigated. Under optimized conditions, the UCo@NC (urea as nitrogen source) could afford 95.2% conversion of EB and 96.0% selectivity to acetophenone, and the substrate scalability was remarkable. Kinetics show that UCo@NC contributes to EB oxidation with an apparent activation energy of 32.3 kJ/mol. The synergistic effect between metallic cobalt NPs and nitrogen-doped graphite-like carbon layers was obviously observed and, especially, the graphitic N species plays a key role during the oxidation reaction. The structure–performance relationship illustrated that EB oxidation was a free radical reaction through 1-phenylethanol as an intermediate, and the possible reaction mechanistic has been proposed. Full article
Show Figures

Figure 1

18 pages, 6435 KiB  
Article
Study on the Application of Nitrogen-Doped Holey Graphene in Supercapacitors with Organic Electrolyte
by Yu-Ren Huang, Nen-Wen Pu, Guan-Min Wu, Yih-Ming Liu, Ming-Hsien Lin, Yi-Le Kwong, Siou-Cheng Li, Jeng-Kuei Chang and Ming-Der Ger
Nanomaterials 2023, 13(10), 1640; https://doi.org/10.3390/nano13101640 - 14 May 2023
Cited by 8 | Viewed by 2049
Abstract
We present a facile low-cost method to produce nitrogen-doped holey graphene (N-HGE) and its application to supercapacitors. A composite of N-HGE and activated carbon (AC) was used as the electrode active material in organic-electrolyte supercapacitors, and the performances were evaluated. Melamine was mixed [...] Read more.
We present a facile low-cost method to produce nitrogen-doped holey graphene (N-HGE) and its application to supercapacitors. A composite of N-HGE and activated carbon (AC) was used as the electrode active material in organic-electrolyte supercapacitors, and the performances were evaluated. Melamine was mixed into graphite oxide (GO) as the N source, and an ultra-rapid heating method was used to create numerous holes during the reduction process of GO. X-ray photoelectron spectra confirmed the successful doping with 2.9–4.5 at.% of nitrogen on all samples. Scanning electron micrographs and Raman spectra revealed that a higher heating rate resulted in more holes and defects on the reduced graphene sheets. An extra annealing step at 1000 °C for 1 h was carried out to further eliminate residual oxygen functional groups, which are undesirable in the organic electrolyte system. Compared to the low-heating-rate counterpart (N-GE-15), N-HGE boosted the specific capacity of the supercapacitor by 42 and 22% at current densities of 0.5 and 20 A/g, respectively. The effects of annealing time (0.5, 1, and 2 h) at 1000 °C were also studied. Longer annealing time resulted in higher capacitance values at all current densities due to the minimized oxygen content. Volumetric specific capacitances of 49 and 24 F/cm3 were achieved at current densities of 0.5 and 20 A/g, respectively. For the high-power-density operation at 31,000 W/kg (or 10,000 W/L), an energy density as high as 11 Wh/kg (or 3.5 Wh/L) was achieved. The results indicated that N-HGE not only improved the conductivity of the composite supercapacitors but also accelerated ion transport by way of shortened diffusion paths through the numerous holes all over the graphene sheets. Full article
Show Figures

Figure 1

15 pages, 1648 KiB  
Article
Promotion of the Efficient Electrocatalytic Production of H2O2 by N,O- Co-Doped Porous Carbon
by Lina Sun, Liping Sun, Lihua Huo and Hui Zhao
Nanomaterials 2023, 13(7), 1188; https://doi.org/10.3390/nano13071188 - 27 Mar 2023
Cited by 14 | Viewed by 3132
Abstract
H2O2 generation via an electrochemical two-electron oxygen reduction (2e ORR) is a potential candidate to replace the industrial anthraquinone process. In this study, porous carbon catalysts co-doped by nitrogen and oxygen are successfully synthesized by the pyrolysis and oxidation [...] Read more.
H2O2 generation via an electrochemical two-electron oxygen reduction (2e ORR) is a potential candidate to replace the industrial anthraquinone process. In this study, porous carbon catalysts co-doped by nitrogen and oxygen are successfully synthesized by the pyrolysis and oxidation of a ZIF-67 precursor. The catalyst exhibits a selectivity of ~83.1% for 2e ORR, with the electron-transferring number approaching 2.33, and generation rate of 2909.79 mmol g−1 h−1 at 0.36 V (vs. RHE) in KOH solution (0.1 M). The results prove that graphitic N and –COOH functional groups act as the catalytic centers for this reaction, and the two functional groups work together to greatly enhance the performance of 2e ORR. In addition, the introduction of the –COOH functional group increases the hydrophilicity and the zeta potential of the carbon materials, which also promotes the 2e ORR. The study provides a new understanding of the production of H2O2 by electrocatalytic oxygen reduction with MOF-derived carbon catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

12 pages, 1573 KiB  
Article
Nitrogen-Doped Carbon Quantum Dots for Biosensing Applications: The Effect of the Thermal Treatments on Electrochemical and Optical Properties
by Francesco Ghezzi, Riccardo Donnini, Antonio Sansonetti, Umberto Giovanella, Barbara La Ferla and Barbara Vercelli
Molecules 2023, 28(1), 72; https://doi.org/10.3390/molecules28010072 - 22 Dec 2022
Cited by 7 | Viewed by 2899
Abstract
The knowledge of the ways in which post-synthesis treatments may influence the properties of carbon quantum dots (CDs) is of paramount importance for their employment in biosensors. It enables the definition of the mechanism of sensing, which is essential for the application of [...] Read more.
The knowledge of the ways in which post-synthesis treatments may influence the properties of carbon quantum dots (CDs) is of paramount importance for their employment in biosensors. It enables the definition of the mechanism of sensing, which is essential for the application of the suited design strategy of the device. In the present work, we studied the ways in which post-synthesis thermal treatments influence the optical and electrochemical properties of Nitrogen-doped CDs (N-CDs). Blue-emitting, N-CDs for application in biosensors were synthesized through the hydrothermal route, starting from citric acid and urea as bio-synthesizable and low-cost precursors. The CDs samples were thermally post-treated and then characterized through a combination of spectroscopic, structural, and electrochemical techniques. We observed that the post-synthesis thermal treatments show an oxidative effect on CDs graphitic N-atoms. They cause their partially oxidation with the formation of mixed valence state systems, [CDs]0+, which could be further oxidized into the graphitic N-oxide forms. We also observed that thermal treatments cause the decomposition of the CDs external ammonium ions into ammonia and protons, which protonate their pyridinic N-atoms. Photoluminescence (PL) emission is quenched. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry)
Show Figures

Graphical abstract

24 pages, 8450 KiB  
Article
Role of N-Doping and O-Groups in Unzipped N-Doped CNT Carbocatalyst for Peroxomonosulfate Activation: Quantitative Structure–Activity Relationship
by Kadarkarai Govindan, Do-Gun Kim and Seok-Oh Ko
Catalysts 2022, 12(8), 845; https://doi.org/10.3390/catal12080845 - 1 Aug 2022
Cited by 30 | Viewed by 2930
Abstract
We examined the relationship between the intrinsic structure of a carbocatalyst and catalytic activity of peroxomonosulfate (PMS) activation for acetaminophen degradation. A series of nitrogen-doped carbon nanotubes with different degrees of oxidation was synthesized by the unzipping method. The linear regression analysis proposes [...] Read more.
We examined the relationship between the intrinsic structure of a carbocatalyst and catalytic activity of peroxomonosulfate (PMS) activation for acetaminophen degradation. A series of nitrogen-doped carbon nanotubes with different degrees of oxidation was synthesized by the unzipping method. The linear regression analysis proposes that pyridinic N and graphitic N played a key role in the catalytic oxidation, rather than pyrrolic N and oxidized N. Pyridinic N reinforce the electron population in the graphitic framework and initiate the non-radical pathway via the formation of surface-bound radicals. Furthermore, graphitic N forms activated complexes (carbocatalyst-PMS*), facilitating the electron-transfer oxidative pathway. The correlation also affirms that -C=O was dominantly involved as a main active site, rather than -C-OH and -COOH. This study can be viewed as the first attempt to demonstrate the relationship between the fraction of N-groups and activity, and the quantity of O-groups and activity by active species (quenching studies) was established to reveal the role of N-groups and O-groups in the radical and non-radical pathways. Full article
(This article belongs to the Topic Advanced Oxidation Process: Applications and Prospects)
Show Figures

Figure 1

17 pages, 6379 KiB  
Article
Proposal of a Facile Method to Fabricate a Multi-Dope Multiwall Carbon Nanotube as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction
by Sara Bakhtavar, Mehdi Mehrpooya, Mahboobeh Manoochehri and Mehrnoosh Karimkhani
Sustainability 2022, 14(2), 965; https://doi.org/10.3390/su14020965 - 15 Jan 2022
Cited by 8 | Viewed by 2577
Abstract
In this study, a one-pot, low-temperature synthesis method is considered for the fabrication of heteroatom dope multiwall carbon nanotubes (MWCNT). Doped MWCNT is utilized as an effective electrocatalyst for oxygen reduction reaction (ORR). Single, double, and triple doping of boron, nitrogen and sulfur [...] Read more.
In this study, a one-pot, low-temperature synthesis method is considered for the fabrication of heteroatom dope multiwall carbon nanotubes (MWCNT). Doped MWCNT is utilized as an effective electrocatalyst for oxygen reduction reaction (ORR). Single, double, and triple doping of boron, nitrogen and sulfur elements are utilized as the dopants. A reflux system with temperature of 180 °C is implemented in the doping procedure. Actually, unlike the previous studies in which doping on the carbon structures was performed using a furnace at temperatures above 700 °C, in this green and sustainable method, the triple doping on MWCNT is conducted at atmospheric pressure and low temperature. The morphology and structure of the fabricated catalysts were evaluated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. According to the results, the nanoparticles were encapsulated in the carbon nanotubes. Aggregated clusters of the sulfur in the case of S-MWCNT are considerable. Cyclic voltammetry (CV), rotating disk electrode, linear sweep voltammetry (LSV), and chronoamperometry electrochemical tests are employed for assessing the oxygen reduction activity of the catalysts. The results illustrate that by using this doping method, the onset potential shifts to positive values towards the oxidized MWCNT. It can be deduced that by doping the N, B, and S atoms on MWCNTs, the defects in the CNT structure, which serve as active sites for ORR application, increase. The N/S/B-doped graphitic layers have a more rapid electron transfer rate at the electrode/electrolyte interface. Thus, this can improve the electrochemistry performance and electron transfer of the MWCNTs. The best performance and electrochemical activity belonged to the NB-MWCNT catalyst (−0.122 V vs. Ag/AgCl). Also, based on the results gained from the Koutecky–Levich (KL) plot, it can be said that the ORR takes place through the 4 e pathway. Full article
Show Figures

Figure 1

Back to TopTop